LM320L/LM79LXXAC Series
3-Terminal Negative Regulators

General Description
The LM320L/LM79LXXAC dual marked series of 3-terminal negative voltage regulators features fixed output voltages of −5V, −12V, and −15V with output current capabilities in excess of 100mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of 0.1µF, exhibits an excellent transient response, a maximum line regulation of 0.07% V_{OUT}/V, and a maximum load regulation of 0.01% V_{OUT}/mA.

The LM320L/LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO-92 package, and SO-8; 8 lead package. The LM320L series is available in the 3-lead TO-92 package.

For output voltage other than −5V, −12V and −15V, the LM137L series provides an output voltage range from 1.2V to 47V.

Features
- Preset output voltage error is less than ±5% overload, line and temperature
- Specified at an output current of 100mA
- Easily compensated with a small 0.1µF output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OUT}/V
- Maximum load regulation less than 0.01% V_{OUT}/mA

Typical Applications

Connection Diagrams

Fixed Output Regulator

<table>
<thead>
<tr>
<th>C1</th>
<th>+</th>
<th>C2</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 µF</td>
<td>0.1 µF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LM320LZ−XX
LM79LXXACZ

−VIN | −VOUT

*Required if the regulator is located far from the power supply filter. A 1µF aluminum electrolytic may be substituted.

*Required for stability. A 1µF aluminum electrolytic may be substituted.

Adjustable Output Regulator

<table>
<thead>
<tr>
<th>C1</th>
<th>+</th>
<th>C3</th>
<th>+</th>
<th>C2</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 µF</td>
<td>0.1 µF</td>
<td>0.1 µF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LM320LZ−5.0
LM79L05ACZ

−VIN | −V0

−V0 = −5V − (5V/R1 + Iq) • R2,
5V/R1 > 3 Iq

SO-8 Plastic (Narrow Body)

Top View
Order Number LM79L05ACM, LM79L12ACM
LM79L15ACM, LM79L05ACMX,
LM79L12ACMX or LM79L15ACMX
See NS Package Number M08A

Bottom View
Order Number LM320LZ-5.0, LM79L05ACZ,
LM320LZ-12, LM79L12ACZ, LM320LZ-15 or
LM79L15ACZ
See NS Package Number Z03A

© 2001 National Semiconductor Corporation
www.national.com
Electrical Characteristics

Note 3: To ensure constant junction temperature, low duty cycle pulse testing is used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Input Voltage (unless otherwise noted)</th>
<th>-V0</th>
<th>-12V</th>
<th>-15V</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>Output Voltage</td>
<td>TJ = 25˚C, IO = 100mA</td>
<td></td>
<td>-5.2</td>
<td>-5</td>
<td>-4.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1mA ≤ IO ≤ 100mA</td>
<td></td>
<td>-5.25</td>
<td>-4.75</td>
<td>-12.6</td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMIN ≤ VIN ≤ MAX</td>
<td></td>
<td>-20 ≤ VIN ≤ -7.5</td>
<td>(-27 ≤ VIN ≤ -14.8)</td>
<td>(-30 ≤ VIN ≤ -18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1mA ≤ IO ≤ 40mA</td>
<td></td>
<td>-5.25</td>
<td>-4.75</td>
<td>-12.6</td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMIN ≤ VIN ≤ MAX</td>
<td></td>
<td>(-20 ≤ VIN ≤ -7)</td>
<td>(-27 ≤ VIN ≤ -14.5)</td>
<td>(-30 ≤ VIN ≤ -17.5)</td>
<td></td>
</tr>
<tr>
<td>ΔV0</td>
<td>Line Regulation</td>
<td>TJ = 25˚C, IO = 100mA</td>
<td></td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMIN ≤ VIN ≤ MAX</td>
<td></td>
<td>(-20 ≤ VIN ≤ -7.3)</td>
<td>(-27 ≤ VIN ≤ -14.6)</td>
<td>(-30 ≤ VIN ≤ -17.7)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ = 25˚C, IO = 40mA</td>
<td></td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMIN ≤ VIN ≤ MAX</td>
<td></td>
<td>(-20 ≤ VIN ≤ -7)</td>
<td>(-27 ≤ VIN ≤ -14.5)</td>
<td>(-30 ≤ VIN ≤ -17.5)</td>
<td>V</td>
</tr>
<tr>
<td>ΔV0</td>
<td>Load Regulation</td>
<td>TJ = 25˚C</td>
<td></td>
<td>50</td>
<td>100</td>
<td>125</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1mA ≤ IO ≤ 100mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔV0</td>
<td>Long Term Stability</td>
<td>IO = 100mA</td>
<td></td>
<td>20</td>
<td>48</td>
<td>60</td>
<td>mV/khrs</td>
</tr>
<tr>
<td>I0</td>
<td>Quiescent Current</td>
<td>IO = 100mA</td>
<td></td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>ΔI0</td>
<td>Quiescent Current Change</td>
<td>1mA ≤ IO ≤ 100mA</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1mA ≤ IO ≤ 40mA</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO = 100mA</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMIN ≤ VIN ≤ MAX</td>
<td></td>
<td>(-20 ≤ VIN ≤ -7.5)</td>
<td>(-27 ≤ VIN ≤ -14.8)</td>
<td>(-30 ≤ VIN ≤ -18)</td>
<td></td>
</tr>
<tr>
<td>Vn</td>
<td>Output Noise Voltage</td>
<td>TJ = 25˚C, IO = 100mA</td>
<td></td>
<td>40</td>
<td>96</td>
<td>120</td>
<td>µV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 10Hz - 10kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVn/ΔV0</td>
<td>Ripple Rejection</td>
<td>TJ = 25˚C, IO = 100mA</td>
<td></td>
<td>50</td>
<td>52</td>
<td>50</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 120Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Required to Maintain Line Regulation</td>
<td>TJ = 25˚C, IO = 100mA</td>
<td></td>
<td>-7.3</td>
<td>-7.0</td>
<td>-14.6</td>
<td>-14.5</td>
<td>-17.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO = 40mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: Thermal resistance of Z package is 6Ω/C/W JC, 232˚C/W JA at still air, and 88˚C/W at 400 ft/min of air. The M package JA is 180˚C/W in still air.

The maximum junction temperature shall not exceed 125˚C on electrical parameters.
Typical Performance Characteristics

- Maximum Average Power Dissipation (TO-92)
- Peak Output Current
- Short Circuit Output Current
- Dropout Voltage
- Ripple Rejection
- Output Voltage vs. Temperature (Normalized to 1V @ 25°C)
- Quiescent Current
- Output Impedance

www.national.com
Typical Applications

±15V, 100mA Dual Power Supply

Schematic Diagrams

-5V
Schematic Diagrams (Continued)

-12V and -15V

LM320L/LM79LXXAC

www.national.com
Physical Dimensions inches (millimeters) unless otherwise noted

S.O. Package (M)
Order Number LM79L05ACM, LM79L12ACM, LM79L15ACM, LM79L05ACMX, LM79L12ACMX, or LM79L15ACMX
NS Package Number M08A

Molded Offset TO-92 (Z)
Order Number LM320LZ-5.0, LM79L05ACZ, LM320LZ-12, LM79L12ACZ, LM320LZ-15 or LM79L15ACZ
NS Package Number Z03A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.