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Abstract. We show how to define fold operators for abstract data types.
The main idea is to represent an ADT by a bialgebra, that is, an alge-
bra/coalgebra pair with a common carrier. A program operating on an
ADT is given by a mapping to another ADT. Such a mapping, called
metamorphism, is basically a composition of the algebra of the second
with the coalgebra of the first ADT. We investigate some properties of
metamorphisms, and we show that the metamorphic programming style
offers far-reaching opportunities for program optimization that cover and
even extend those known for algebraic data types.

1 Introduction

Expressing recursion over data types in terms of catamorphisms, or fold oper-
ations, has been successfully employed by Bird and Meertens to calculate pro-
grams from specifications [3, 21]. They formulated laws expressing algebraic
identities of programs and used them to derive algorithms in a sequence of sim-
ple transformation steps. Their work was primarily focused on lists, but it has
been extended to regular algebraic data types [20, 22, 25]: a data type is given
by a morphism which is a fixed point of a functor defining the signature of the
data type. Since fixed points are initial objects, homomorphisms to other data
types are uniquely defined, and this makes it possible to specify a program on
a data type by simply selecting an appropriate target data type. Along with
these generalizations a lot of work on program optimization has emerged that
essentially relies on programs being expressed as catamorphisms, for example,
[13, 25, 26, 16, 17]. The strong interest in program fusion is certainly due to the
fact that catamorphisms encapsulate a class of recursion over data types that
enjoys some nice mathematical properties.

Besides the original idea of having a framework for calculating programs
from their specifications, avoiding general recursion is also important from a
programming methodology point of view. For instance, Meijer et al. [22] stress in
their often cited paper the aspect that using folds in functional languages is truly
in the spirit of the structured programming methodology. Similar beliefs, that
is, avoiding general recursion and using a fixed set of higher order functions, had
been already emphasized before by Backus [1]. The programming languages CPL



[14] and Charity [11] are designed thoroughly on the basis of this programming
methodology.

It is striking that the categorical framework has been applied only sporadi-
cally to data types that are not just given by free term structures, such as ab-
stract data types. Although the catamorphism approach principally works also
for sub-algebras that satisfy certain laws, one cannot map into algebras with less
structure [9, 10]. This innocent looking restriction means a rather severe limita-
tion of expressiveness: for instance, such a simple task as counting the elements
of a set cannot be expressed by a catamorphism.

Therefore we propose to base mappings between ADTs not just on construc-
tors, but on explicitly defined destructors. Formally, this means to represent an
ADT by a bialgebra, that is, a pair (algebra, coalgebra) with a common car-
rier, and to define a mapping between two ADTs D and D’ by composing the
algebra of D' with the coalgebra of D. This offers much freedom in specifying
ADTs and mappings between them. It also provides a new programming style
encouraging the compositional use of ADTs. The proposed approach essentially
uses existing concepts, such as algebra and coalgebra, on a higher level of ab-
straction, and this is the reason that all the optimization rules developed for
algebraic data types are still valid in this extended framework. But in addition
to this, the “programming by ADT composition” style offers some new optimiza-
tion opportunities: for example, since intermediate ADTs are intrinsically used
in a single-threaded way, a compiler can automatically insert efficient imperative
update-in-place implementations for them.

The rest of the paper is structured as follows: after reviewing the categorical
definition of algebraic data types in Sect. 2, we show how to represent abstract
data types as bialgebras in Sect. 3. In Sect. 4 we introduce metamorphisms as
mappings between ADTs, we provide various example programs, and we show
some basic properties of ADTs and metamorphisms. In Sect. 5 we investigate
several aspects of program transformation. Related work is described in Sect. 6,
and conclusions follow in Sect. 7.

2 Data Types and Homomorphisms

In this section we briefly review the categorical framework for modeling data
types. More detailed introductions are given, for example, in [4, 9]. Specific in-
formation about coalgebras can be found in [15, 24], and hylomorphisms are
explained and used in [22, 26, 16]. We assume some basic knowledge about cat-
egory theory (an understanding of category, functor, and natural transformation
should be sufficient), for an introduction see, for example, [2] or [4].

In Sect. 2.1 we briefly recall the notion of algebraic data types of functional
languages. In Sect. 2.2 we show how to express signatures by functors. This is the
basis for the definition of algebras and coalgebras in Sect. 2.3. We demonstrate
how algebra homomorphisms can express programs on data types in Sect. 2.4.



2.1 Algebraic Data Types in Functional Languages

In modern functional languages, like ML or Haskell, data structures are repre-
sented by terms that are built by typed constructors. All constructors of one type
are introduced in one definition, and the defined type is called an algebraic data
type. For example, a term representation for natural numbers and a polymorphic
list data type are given by:

nat = Zero | Succ nat
list A Nil | Cons(A, list A)

This introduces the four constructors Zero : 1 — nat, Succ : nat — nat, Nil :
1 — list A, and Cons : A x list A — list A, where 1 denotes the unit type
that contains just the one element (), that is, constants of type A are identified
with functions of type 1 — A. Thus, a data type can be viewed as an algebra
whose operations are given by the data type constructors. Note that we consider
non-strict constructors.

2.2 Polynomial Functors

In this paper the default category C is CPO, whose objects are complete par-
tially ordered sets with a least element | and whose morphisms are continuous
functions. Working in CPO guarantees the existence of least fixed points for
certain recursive equations needed in Sect. 2.4 and in Sect. 4. The terminal ob-
ject in C is the one-element type 1. In the sequel we consider only endofunctors
on C (that is, functors from C to C) which are built by the four basic functors I
(identity), A (constants), X (product), and + (separated sum).

The effect of the identity functor I on types and functions is I A = A and
I f = f, and the constant functor for type A, denoted by A, operates on types
and functions by A B = A and A f = idg where ids denotes the identity
morphism on A. For an object £ we denote its constant function by z, that is,
z y = x. The product of two types A and B and its operation on functions is
defined as:

AxB = {(z,y) |z € A,y € B}
(fxg) (z,y) = (fz,99)

Related operations are left and right projection and tupling (also called split):

1 (x,y) =
m (2,y) =y
(o) z = (fz,92)

Finally, the separated sum of two types A and B and its operation on functions



is defined as:

A+B = {1} x Au{2} x Bu{Ll}
(f+9) Lz) = (1,f =)
(f+9) (2,9) = (2,9y)
(f+g9) L =1

Related operations are left and right injection and case analysis (also called
junc):

nz = (1,x2)

wy = (2,y)

[fag] (1,:8) = fu
[f,9] 2,9) = gy
[f,9l L =1

The use of seperated sum is convenient for the treatment of, for example, infi-
nite lists. However, algebras for, say, natural numbers, are usually better mod-
eled with coalesced sum (which identifies bottom elements). These issues are
discussed in some detail in [9, 19].

Separated sum and product are bifunctors that map from the product cate-
gory C x C to C. Fixing one parameter of a bifunctor yields a monofunctor: the
(left) section of a bifunctor F' and an object A is defined as F4(B) = F (4, B).
Thus, for example, X 4 is a monofunctor which takes an object B and maps it
to the product A x B.

Now polynomial functors are inductively defined as follows: (i) I and A are
polynomial functors, and (ii) if F' and G are polynomial functors, then so are their
composition F'G, their sum F+ G, and their product F' x G where: (F+G)(X) =
F(X)+G(X) and (F x G)(X) = F(X) x G(X) (for both types and functions
X). Two examples of polynomial functors are:

N =1+1
Ly = 14+AxI

Here L 4 is actually a left section of a bifunctor.
(A note on operator precedence: function application binds strongest, and x
binds stronger than +, which in turn binds stronger than composition “0”.)

2.3 Algebras and Coalgebras

Let endofunctor F' : C — C represent a signature. Then an F-algebra is a mor-
phism a : F(A) — A. Object A is called the carrier of the algebra. We can
extract the carrier of an algebra with the forgetful functor U, that is, U(a) = A.
Dually, an F-coalgebra is a morphism @ : A — F(A). An F-homomorphism from



algebra « : F(A) — A to algebra 8 : F(B) — B is a morphism h: A — B in
C that satisfies h o a = o F(h). As a shorthand for this condition we write:
h : @ —F (. The category of F-algebras Alg(F) has as objects F-algebras
and as arrows F-homomorphisms. (Composition and identities in Alg(F) are
taken from C.) Dually, CoAlg(F) is the category of F-coalgebras with F-
cohomomorphisms (where a morphism h : A — B from coalgebra@: A — F(4)
to coalgebra 3 : B— F(B) is a cohomomorphism if it satisfies F(h) o@ = Boh).

If F' is a polynomial functor on CPO, Alg(F’) has an initial object, which is
denoted by ing. This means that inp : F(T) — T is an F-algebra with carrier
T = U(inr) (the “I” reminds of “term algebra”). Dually, CoAlg(F) has a
terminal object, denoted by outr, and outr : T — F(T) is an F-coalgebra with
the same carrier T as inp. Moreover, inp and outr are each other’s inverses,
and they thus define an isomorphism 7' = F(T') in CPO.

Now the definitions of Sect. 2.1, written categorically as:

[Zero, Succ] : N(nat) — nat
[Nil, Cons| : Lu(list A) — list A

with N(nat) = 1+ nat and L4(list A) = 1+ A x list A, define the data types
as initial objects in the category of N-algebras, respectively, L 4-algebras, that
is, nat = [Zero, Succ] := iny and list A = [Nil, Cons| := ing,.

With sums we can also define conditionals. First, we define a type for booleans
by:

bool = True | False

(which is just syntax for bool = [True, False] := ing with B =1 + 1.) Now for
each predicate p : A — bool a morphism p? : A — A + A is defined by [22]:

1L ifpla)=1
p?(a) = < u a if p(a) = True
1o a if p(a) = False

The conditional is then simply defined by if p then f else g = [f,g] o p?. (A
more detailed categorical exposition of this can be found in [4].)

Those coalgebras that are the inverses of initial algebras defined by algebraic
data type definitions just undo the term construction. So we can think, for
example, of outy and outr, as being defined by:

outy = Mn.case n of
Zero = (1,()
| Suce(m) = (2,m)
outr,, = Al.casel of
Nil = (1,0)
| Cons(z,l') = (2,(z,l"))



2.4 Catamorphisms, Anamorphisms, and Hylomorphisms

Initial and terminal objects are unique up to isomorphism, and they are charac-
terized by having exactly one morphism to, respectively, from, all other objects.
This means that for each F-algebra « in the category Alg(F') there is exactly
one F-homomorphism h : inp —p «. Since h is uniquely determined by «, it
is conveniently denoted by (a)r, or just (@) when F' is clear from the context,
and h is called a catamorphism [22]. Accordingly, for each F-coalgebra @ in the
category CoAlg(F) there is exactly one F-cohomomorphism h : @ —r outp,
which is denoted by [@]F (or just [@)) and which is called an anamorphism.

Programs mapping from an initial algebra to another data type can be suc-
cinctly expressed as catamorphisms. An F-catamorphism (a]) can be thought of
as a function replacing the constructors of ing by the functions/constructors of
a; catamorphisms offer a canonical way of consuming a data structure. Similarly,
mappings to terminal algebras can be expressed by anamorphisms, which pro-
vide a canonical way of constructing data structures. It is clear that the identity
is the unique morphism from the initial F-algebra to itself (respectively, to the
terminal F-coalgebra from itself):

([inp])p = [OUtF]F = id (CataId, AnaId)

Finally, a hylomorphism is essentially the composition of a catamorphism with
an anamorphism. Formally, a hylomorphism [o, @] is defined as the least mor-
phism h satisfying:

h = aoF(h)oa (HyloDef)

Hylomorphisms are related to cata- and anamorphisms in an obvious way:

[e,@]r = (a)ro [@)r (HyloSplit)
[a, outr]r = (&)r (HyloCata)
[inp,a]r = [a]r (HyloAna)

Hylomorphisms enjoy a number of useful laws [22, 26], for example,
[aonalr = [,neale < 7:F5G (HyloShift)
[a,a]r o [8,8]r = [a,8lr <« @of=id (HyloFusion)

A hylomorphism [a,a]r defines a recursive function whose recursion follows
that of the functor F.

3 Abstract Data Types as Bialgebras

The main hindrance for expressing certain catamorphisms on ADTs is that ho-
momorphisms are not able to map to less constrained structures.

One solution is to decouple the decomposition of ADT values from their con-
struction to gain more flexibility. This can be achieved by modeling an ADT by a



pair (o, @) where a is an F-algebra, @ is a G-coalgebra, and U(a) = U(@). Such
an algebra/coalgebra-pair with a common carrier is called an F, G-bialgebra [10].
An F,G-bialgebra homomorphism from (o, @) to (3, 3) is a morphism satisfying
hoa = o F(h) and G(h) o@ = B o h. The F,G-algebras and homomorphisms
form a category BiAlg(F,G), which is built upon C.! In the sequel we use the
terms “ADT” and “bialgebra” as synonyms. Given an ADT D = («a, @), we call
a the constructor of D and @& the destructor of D.

Note that, in general, we have to provide the carrier of an ADT explicitly,
since it is not determined by a universal property (like for initial algebras or
terminal coalgebras). If not stated otherwise, we will always implicitly take the
carrier of the initial algebra (or terminal coalgebra) whenever it is used as a con-
structor (respectively, as a destructor). For example, the carrier of the bialgebras
Nat, Range, and Prod is always U (iny ), and the carrier of the bialgebras List,
Queue, and Set is U(inyg, ).

Let us consider some examples. First of all, algebraic data types can be re-
garded as ADTs by taking the initial algebra as constructor and its inverse as
destructor. For example, ADT List = (iny,,, outr,) is an L4, L 4-bialgebra; List
can also be used as a stack ADT. Similarly, we can define: Nat = (iny, outy).
But we can define many more different ADTs for natural numbers. We can con-
sider, for instance, binary destructors, that is, Ly (i, )-coalgebras. One example
(that will be used later) is the ADT Range which decomposes a number by
returning the number itself in addition to the predecessor:

Range = (inn,[I, (succ,I)] o outy)

Note that using succ is indeed correct here, since outy gives the predecessor
(which is preserved by I) and succ re-builds the original number value. This also
shows that the constructor and the destructor of an ADT need not have the
same signature. Another example for this is the Ly N-bialgebra Prod that
constructs numbers by multiplication:

inN)7

Prod = ([1, %], outn)

Our next example is an ADT for queues. The constructors of a queue are the
same as for List. The destructor is also an L 4-coalgebra, but it is different from
outr, ,, since elements are taken from the end. There are different ways to define
the queue destructor. First of all, we can give a recursive function definition
(which is possible, since we are working in CPO).

dequeue = p[ f = Al.case [ of
N - (1,0)
| Cons(z, Nil) — (2, (z, Nil))
| Cons(z,l') — (I+1Ix (Consol{z,I))) (f1")]

! An F, G-bialgebra is just a special case of an F, G-dialgebra, that is, BiAlg(F,G) =
DiAlg([F, I],[I,Q]) [10, 9, 7]. Working with bialgebras is sufficient for our purposes
and makes the separation of constructors and destructors more explicit.



(This definition could be written more conveniently if let-expressions were avail-
able.) A more categorical style is to use only combinators and catamorphisms.
With the aid of a function snoc for appending a single element at the end of a
list and a function rev for reversing a list — both defined by L 4-catamorphisms:?

snoc(z,l) = ([(Cons(z, Nil), Cons)r, !

rev = (Nil, snod)y ,
we can define the queue destructor as follows.
dequeue = I+ 1 x revo outr,, o rev

This means, a queue is represented by a list where elements are enqueued at the
front and dequeued from the rear. In particular, dequeueing from a list [ works
as follows: reverse [, take first element x and tail I’ from rev [, and finally reverse
I to get the standard queue representation. Now we can define:

Queue = (ing,, dequeue).

As our final example we define a set ADT, again based on the “cons”-view given
by L 4. This can be done in two principally different ways. One possibility that
quickly comes to mind is to define equations E expressing idempotence and
commutativity and work with the quotient algebra “ing,/E”.> The problem
with this approach is that homomorphisms are forced to stay within L,4/E-
algebras, and it is not obvious how to define destructors into different algebras.
Thus, it is not clear how to define a function for counting the elements of a set.

To define sets as bialgebras, we can use a list carrier and normalize lists in
constructors or destructors. The second option means to take inr, as construc-
tor. The destructor must then be defined so that a value is retrieved from a
set at most once. This can be realized by splitting an arbitrary element off (for
example, the one that was inserted last) and removing all occurrences of this
element in the returned set. We need the following functions:

append(l,1') = (I', Cons)r, 1
flatten = (Nil, append)yr,,, ,
map f = (Nil, Conso f x I),
filter(p,1) (flatten o map (Ay.if p(y) then Cons(y, Nil) else Nil))
remove(x, 1) filter ((# z),1)

Now we can define the set destructor and the set ADT by:

deset = I+ (w1, remove) o outr ,
Set = (ing,, deset)
% For readability we omit the junc-brackets inside catamorphisms.

3 Equations can be expressed categorically by transformers [10], which are mappings
between algebras. Examples can be found in [10, 9, 18].



Note that the definition works only for types A on which equality is defined.
We have actually given one concrete implementation of sets based on lists,
and strictly we have still to prove that this implementation is correct. So the
presented bialgebra approach to programming with ADTs is definitely not as
high-level as equational specifications. However, we believe it is more flexible. In
particular, the bialgebra approach encourages to combine different F-algebras
and G-coalgebras, which makes it easy to adapt ADTs to changing requirements.
For example, instead of splitting off single elements with deset we can also use
a P-coalgebra split (where P = 1+ I x I) to partition a set into two equally
sized sets. This can be useful, for example, for divide-and-conquer algorithms.

4 Programming by Metamorphisms

From now on let D = (a,@) be an F,G-bialgebra, let D' = (3,3) be an H, J-
bialgebra, and let C' = (¢, %) be a K, M-bialgebra.

Metamorphisms and Data Type Filters. If f: G = H is a natural trans-
formation, the f-metamorphism from D to D’ is defined as the least solution of
the equation

h = BofoG(h)ow (MetaDef)

and is denoted by pLp (we write D~D' if f = id). We call D/D’ the
source/target and f the map of the metamorphism. This definition says that
a metamorphism from D to D' is essentially a hylomorphism:

LD = [Bo f,a]s (MetaHylo)

As an important special case, metamorphisms from algebraic data types reduce
to catamorphisms, that is,

DwD'" = (B)¢ <« D = (ing,outg) (MetaAlg)

This can be seen as follows. First we know H = G, since f = id. Then

D~D' = [8, outg]a { MetaHylo }
= (B)q ° [outcla { HyloSplit }
— ()¢ oid { Anald }
= (B)e

As an abbreviation for the composition of two metamorphisms we introduce the
notion of an ADT-filter. The C-filter from D to D' is defined as:

pLodp = ¢4p' oDde (FilterDef)

Here D and D' are called the source and target of the filter, and C is called the
filter data type. Again, we omit f and g if they are just identities.



A New Programming Style for ADTs. Let us now consider some metamor-
phic programs. First of all, examples for algebraic data types translate directly
from the corresponding catamorphisms. For instance, the length of a list can be
computed by the metamorphism

length = List "%3* Nat

We can always save the metamorphism map, here I 4+ 75, by selecting a target
ADT whose constructor functor agrees with the functor of the source ADT
destructor. We can actually calculate the desired ADT as follows.

List "13* Nat = [[Zero, Succ] o (I + m2), outr L, { MetaHylo }
= [[Zeroo I, Succo ms], outr,|L, { sum }

Thus, we can define the L4, N-bialgebra Count = ([Zero, Succ o m2], outn ), and
we obtain for length the modified form:

length = List~ Count
In an actual programming environment there will be lots of different ADTs
representing many algebra/coalgebra-combinations. We envision a system that
supports the writing of metamorphisms by automatically offering sets of functor-
matching target ADTs and/or sets of natural transformations that can be used
as maps in metamorphisms.

Now let us consider the more interesting case for non-algebraic ADTs. We
are eventually able to count the number of elements in a set by:

count = Set~ Count

Mapping a function f to all elements of a set can be expressed by:
L
mapset = Set L Set (= Set af) Set)
And we must not forget the factorial function, which can be computed by:

fac = Range~>Prod

Filters are very handy in expressing certain algorithms, for example,

List~ Set~ List Remove duplicates

List~Set "23* Nat Number of different list elements
List~ Queue~- List List reverse

List~~ PQueue~~ List Heapsort

We have not defined the ADT PQueue for priority queues yet. This can be done
similar to Queue, except that the destructor selects the smallest instead of the
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last list element. The reader might wonder whether Stack (= List) instead of
Queue should be used in the list reverse example. Queue is indeed the proper fil-
ter here, since metamorphisms proceed in a “bottom-up” manner (which means
for L4 “right-to-left”), that is, the last element of the first list will be inserted
first into the queue and will thus be consed last to the target list. One might
also object that the given program for reverse is unacceptably inefficient be-
cause during the decomposition phase each intermediate queue value is reversed
twice thus resulting in a quadratic running time. We will address two ways for
optimization in Sect. 5.

Until now we have only worked with types of linear functors. It is clear that
all presented concepts also apply to, say, tree-like structures. For these the ADT
approach gives a very nice view on divide-and-conquer algorithms.

With a final example we give an impression of the power the metamorphic
programming style can offer when the right abstractions are chosen. Suppose we
have defined a representation for graphs (based on a suitable functor Gr) and a
function roots for computing and removing the list of a graph’s roots.* We can
then define an ADT RootGraph = (ingy, roots), which can be used for realizing
topological sorting as follows:®

topsort = flatten o RootGraph~ List

5 Program Transformation

One interesting property of ADTs is invertability:
D is invertible <— aoa=id

Invertible data types are important, since they can be fused away (see Theorem
1 below). In particular, all algebraic data types are invertible. It is clear that a
data type can be invertible only if destructor and constructor have compatible
signatures:

Lemma 1. An F,G-algebra D can be invertible only if F = G. O

Next we consider how program transformation and optimization present them-
selves in the framework of bialgebras and metamorphisms. First of all, we stress
that we can use all of the existing results developed for algebraic data types: we
show that fusion of algebraic data types is still possible, and we demonstrate the
use of well-known laws in the optimization of metamorphic programs. In addi-
tion, we show that the fixed recursion pattern enables specific optimizations for
ADTs, and finally we show that the filter programming style offers optimization
opportunities that go beyond fusion and even promise asymptotic speed-ups.

4 We will show a simple relational representation for graphs in Sect. 5. Based on that
a function for computing roots is given by — o {(dom, rng).

% Note that this does not work with the representation of Sect. 5, since it is not possible
to represent isolated nodes, which might occur during the graph decomposition. The
extension is not difficult, but it is not needed here to understand the point.

11



A Fusion Law for ADTs. An important property of invertible data types is
that they do not have an effect as filter data types, that is, they can be safely
omitted from filters.

Theorem 1 (Filter Fusion). C is invertible = D~+C~+D' = D~D'.

Proof. D~~C~D' = C~~»D' o D~C { FilterDef}
= [8,%]u o [w,ala { MetaHylo }
= [8,%]a o [v,a]e { Lemma 1 }
= [8,2]c { Assumption, HyloFusion }
= D~D' { MetaHylo }

O

This is a reformulation of the well-known fusion law for algebraic data types. Its
importance lies in the fact that the extension to ADTs and metamorphisms is
conservative in the sense that the fusion optimization for algebraic data types is
not affected and can still be applied in the extended framework.

Applying Classical Transformations. Assume we represent a graph by a
binary relation on integers. We can use the already defined ADT Set for this;
we call it Rel here just for clarity. A simple method for computing the set of all
nodes in a graph is then to take the union of the domain and the codomain of
the relation, which are defined by two simple metamorphisms:

dom = Rel T2 Set
rng = Rel 12Xt gey

nodes = U o (dom, rng)

With this implementation the relation must be traversed twice, once for comput-
ing the left components of all pairs and once for computing the right components.
With the aid of the so-called banana-split law [4]

((@r,(B)r) = [{aoF(m),BoF(m)))r

we can obtain an improved version of nodes in which dom and rng are computed
by a single scan over the relation. First, we expand dom and rng by (MetaHylo)
and (HyloSplit) to:

dom = (ing, oI 4+ m x I]) o [deset]
rng = (ing, oI + my x I)) o [deset]

By factorizing the anamorphism from the split we get:

nodes = Uo{([ing, oI +m x I)),(ing, oI+ m x I)) o [deset]

12



Now we can apply the banana-split law (with F' = L4) and obtain the following
optimized version for nodes:

nodes = Uo ([{(ing, oI +m1 x I)o La(m),
(ing, o I +my X I) o Ls(m))) o [deset]

This can be simplified by evaluating L 4 and applying laws for product and sum
yielding:

nodes = Uo ([(ing, oI +m X my,ing, oI + 7y x m2)) o [deset)
which can be finally written as a metamorphism:

(I+7r1 X71,l+72 XTI'Q)
> (

nodes = Uo Rel Set x Set)

Depending on the definition of the function U, we can possibly optimize further.
For example, if U is itself defined by a catamorphism, we can fuse that definition
with the metamorphism just obtained. We do not elaborate on this here, the
goal of this part was just to show that optimizations and transformations can
be well performed using already existing laws.

Exploiting Fixed Recursion Scheme. We have already noted that the filter
for implementing list reverse is unacceptably inefficient, since actually each tail
of the list is reversed twice. This gives a quadratic running time, and, no doubt,
a direct use of the function rev would be much better.® But if we look at how the
queue is used in a metamorphism, we observe that in each step one element is
taken from the queue and the (intermediate) queue values themselves are never
needed, except for decomposing/dequeueing. In order to exploit this knowledge
we formulate equations for different versions of the queue (g;) and the dequeued
elements (z;). We abbreviate 71 o outr,, by hd and 75 o outr, by tl. Recall the
definition of dequeue = I + I X rev o outr, o rev. Now given an (non-empty)
intermediate queue ¢;_1, we have:

qg; = (revomsooutr, orev) gi—1 = (revotlo rev) g;—1

z; = (mpoouty, orev) g1 = (hdorev) g;_1

Since g;_1 = (revo tlo rev) ¢;_2 we have g; = (revo tlo revo revo tlo rev) gi_o =
(revo tP o rev) q;_o. By induction it follows (given an initial queue go) that

@ = (revotl o rev) qo

5 In general, however, we do not know about the implementation of an ADT, and thus
we might not have access to a function like rev.
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Now we observe that the last queue value is Nil and that all other queue values
are only used for dequeueing. This means that we can work inside the decom-
position with reversed queues, that is, using r; = rev q; we get:

L = Tev qo
r; = rev ((revotlorev) ¢;—1) = (tlorev) ¢i—1 = tlri_
r; = hd Ti—1

This gives a much more efficient implementation for the Queue ADT. In partic-
ular, the representing list has to be reversed only once.

Single-Threaded Analysis for Free! Consider the filters List~ Queue~> List
and List~ PQueue~ List. First, from the definition of filter it is clear that: (i)
the filter ADTs Queue and PQueue are completely built up before they are
decomposed. Second, from the definition of metamorphism it can be seen that
(ii) an ADT is constructed from one generator (the source ADT) where only
one version exists at any time, and (iii) an ADT is destructed just from one
consumer (the target ADT) thus also maintaining only one version at any time.

Hence at any time only one version of the filter ADT is referenced, and this
means that the update operations to be performed on the filter can be safely
implemented in an imperative way. This can increase the efficiency of programs
much more than fusion is ever able to achieve. We are faced with a twisted
situation here: it is not the elimination of data structures that improves the
running time of programs, but rather the introduction of filter structures.

The nice thing is that a compiler does not need a sophisticated analysis tech-
nique to determine single-threadedness. Selecting update-in-place implementa-
tions is particularly important for data types like arrays or graphs, since persis-
tent (= functional) implementations for these can become quite complex [23, 6],
and as demonstrated in [8], predefined imperative implementations of fold oper-
ations can speed up computations considerably.

6 Related Work

Much of the work concerning catamorphisms on algebraic data types has already
been mentioned in the introduction. There is surprisingly little work addressing
structured recursion on non-algebraic data types, that is, data types satisfying
equational laws. In particular, most approaches deal with specific data types,
and there is almost no general framework available that could be used for a
large class of abstract data types.

Chuang presents in [5] essentially three different views of arrays and defines
for each view corresponding fold operations. Gibbons [12] defines a data type for
directed acyclic multi-graphs. With a careful choice of operations, which obey
certain algebraic laws, the definition of graph catamorphisms becomes feasible,
and some functions on graphs, such as reversing the edges of a graph (graph
reversal) or determining shortest paths (measured in number of edges), can be
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expressed as graph catamorphisms. However, the whole approach is very limited,
since it applies only to acyclic graphs having no edge labels.

We have presented a more general view of graphs in [8]. In that paper an
important aspect was the definition of a couple of fold operations that can be
used to express operations, such as graph reversal, depth first search, evaluation
of expression DAGs, or computing all simple paths in a graphs. Two theorems
for program fusion were presented that allow the removal of intermediate search
trees as well as intermediate graph structures.

The only general approach for expressing catamorphisms over non-free data
types we know of is the work of Fokkinga [10, 9]. The idea is to represent terms
by combinators called transformers and to represent an equation by a pair of
transformers. Several properties of transformers are investigated, and it is shown
how transformers can be combined to yield new transformers thus resulting in
a variable-free language for expressing equations. The use of transformers is
demonstrated in showing the equivalence of two different stack implementations.
However, the whole approach suffers from the already mentioned restrictions
caused by the constraints that homomorphisms must map to quotients.

7 Conclusions

We have demonstrated how the structured recursion programming discipline
can be applied to abstract data types. The main idea was to represent ADTs by
bialgebras and to express mappings between ADTs by metamorphisms.

Our approach demands the explicit definition of destructors. However, this
additional effort pays off, since it offers much freedom in the design of ADTs, in
particular, the separation into algebra and coalgebra provides a high degree of
modularity. Moreover, it also provides with metamorphisms a much more general
computing device than homomorphisms, since we can map into types with less
structure.

Nevertheless, metamorphisms on bialgebras are a conservative extension of
homomorphisms: the fusion law for algebraic data types is still valid and can
be applied for invertible ADTs. Moreover, a very promising property of filter
ADTs is that they can be safely implemented in a destructive way without
loosing referential transparency, since metamorphisms (and filters) use them in
a single-threaded way.
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