MIPS R-format Instructions

Instruction fields
- op: operation code (opcode)
- rs: first source register register number
- rt: second source register register number
- rd: destination register register number
- shamt: shift amount (000000 for now)
- funct: function code (extends opcode)
R-format Example

<table>
<thead>
<tr>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>shamt</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>6 bits</td>
</tr>
</tbody>
</table>

add $t0$, $s1$, $s2$

<table>
<thead>
<tr>
<th>special</th>
<th>$s1$</th>
<th>$s2$</th>
<th>$t0$</th>
<th>0</th>
<th>add</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>18</td>
<td>8</td>
<td>0</td>
<td>32</td>
</tr>
</tbody>
</table>

000000 10001 10010 01000 00000 100000

$00000010001100100100000000100000_2 = 02324020_{16}$
MIPS I-format Instructions

<table>
<thead>
<tr>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>constant or address</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>16 bits</td>
</tr>
</tbody>
</table>

- Immediate arithmetic and load/store instructions
 - rt: destination or source register number
 - Constant: -2^{15} to $+2^{15} - 1$
 - Address: offset added to base address in rs

- **Design Principle 4**: Good design demands good compromises
 - Different formats complicate decoding, but allow 32-bit instructions uniformly
 - Keep formats as similar as possible
Branch Addressing

- Branch instructions specify
 - Opcode, two registers, target address
- Most branch targets are near branch
 - Forward or backward

<table>
<thead>
<tr>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>constant or address</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>16 bits</td>
</tr>
</tbody>
</table>

- PC-relative addressing
 - Target address = PC + offset × 4
 - PC already incremented by 4 by this time
Jump Addressing

- Jump (j and jal) targets could be anywhere in text segment
 - Encode full address in instruction

<table>
<thead>
<tr>
<th>op</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>26 bits</td>
</tr>
</tbody>
</table>

- (Pseudo)Direct jump addressing
 - Target address = PC_{31...28} : (address \times 4)
Addressing Mode Summary

1. Immediate addressing
 \[\text{op} \quad \text{rs} \quad \text{rt} \quad \text{Immediate} \]

2. Register addressing
 \[\text{op} \quad \text{rs} \quad \text{rt} \quad \text{rd} \quad \ldots \quad \text{funct} \quad \text{Registers} \]
 \[\text{Register} \quad \rightarrow \quad \text{Memory} \quad \begin{array}{c} \text{Byte} \\ \text{Halfword} \\ \text{Word} \end{array} \]

3. Base addressing
 \[\text{op} \quad \text{rs} \quad \text{rt} \quad \text{Address} \quad \text{Register} \quad \rightarrow \quad \text{Memory} \quad \text{Word} \]

4. PC-relative addressing
 \[\text{op} \quad \text{rs} \quad \text{rt} \quad \text{Address} \quad \text{PC} \quad \rightarrow \quad \text{Memory} \quad \text{Word} \]

5. Pseudodirect addressing
 \[\text{op} \quad \text{Address} \quad \text{PC} \quad \rightarrow \quad \text{Memory} \quad \text{Word} \]
Synchronization

- Two processors sharing an area of memory
 - P1 writes, then P2 reads
 - Data race if P1 and P2 don’t synchronize
 - Result depends on order of accesses

- Hardware support required
 - Atomic read/write memory operation
 - No other access to the location allowed between the read and write

- Could be a single instruction
 - E.g., atomic swap of register ↔ memory
 - Or an atomic pair of instructions
Synchronization in MIPS

- Load linked: `ll rt, offset(rs)`
 - Succeeds if location not changed since the `ll`
 - Returns 1 in `rt`
 - Fails if location is changed
 - Returns 0 in `rt`

- Store conditional: `sc rt, offset(rs)`

Example: atomic swap (to test/set lock variable)
```assembly
try: add $t0,$zero,$s4 ;copy exchange value
    ll $t1,0($s1)    ;load linked
    sc $t0,0($s1)    ;store conditional
    beq $t0,$zero,try ;branch store fails
    add $s4,$zero,$t1 ;put load value in $s4
```
ARM & MIPS Similarities

- ARM: the most popular embedded core
- Similar basic set of instructions to MIPS

<table>
<thead>
<tr>
<th></th>
<th>ARM</th>
<th>MIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date announced</td>
<td>1985</td>
<td>1985</td>
</tr>
<tr>
<td>Instruction size</td>
<td>32 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Address space</td>
<td>32-bit flat</td>
<td>32-bit flat</td>
</tr>
<tr>
<td>Data alignment</td>
<td>Aligned</td>
<td>Aligned</td>
</tr>
<tr>
<td>Data addressing modes</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Registers</td>
<td>15 × 32-bit</td>
<td>31 × 32-bit</td>
</tr>
<tr>
<td>Input/output</td>
<td>Memory mapped</td>
<td>Memory mapped</td>
</tr>
</tbody>
</table>
Compare and Branch in ARM

- Uses condition codes for result of an arithmetic/logical instruction
 - Negative, zero, carry, overflow
 - Compare instructions to set condition codes without keeping the result
- Each instruction can be conditional
 - Top 4 bits of instruction word: condition value
 - Can avoid branches over single instructions
Instruction Encoding

- **Register-register**
 - ARM:
 - 31 28 27 20 19 16 15 12 11 4 3 0
 - \(O_{px}^4 \) \(O_{p}^8 \) \(R_{s1}^4 \) \(R_{d}^4 \) \(O_{px}^6 \) \(R_{s2}^4 \)
 - MIPS:
 - 31 28 27 20 19 16 15 11 10 6 5 0
 - \(O_{p}^6 \) \(R_{s1}^8 \) \(R_{s2}^8 \) \(R_{d}^8 \) \(C_{onst}^8 \) \(O_{px}^4 \)

- **Data transfer**
 - ARM:
 - 31 28 27 20 19 16 15 12 11 0
 - \(O_{px}^4 \) \(O_{p}^8 \) \(R_{s1}^4 \) \(R_{d}^4 \) \(C_{onst12} \)
 - MIPS:
 - 31 28 27 20 19 16 15 0
 - \(O_{p}^6 \) \(R_{s1}^8 \) \(R_{d}^8 \) \(C_{onst16} \)

- **Branch**
 - ARM:
 - 31 28 27 24 28 0
 - \(O_{px}^4 \) \(O_{p}^4 \) \(C_{onst24} \)
 - MIPS:
 - 31 28 27 21 20 16 15 0
 - \(O_{p}^3 \) \(R_{s1}^5 \) \(O_{px}/R_{s2}^3 \) \(C_{onst16} \)

- **Jump/Call**
 - ARM:
 - 31 28 27 24 23 0
 - \(O_{px}^4 \) \(O_{p}^4 \) \(C_{onst24} \)
 - MIPS:
 - 31 26 25 0
 - \(O_{p}^3 \) \(C_{onst26} \)
The Intel x86 ISA

- Evolution with backward compatibility
 - 8080 (1974): 8-bit microprocessor
 - Accumulator, plus 3 index-register pairs
 - 8086 (1978): 16-bit extension to 8080
 - Complex instruction set (CISC)
 - 8087 (1980): floating-point coprocessor
 - Adds FP instructions and register stack
 - 80286 (1982): 24-bit addresses, MMU
 - Segmented memory mapping and protection
 - 80386 (1985): 32-bit extension (now IA-32)
 - Additional addressing modes and operations
 - Paged memory mapping as well as segments
The Intel x86 ISA

Further evolution…

- i486 (1989): pipelined, on-chip caches and FPU
 - Compatible competitors: AMD, Cyrix, …
- Pentium (1993): superscalar, 64-bit datapath
 - Later versions added MMX (Multi-Media eXtension) instructions
 - The infamous FDIV bug
 - New microarchitecture (see Colwell, *The Pentium Chronicles*)
- Pentium III (1999)
 - Added SSE (Streaming SIMD Extensions) and associated registers
- Pentium 4 (2001)
 - New microarchitecture
 - Added SSE2 instructions
The Intel x86 ISA

- And further...
 - AMD64 (2003): extended architecture to 64 bits
 - EM64T – Extended Memory 64 Technology (2004)
 - AMD64 adopted by Intel (with refinements)
 - Added SSE3 instructions
 - Intel Core (2006)
 - Added SSE4 instructions, virtual machine support
 - AMD64 (announced 2007): SSE5 instructions
 - Intel declined to follow, instead…
 - Advanced Vector Extension (announced 2008)
 - Longer SSE registers, more instructions
- If Intel didn’t extend with compatibility, its competitors would!
 - Technical elegance ≠ market success
x86 Instruction Encoding

- **Variable length encoding**
- **Postfix bytes specify addressing mode**
- **Prefix bytes modify operation**
- Operand length, repetition, locking, …

a. JE EIP + displacement

![Instruction Format](image)

- **JE**
- Condition: 4
- Displacement: 8

b. CALL

![Instruction Format](image)

- **CALL**
- Offset: 32

c. MOV EBX, [EDI + 45]

![Instruction Format](image)

- **MOV**
- d: 6
- w: 1
- r/m: 8
- Displacement: 8

d. PUSH ESI

![Instruction Format](image)

- **PUSH**
- Reg: 5
- Reg: 3

e. ADD EAX, #6765

![Instruction Format](image)

- **ADD**
- Reg: 4
- w: 3
- Immediate: 32

f. TEST EDX, #42

![Instruction Format](image)

- **TEST**
- w: 7
- Postbyte: 1
- Immediate: 32
Fallacies

- Powerful instruction \Rightarrow higher performance
 - Fewer instructions required
 - But complex instructions are hard to implement
 - May slow down all instructions, including simple ones
 - Compilers are good at making fast code from simple instructions

- Use assembly code for high performance
 - But modern compilers are better at dealing with modern processors
 - More lines of code \Rightarrow more errors and less productivity
Fallacies

- Backward compatibility ⇒ instruction set doesn’t change
 - But they do accrete more instructions

![Graph showing the increasing number of instructions in the x86 instruction set from 1978 to 2008.](image)
Concluding Remarks

- Measure MIPS instruction executions in benchmark programs
- Consider making the common case fast
- Consider compromises

<table>
<thead>
<tr>
<th>Instruction class</th>
<th>MIPS examples</th>
<th>SPEC2006 Int</th>
<th>SPEC2006 FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>add, sub, addi</td>
<td>16%</td>
<td>48%</td>
</tr>
<tr>
<td>Data transfer</td>
<td>lw, sw, lb, lbu, lh, lhu, sb, lui</td>
<td>35%</td>
<td>36%</td>
</tr>
<tr>
<td>Logical</td>
<td>and, or, nor, andi, ori, sll, srl</td>
<td>12%</td>
<td>4%</td>
</tr>
<tr>
<td>Cond. Branch</td>
<td>beq, bne, slt, slti, sltiu</td>
<td>34%</td>
<td>8%</td>
</tr>
<tr>
<td>Jump</td>
<td>j, jr, jal</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Chapter 3

Arithmetic for Computers
Chapter 3 — Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations
Integer Addition

Example: 7 + 6

<table>
<thead>
<tr>
<th>(0)</th>
<th>(0)</th>
<th>(1)</th>
<th>(1)</th>
<th>(0)</th>
<th>(Carries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>1</td>
<td>(1)</td>
</tr>
<tr>
<td>...</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Overflow if result out of range

- Adding +ve and –ve operands, no overflow
- Adding two +ve operands
 - Overflow if result sign is 1
- Adding two –ve operands
 - Overflow if result sign is 0
Integer Subtraction

- Add negation of second operand
- Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 ... 0000 0111

 –6: 1111 1111 ... 1111 1010

 +1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1
Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS `addu`, `addui`, `subu` instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS `add`, `addi`, `sub` instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - `mfc0` (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action
Other Adders

- BASICS of ADDING LOGIC
 - Carry-out
 - Sum Generation

- Ripple Add
- Carry Bypass
- Carry Select
- Carry Lookahead
The Ripple-Carry Adder

Worst case delay linear with the number of bits

$$t_d = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit
Carry-Bypass Adder

Also called Carry-Skip

Idea: If (P0 and P1 and P2 and P3 = 1) then \(C_{o3} = C_0 \), else “kill” or “generate”.

BP = \(P_0 P_1 P_2 P_3 \)
Linear Carry Select

\[t_{add} = t_{setup} + \left(\frac{N}{M} \right) t_{carry} + M t_{mux} + t_{sum} \]
LookAhead - Basic Idea

\[C_{0,k} = f(A_k, B_k, C_{0,k-1}) = G_k + P_k C_{0,k-1} \]
Look-Ahead: Topology

Expanding Lookahead equations:

\[C_{o,k} = G_k + P_k (G_{k-1} + P_{k-1} C_{o,k-2}) \]

All the way:

\[C_{o,k} = G_k + P_k (G_{k-1} + P_{k-1} (\cdots + P_1 (G_0 + P_0 C_{i,0}))) \]
Carry Lookahead Trees

\[C_{o,0} = G_0 + P_0 C_{i,0} \]
\[C_{o,1} = G_1 + P_1 G_0 + P_1 P_0 C_{i,0} \]
\[C_{o,2} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_{i,0} \]
\[= (G_2 + P_2 G_1) + (P_2 P_1)(G_0 + P_0 C_{i,0}) = G_{2:1} + P_{2:1} C_{o,0} \]

Can continue building the tree hierarchically.
Multiplication

Start with long-multiplication approach

\[
\begin{array}{c}
\text{multiplicand} \\
1000 \\
\times \\
1001 \\
\hline
1000 \\
0000 \\
0000 \\
1000 \\
\hline
1001000
\end{array}
\]

Length of product is the sum of operand lengths

§3.3 Multiplication
Multiplication Hardware

Multiplicand

Shift left

64 bits

Multiplier

Shift right

32 bits

Control test

Initially 0

Chapter 3 — Arithmetic for Computers — 32
Optimized Multiplier (ignore)

- Perform steps in parallel: add/shift
- One cycle per partial-product addition
 - That’s ok, if frequency of multiplications is low
Faster Multiplier

- Uses multiple adders
- Cost/performance tradeoff

- Can be pipelined
- Several multiplication performed in parallel
MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32 bits

- Instructions
 - `mult rs, rt` / `multu rs, rt`
 - 64-bit product in HI/LO
 - `mfhi rd` / `mflo rd`
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - `mul rd, rs, rt`
 - Least-significant 32 bits of product → rd
Division (IGNORE THIS)

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield n-bit quotient and remainder
Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{56} (normalized)
 - $+0.002 \times 10^{-4}$ (not normalized)
 - $+987.02 \times 10^9$
- In binary
 - $\pm 1.xxxxxxxxx_{2} \times 2^{yyyy}$
- Types float and double in C
Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
IEEE Floating-Point Format

S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
Normalize significand: $1.0 \leq |\text{significand}| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the “1.” restored
Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

$$x = (-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}$$
Single-Precision Range

- Exponents 00000000 and 11111111 reserved

- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 – 127 = –126
 - Fraction: 000…00 ⇒ significand = 1.0
 - ±1.0 × 2^{−126} ≈ ±1.2 × 10^{−38}

- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 – 127 = +127
 - Fraction: 111…11 ⇒ significand ≈ 2.0
 - ±2.0 × 2^{+127} ≈ ±3.4 × 10^{+38}
Double-Precision Range

- Exponents 0000…00 and 1111…11 reserved
- Smallest value
 - Exponent: 00000000001
 ⇒ actual exponent = 1 – 1023 = –1022
 - Fraction: 000…00 ⇒ significand = 1.0
 ±1.0 × 2^{–1022} ≈ ±2.2 × 10^{–308}
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111…11 ⇒ significand ≈ 2.0
 ±2.0 × 2^{+1023} ≈ ±1.8 × 10^{+308}
Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2^{-23}
 - Equivalent to $23 \times \log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2^{-52}
 - Equivalent to $52 \times \log_{10}2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision
Floating-Point Example

- Represent \(-0.75\)
 - \(-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}\)
 - \(S = 1\)
 - Fraction = \(1000\ldots00_2\)
 - Exponent = \(-1 + \text{Bias}\)
 - Single: \(-1 + 127 = 126 = 01111110_2\)
 - Double: \(-1 + 1023 = 1022 = 01111111110_2\)
- Single: \(1011111101000\ldots00\)
- Double: \(10111111111101000\ldots00\)
Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

\[x = (-1)^1 \times (1 + 01) \times 2^{129 - 127} = -5.0 \]
Denormal Numbers

- Exponent = 000...0 ⇒ hidden bit is 0

 \[x = (-1)^S \times (0 + \text{Fraction}) \times 2^{-\text{Bias}} \]

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision

- Denormal with fraction = 000...0

 \[x = (-1)^S \times (0 + 0) \times 2^{-\text{Bias}} = \pm 0.0 \]

Two representations of 0.0!
Infinities and NaNs

- **Exponent = 111...1, Fraction = 000...0**
 - $\pm\text{Infinity}$
 - Can be used in subsequent calculations, avoiding need for overflow check

- **Exponent = 111...1, Fraction \neq 000...0**
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., $0.0 / 0.0$
 - Can be used in subsequent calculations
Floating-Point Addition (IGNORE)

Consider a 4-digit decimal example
- $9.999 \times 10^1 + 1.610 \times 10^{-1}$

1. Align decimal points
- Shift number with smaller exponent
 - $9.999 \times 10^1 + 0.016 \times 10^1$

2. Add significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$

3. Normalize result & check for over/underflow
 - 1.0015×10^2

4. Round and renormalize if necessary
 - 1.002×10^2
FP Adder Hardware (ignore)
Consider a 4-digit decimal example

\[1.110 \times 10^{10} \times 9.200 \times 10^{-5} \]

1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + –5 = 5

2. Multiply significands
 - \[1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5} \]

3. Normalize result & check for over/underflow
 - \[1.0212 \times 10^{6} \]

4. Round and renormalize if necessary
 - \[1.021 \times 10^{6} \]

5. Determine sign of result from signs of operands
 - \[+1.021 \times 10^{6} \]
FP Arithmetic Hardware (ignore)

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder

- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion

- Operations usually takes several cycles
 - Can be pipelined
FP Instructions in MIPS

- **Single-precision arithmetic**
 - `add.s`, `sub.s`, `mul.s`, `div.s`
 - e.g., `add.s $f0, $f1, $f6`

- **Double-precision arithmetic**
 - `add.d`, `sub.d`, `mul.d`, `div.d`
 - e.g., `mul.d $f4, $f4, $f6`

- **Single- and double-precision comparison**
 - `c.xx.s`, `c.xx.d` (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - e.g. `c.lt.s $f3, $f4`

- **Branch on FP condition code true or false**
 - `bc1t`, `bc1f`
 - e.g., `bc1t TargetLabel`
FP Example: °F to °C

- **C code:**
  ```c
  float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
  }
  ```
 - `fahr` in $f12$, result in $f0$, literals in global memory space

- **Compiled MIPS code:**
  ```assembly
  f2c: lwc1  $f16, const5($gp)  
lwc2  $f18, const9($gp)  
div.s $f16, $f16, $f18  
lwc1  $f18, const32($gp)  
sub.s $f18, $f12, $f18  
mul.s $f0, $f16, $f18  
jr    $ra
  ```
Accurate Arithmetic

IEEE Std 754 specifies additional rounding control
- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation

Not all FP units implement all options
- Most programming languages and FP libraries just use defaults

Trade-off between hardware complexity, performance, and market requirements
x86 FP Architecture (ignore)

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), …
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance
x86 FP Instructions (ignore)

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
<th>Transcendental</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILDMem/ST(i)</td>
<td>FIADDPmem/ST(i)</td>
<td>FICOMP</td>
<td>FPATAN</td>
</tr>
<tr>
<td>FISTPMem/ST(i)</td>
<td>FISUBLPmem/ST(i)</td>
<td>FIUCOMP</td>
<td>F2XMI</td>
</tr>
<tr>
<td>FLDP</td>
<td>FIMULPmem/ST(i)</td>
<td>FSTSWAX/mem</td>
<td>FCOS</td>
</tr>
<tr>
<td>FLDP</td>
<td>FIDIVRPmem/ST(i)</td>
<td></td>
<td>FPTAN</td>
</tr>
<tr>
<td>FLDP</td>
<td>FSQRT</td>
<td></td>
<td>FPREM</td>
</tr>
<tr>
<td>FLDP</td>
<td>FABS</td>
<td></td>
<td>FPSIN</td>
</tr>
<tr>
<td>FLDP</td>
<td>FRNDINT</td>
<td></td>
<td>FYL2X</td>
</tr>
</tbody>
</table>

- Optional variations
 - **I**: integer operand
 - **P**: pop operand from stack
 - **R**: reverse operand order
 - But not all combinations allowed
Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - “My bank balance is out by 0.0002¢!” 😞

- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, *The Pentium Chronicles*
Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent