OREGON STATE UNIVERSITY

You are here

Interactive Visualization of Rotational Symmetry Fields on Surfaces

TitleInteractive Visualization of Rotational Symmetry Fields on Surfaces
Publication TypeJournal Article
Year of Publication2011
AuthorsPalacios, J., and E. Zhang
JournalIEEE Transactions on Visualization and Computer Graphics
Volume17
Issue7
Pagination947 - 955
Date Published07/2011
ISSN1077-2626
Abstract

Rotational symmetries (RoSys) have found uses in several computer graphics applications, such as global surface parameterization, geometry remeshing, texture and geometry synthesis, and nonphotorealistic visualization of surfaces. The visualization of N-way rotational symmetry (N-RoSy) fields is a challenging problem due to the ambiguities in the N directions represented by an N-way symmetry. We provide an algorithm that allows faithful and interactive representation of N-RoSy fields in the plane and on surfaces, by adapting the well-known line integral convolution (LIC) technique from vector and second-order tensor fields. Our algorithm captures N directions associated with each point in a given field by decomposing the field into multiple different vector fields, generating LIC images of these fields, and then blending the results. To address the loss of contrast caused by the blending of images, we observe that the pixel values in LIC images closely approximate normally distributed random variables. This allows us to use concepts from probability theory to correct the loss of contrast without the need to perform any image analysis at each frame.

DOI10.1109/TVCG.2010.121
Short TitleIEEE Trans. Visual. Comput. Graphics