
Modeling Genome Evolution with a DSEL for
Probabilistic Programming

Martin Erwig and Steve Kollmansberger

School of EECS
Oregon State University

[erwig|kollmast]@eecs.oregonstate.edu

Abstract. Many scientific applications benefit from simulation. How-
ever, programming languages used in simulation, such as C++ or Matlab,
approach problems from a deterministic procedural view, which seems to
differ, in general, from many scientists’ mental representation. We apply
a domain-specific language for probabilistic programming to the biolog-
ical field of gene modeling, showing how the mental-model gap may be
bridged. Our system assisted biologists in developing a model for genome
evolution by separating the concerns of model and simulation and pro-
viding implicit probabilistic non-determinism.

Keywords: Functional Programming, Probabilistic Programming,
Haskell, Genome Evolution

1 Introduction

A primary occupation of scientists is to devise models of observable processes.
These models may be formal and mathematical, or informal ideas and sketches.
In general, such models cannot be executed, simulated nor verified directly. In-
stead, scientists have had to translate their model first into a programming
language. Traditionally, simulations for scientific models were written in the
programming language of their day, such as Fortran or C. Later simulations
were also written in mathematical packages such at MatLab. Recently, some re-
searchers have developed domain-specific modeling tools for biological processes
[9, 11, 15, 4, 3].

Many of these approaches, however, are merely speculation and have not been
used in an actual research application. In addition, many of them are limited to
only the particular given model, and so general computation cannot be mixed
with the scientific specification. For example, the bio-ambients approach requires
any model to be given in terms of a hierarchical chain of interacting objects
[15]. On the other hand, some approaches are too general, forcing scientists to
adapt their ideas to fit the general-purpose constructs given by the system. For
example, the pathway logic system presents a general algebraic rewrite approach
without specific support for constructs that may appear in biological systems [4].

We approach the problem driven by a specific application: In conjunction

with the Center for Gene Research at Oregon State University, we have devel-
oped a model for the evolution of microRNAs [2, 1], which has enabled scientists
to predict what types of genome sequences are most likely to exhibit active
microRNAs. This result is important since microRNAs are an essential regula-
tory mechanism for controlling gene expressiveness. The model is realized with
the help of a domain-specific embedded language (DSEL) for probabilistic pro-
gramming [5]. This paper reports on our process as well as results applicable to
modeling a wide variety of scientific domains.

We have chosen a DSEL approach because it yields a language that offers
constructs general enough to represent any computation, but specific enough
to be very closely related to the model. We found that the scientists did not
know at the outset all the precise details of the model they wanted to represent.
Therefore, choosing a DSEL approach allowed rapid prototyping and iteration
as we developed the model from the ground up. We constructed the DSEL in
Haskell because it offered a number of unique features that allowed “behind-
the-scenes” operation (through monads), allowing the written code to closely
resemble the biological concepts.

The remainder of this paper is structured as follows. We introduce our ap-
proach to probabilistic functional programming in Section 2. In Section 3 we
will show how this approach can be applied to a simple biological problem, the
Lotka-Volterra predator-prey model. In Section 4 we will discuss the motivation,
problem, and prototyping of the genome model. The final model and its scientific
accomplishments will be presented in Section 5. A discussion of related work is
given in Section 6. Conclusions are presented in Section 7.

2 Probabilistic Functional Programming

We have constructed a probabilistic functional programming (PFP) library [5,
13] based on a DSEL approach. The foundational structure of probabilistic com-
puting is a list of values and their associated probabilities, called a distribution,
which is encapsulated in the type:

Dist a

The users of the library do not directly construct such distributions—instead,
we provide a variety of functions which construct and operate on them. For
example, the functions uniform and normal construct a distribution from a list
of values. These distributions are of course discrete, so they can be considered
as approximations.

We can extract probabilities from the distribution using predicates on values
in the distribution, called events. The function ?? takes such a predicate and
determines the probability (represented by a float value) that it is true in a
given distribution.

type Event a = a -> Bool

(??) :: Event a -> Dist a -> Probability

We can consider a simple example of rolling dice. A regular die has a numeric
value from one to six, and may land on any of those values with equal probability.

type Die = Int

die :: Dist Die
die = uniform [1..6]

We can simulate rolling an arbitrary number of dice by the following function
dice. The function joinWith combines all pairs of values from two distributions
with a given function while multiplying their probabilities. In this case, we are
accumulating individual die rolls in a list. The function certainly constructs a
distribution that consists of one value with 100% probability.

dice :: Int -> Dist [Die]
dice 0 = certainly []
dice n = joinWith (:) die (dice (n-1))

Now what if we wanted to determine how likely it would be that out of a certain
number of rolls, a certain number of them would come up six? Since we are
producing a list, we can simply filter out all non-six values and count how long
the remaining list is.

sixes :: (Int -> Bool) -> Int -> Probability
sixes p n = (p . length . filter (==6)) ?? dice n

If we wanted to determine the probability of rolling more than two sixes in a
sequence of four die rolls, we could query:

> sixes (>2) 4
1.6%

In many cases, distributions are not given directly. Instead, a series of steps
are required for their construction, each one taking a value and producing a
distribution. We call such a function a transition.

type Trans a = a -> Dist a

With transitions, distributions permit a sequenced form of computation known
as a monad. In the probability monad, the function return indicates that a given
value is certain. The bind operation >>= takes a distribution and a transition,
threads the values in the first distribution through the transition and combines
the resultant distributions. The observation that probability distributions form
a monad is not new [6]. However, previous work was mainly concerned with ex-
tending languages by offering probabilistic expressions as primitives and defining
suitable semantics [7, 10, 14, 12].

Consider the case where we take a sum, roll a die and add its value to the sum.
We may wish to repeat this process several times. We can employ a transition
which takes the current sum s and adds each possible die roll d ∈ die to the
sum, which is expressed using the bind operation s follows.

die >>= (\d->return (s+d))

Using Haskell’s do notation, this expression can be rewritten in a more readable
way.

addDie :: Trans Int
addDie s = do d <- die

return (s+d)

The statement d <- die can be thought of as universal quantification on the
values in the distribution die.

In many cases, we want to repeat some transition multiple times. We create a
constructor class Iterate for repeating various kinds of transitions, represented
by the type constructor c.

class Iterate c where
(*.) :: Int -> (a -> c a) -> (a -> c a)
while :: (a -> Bool) -> (a -> c a) -> (a -> c a)

In addition to iteration over distributions, we also iterate over randomized val-
ues. These are used to avoid monotonically increasing space usage (and thus,
running out of memory) that can happen iterating with full distributions. For
example, consider adding the value of n dice. At each step, the number of possible
outcomes grows. All of these distributions will be combined and threaded again
through the transition. In order to avoid space expansion, we provide random
selection from distributions. In randomization, a distribution is created and one
value selected at random based on the probabilities. A randomized transition
is called an RChange, which takes a value and produces one randomized value.
Random numbers are computed in the IO monad, for which we have created the
synonym R.

type RChange a = a -> R a

Since an RChange produces only one value, we can thread the value through as
many steps as we want and never worry about combinatorial explosion. Random-
ized values may be used in monads with the same syntax as distributions, but
instead of being a universal quantification, it is a single selection: an existential
quantification. We also provide the ability to construct randomized distributions
by repeatedly sampling a particular randomized change. A randomized distri-
bution (RDist) is some collection of values and probabilities that represents
an approximation of the actual distribution. This is known as a Monte Carlo
sampling. An randomized transition (RTrans) is a function that, given a value,
produces such an approximation.

type RDist a = R (Dist a)
type RTrans a = a -> RDist a

Continuing the dice example, we can establish iteration functions for rolling and
summing the value of dice. The function dieSum rolls one hundred dice and
adds them all together. The function rDieSum does the same, but uses random-
ization to only take ten walks through the space. The function ~*. provides
randomization of a transition and repeated walks to accumulate a randomized
distribution.

dieSum = 100 *. addDie
rDieSum = (500,100) ~*. addDie

The randomized version offers considerable time and space savings. We can ad-
just the number of walks to spend more time gathering a better approximation,
or to more quickly make a rough estimate. On the other hand, for a large number
of steps, it is often impossible to run a full simulation.

The usual idea of iteration is to process a value repeatedly and return some
final value. However, in some simulations we want to observe the evolution of a
distribution over time. Since each step in an iteration produces an intermediate
distribution, we can simply retain these distributions in a list rather than discard
them. In general, a trace over any type of value can be represented as a list of
that type. We call a trace of distributions a Space. This can be imagined as a
three dimensional plane showing a slightly different distribution at each z value.

type Space a = [Dist a]

3 Probabilistic Modeling in Biology

The Lotka-Volterra predator-prey model [8] states that the population of preda-
tors and of prey can be described with mutually dependent equations. In par-
ticular, given the victims’ growth factor (g), the predators’ death factor (d), the
search rate (s), and the energetic efficiency, (e), along with the current victim
(v) and predator (p) population, a new population count can be determined with
the equations g ∗ v − s ∗ v ∗ p (for victims) and d ∗ p + e ∗ v ∗ p (for predators).
These new populations can then be rethreaded as input to create a simulation
over time.

Consider the case when the growth and death rate are not a known constant,
but exist within some probability distribution. We can define them, for example,
using a normal curve.

growth = normal [1.01, 1.02 .. 1.10]
death = normal [0.93, 0.94 .. 0.97]
(s,e) = (0.01,0.01)

The data that we are simulating is the population of victims and predators. We
can represent the population as a tuple of floats.

type Pop = (Float,Float)

Recall that we previously stated that distributions could be thought of as a
monad. Monadic sequencing is very helpful in this case. We can create a transi-
tion which, given a Pop, produces a distribution of Pop based on the four distri-
butions given above. The equations can be presented in the usual way, letting
the monad do the heavy lifting of extracting values and combining probabilities.

In the transition dvp, all values are extracted by the monad from the distri-
butions growth and death, and are then threaded through the equation, which is
then recombined into a distribution of new values. In other words, this transition
takes a current population and determines all possible new population values,
and their probabilities.

dvp :: Trans Pop
dvp (v,p) = do g <- growth

d <- death
return (g*v - s*v*p ‘max‘ 0, d*p + e*v*p)

With an initial seed value, such as (v0,p0) = (15,15), we can now simulate
the predator-prey model. However, if we tried this, we would quickly find that
this is a case of strong combinatorial explosive, and we would be unable to sim-
ulate more than a handful of steps! The solution is to introduce randomization.
This does not require any change to our transition, nor any modification of the
equation. We simply use a function to perform 1000 randomized simulations
(iteration of a randomized change) to produce a randomized distribution.

ppt n = ((1000,n) ~.. dvp) (v0,p0)

Of course, having the output come as a long list of values and probabilities is
neither very interesting nor very useful. Therefore, we have developed a visual-
ization module that presents information in a graph form.

We would like to visualize the generations (steps) on the X axis and the
population count on the Y axis. In order to transform a distribution of population
into a single value to plot we use the expected function which computes the
expected value of a numeric distribution.

We can devise a function which operates on a randomized space to apply
the expected function. First, the list of distributions must be extracted from
the monad, then for each element in each distribution, either the first or the
second element from the tuple (representing predator or prey) must be extracted,
which is done by mapping a function f across all elements of each distribution.
The expected function can be applied to each distribution in the space. The
application of reverse is needed since traces are accumulated from the most
recent value to the oldest value, but we want to plot the oldest value first.

getRE f rs = do rs’ <- rs
let rs’’ = map (fmap f) rs’
return (reverse (map expected rs’’))

Finally, we can produce a chart with two lines: one for the predator and one for

the prey. Note that the function plotRL takes a randomized list and turns it
into a line on the graph. This list comes from calculating the expected value of
each distribution in the randomized space.

fig1 = figP figure{title="Predator/Prey Simulation ",
xLabel="Time (generation)",
yLabel="Population"}

[(plotRL v’){color=Green,label="Victim"},
(plotRL p’){color=Red,label="Predator"}]

where p = ppt 500
v’ = getRE fst p
p’ = getRE snd p

The plot created by this function is shown in Figure 1 on the left.

0 100 200 300 400 500

0
5

10
15

20

Predator/Prey Simulation

Time (generation)

P
op

ul
at

io
n

Victim
Predator

0 100 200 300 400 500

0
10

20
30

Predator/Prey Simulation

Time (generation)

P
op

ul
at

io
n

Victim
Predator

Fig. 1. Probabilistic (on the left) and deterministic (on the right) predator/prey sim-
ulation over 500 generations

Compared with the corresponding deterministic model with growth = 1.055
and death = 1.95 (shown in Figure 1 on the right), the probabilistic model
demonstrates a quantitatively different behavior in how the peaks develop, sug-
gesting that using probabilities in modeling has more effect than simply attempt-
ing to average the values and retain a deterministic approach. This conclusion is
verified by Renshaw [16], who notes that stochastic predator-prey models almost
always experience extinction after several generations.

4 Model Prototyping

In this section, we report on the gradual development of the genome model
through iterations over several prototypes, followed by evaluations and discus-
sions with biologists.

The most significant challenge we faced when developing this model was
simply that the problem was not well defined; that is, the biologists did not
know exactly what the model needed to represent. Thus, we have employed a
method for rapid prototyping so that the model could evolve easily over time,
which was essential to the project’s success—the feedback and results from each
step helped inform the biologists as to which direction would be most profitable
to take. We conclude from our experience that any domain-specific language
aimed at biologists, or scientists in general, should support rapid prototyping.

Biologists have determined that over generational time genomes experience
evolutionary development. Part of this development includes parts of the genome
being duplicated, and occasionally an inverted duplication. The duplications and
inverted duplications can interact in some instances through microRNAs. Mi-
croRNAs are transcribed from inverted duplications and can attach to duplicated
genes to inhibit their expressiveness. In other words, when a duplication and in-
verted duplication are interacting, the genetic function of that duplication is
suppressed. An important biological question is under what circumstances these
microRNAs can develop.

To this end we had to model a genome that accumulates changes over time.
The genome consists of multiple genes, which are either capable of interaction
with inverted duplications or not, depending on the number of changes accu-
mulated. The biologists felt that modeling various duplications of a single gene
was sufficient. Therefore, the only information we need about each duplication
(gene) is the number of changes it has accumulated. Our goal was to simulate
how long any gene of the genome would remain in the state of interaction given
a variety of initial conditions, such as varying rate of changes for different parts
of the genome and different numbers of genes.

We started by constructing the genome as a list of duplications (also simply
called genes) and inverted duplications. Duplications were simply represented as
integers since the number of accumulated changes was the only information that
mattered for this application. Inverted duplications had three significant parts
that could accumulate changes, so we represented them with a three-tuple of
integers. These three parts arise from the fact that an inverted duplication is
strand of RNA folded onto itself. This can be viewed as two strands (sense and
anti-sense) and a loop.

We then allowed a change to occur either in one of the parts of the inverted
duplication or in one of the duplications. After discussing the model further, the
biologists decided the inverted duplication needed only two components: a sense
and an anti-sense. The loop was found to be non-significant. Since we were using
high-level operations to express the model, the change was trivial.

Next, the biologists decided that merely having one inverted duplication was
sufficient. Each duplication would then be compared against the inverted du-
plication to determine interaction. At this point, interaction was still a fuzzy
concept, so we tried to clarify it into mathematical terms.

The biologists told us that, in the beginning, all the genes could interact with
an inverted duplication. They called this state “full” interaction. Over evolution-

ary time, changes accumulate. If, for any duplication, the number of changes in
that duplication plus the number of changes in the anti-sense of the inverted
duplication were five or more, that duplication stopped interacting with the in-
verted duplication. In other words, the genetic function of that duplication could
no longer be suppressed by a microRNA. If some duplications were interacting,
the state was “partial”. If none were interacting, the state was “none”. In addi-
tion, if enough changes accumulated in the inverted duplication alone (a total of
five between the sense and the anti-sense), then the inverted duplication was con-
sidered lost, and all interaction stopped. This behavior is directly implemented
with the function interaction.

interaction :: Genome -> Interaction
interaction ((s,a),gs) | s+a>5 = Loss

| True = if l==0 then None else
if l==g then Full else Partial

where l=length ((filter (\n->a+n<=4)) gs)
g=length gs

It soon became apparent that this abstraction was not sufficiently detailed. The
biologists told us that each gene actually needed to be divided into units. This
meant that each duplication was now a list of n integers, each a place where
changes could accumulate. We represented the inverted duplication as a list of
n pairs (sense and anti-sense).

The additional complexity made the ideas of interaction and loss more in-
teresting, as we had to match units in the genes with the units in the inverted
duplication. We had to check each unit in a duplication against the correspond-
ing anti-sense unit in the inverted duplication. If any had a sum of less than five
changes, the duplication was still considered to interact. This concept is shown
in Figure 2.

Fig. 2. The test of interaction

We made several additional changes before arriving at the final model, dis-
cussed in the next section, which the biologists found useful for generating pre-
dictions which they could test experimentally.

5 A Model of Genome Evolution

Our simulation finally ended up with a genome consisting of Dups and one in-
verted duplication IDup. In addition to a given number of Dups, we also had a
given number of Units. Each gene was broken into that many units, and the
sense and anti-sense of the inverted duplication also had that many units. We
represented the inverted duplication with a list of Bins, where a Bin is simply a
pair of units.

type Unit = Int
type Bin = (Unit,Unit)

type Dup = [Unit]
type IDup = [Bin]
type Genome = (IDup,[Dup])

Initially, a change could randomly occur anywhere in any unit with equal prob-
ability. However, to model evolutionary pressure, we constructed several models
which defined varying degrees of resilience for the gene parts. In particular, we
used a “variable model” which allowed the genes to receive all the changes that
fell on them, and a “family model” which allowed only one third of the changes
to the duplications to accumulate. The names “variable” and “family” derive
from the biologists’ labels of different classes of genes, in particular, experiments
which showed that some genes were essential to the functioning of an organism
(thus were resistant to change) while others could change freely. The “family
model” represents those genes which are resistant to change, while the “variable
model” represents those which can freely change.

A model is a function which takes the number of genes in a genome and
creates a probabilistic function which selects to accumulate a change in either
the genes or the inverted duplication based on the number of genes.

type Model = Int -> Trans Genome

In the function mkModel to create a model, enumTT creates a distribution of
transitions. Given the number of genes, x, and that there are 2 parts to the
inverted duplication (sense and anti-sense), we make all units equally likely to
experience a change. The function transAt performs a transition on a pair. The
parameters 2 and 1 indicate which part of the pair should have the transition
applied. Since genes are the second item in the pair, the gene transition performs
the identity transition on the inverted duplication and a change on the genes,
while for the inverted duplication we perform a correspondingly defined change
and the identity transition on the genes. The definition for genes considers the
probability given in gp, representing a family (gp = 1

3) or variable (gp = 1)
model, to determine whether to accept the change or ignore it.

At first glance, a simple uniform function would seem sufficient. However,
since the genes and the idup contain an inequal number of accumulators, sim-
ply applying uniform would not give each accumulator an equal chance of being

selected. Instead, we consider how many accumulators are present in each. The
genome contains n genes, each with u units (accumulators). The inverted dupli-
cation contains u bins, each with two units. Thus, if x is the number of genes,
then the total number of units is proportional to 2 + x (the two being from the
inverted duplication) while the number of units in the genes is proportional to
x. Thus, the probability of selecting a unit from the genes is x

2+x .
The functions chgGenes and chgIDup apply one change to either a list of

duplications or a list of bins (an inverted duplication), respectively. The location
of the change is a uniform distribution over all possible sites.

mkModel :: Float -> Model
mkModel gp v = enumTT [1-p,p] [genes,idup]

where genes = transAt idT (chgGenes gp) 2
idup = transAt chgIDup idT 1
x = fromIntegral v
p = x/(2+x)

A model that accepts all changes is defined by var and a model that accepts
only one-third of changes to the genes is defined by fam.

var :: Model
var = mkModel 1

fam :: Model
fam = mkModel (1/3)

The state of interaction is defined as a function on the genome. The possibilities
for interaction are Loss, None, Full and Partial.

data Interaction = Loss | None | Partial | Full

The state of Loss occurs when the pairs of the inverted duplication lined up
sequentially had no pattern where the sum of changes between one sense and
anti-sense was less than 11, the sum in the next less than 6, and the sum in the
next less than 11. In other words, we rolled a 10-5-10 upper bound across the
inverted duplication, and if no match was found, it was considered lost.

match x y z = x <= 10 && y <= 5 && z <= 10

The function defunct determines if an inverted duplication has been lost. This
function takes three sequential pairs from an inverted duplication. Each pair
(si,ai) consists of a sense si and anti-sense ai, which are represented as units
accumulating changes. If the sum of the changes in the first pair and the third
pair are less than or equal to 10, and the sum of the changes in the second
(middle) pair is less than or equal to 5, then the inverted duplication is not
defunct (not lost), so the function returns False. If the first three pairs do
not, however, match the 10-5-10 pattern, then function shifts one pair down the

sequence and looks again. If the function reaches the end of the sequence of pairs,
and no sequence of three matching the pattern is found, the inverted duplication
is considered lost. Implicitly, this means that all simulation models must have
at least three units to be interesting.

defunct ((s1,a1):(s2,a2):(s3,a3):sx) |
match (s1+a1) (s2+a2) (s3+a3) = False

defunct (_:sa2:sa3:sa) = defunct (sa2:sa3:sa)
defunct _ = True

If the inverted duplication is not lost, we proceed to inspect each gene to see if it
interacts with the inverted duplication. Such interaction is determined by adding
the changes in each unit in the gene to the anti-sense unit in the associated pair
of the inverted duplication. If the sum is less than 5 for any unit, the gene is
considered to interact with the inverted duplication.

interact :: IDup -> Dup -> Bool
interact i d = any (<=4) $ zipWith (+) (map snd i) (drop n d)

where n = length d-length i

Gene interaction is tested for all genes, and the genome interaction state is
determined by comparing the number of genes which interact with the total
number of genes. If all genes interact, interaction is Full. If no genes interact,
interaction is None. If some genes interact, interaction is Partial.

In this case, we define interaction as a function from a genome to an
interaction state. The function interaction takes a Genome, which is a pair
consisting of an inverted duplication i and a sequence of genes gs. The function
defunct determines if the given inverted duplication is lost. If so, the interaction
function always returns Loss. Otherwise, the number of genes g is determined
by computing the length of the list gs, along with the number of genes currently
interacting with the inverted duplication, which is determined by filtering the se-
quence of genes to retain only those that interact, and then counting them. These
two values are then used to determine the interaction state as None, Partial or
Full as described above.

interaction :: Genome -> Interaction
interaction (i,gs) | defunct i = Loss

| l==0 = None
| l==g = Full
| otherwise = Partial

where l=length (filter (interact i) gs)
g=length gs

For each simulation run, we start with a genome that consists of an inverted
duplication with no changes and a list of genes with no changes. We selected
one of these genes to be the founder gene and set it aside. The remaining genes
accumulated a given number of initial changes spread among them. The function

g creates a Genome given an initial chance of changes c, the number of units per
gene u and the number of genes n. This function first constructs the inverted
duplication and genes with 0 changes. A list of n−1 of genes is constructed, which
has the requested changes randomly applied. The function chgGenes here is the
same as above; it applies one change per call to the given list of duplications.
The parameter 1 indicates that it should not discard any changes. The founder
gene, with no changes, is appended. This completes the creation of the genome.
Once the genome is created, the model transition can be applied iteratively to
produce a trace of the evolution.

g :: Float -> Int -> Int -> R Genome
g c u n = do gs’ <- (m *. (random $ chgGenes 1)) gs

return (zip f f,f:gs’)
where m = round (fromIntegral n*c)

f = list u 0
gs = list (n-1) f

Note the use of random to ensure that the change will produce a single random-
ized value rather than a distribution. This change is then iterated to select many
randomized values, thus producing a randomized distribution, approximating the
actual distribution.

We found that running a full simulation of the genome used tremendous
amounts of memory and time, so we opted for randomized simulations, allowing
the biologists to trade off between detail and time. In order to minimize memory
usage, we performed the aggregation of traces at the outermost level. This avoids
constructing a distribution during each simulation run, holding instead only a
single randomized genome which is built into a randomized trace.

Changes were applied using the model until the interaction entered the state
of Loss. Since these were randomized changes, we only accumulated an RTrace,
which we then put together over many runs to produce an RSpace. We then
analyzed each distribution to count how long the simulation stayed in partial
interaction, as this was the configuration the biologists found interesting.

sumDiff :: [Dist Interaction] -> Float
sumDiff ds = sum (map (prob2Float . ((==Partial) ??)) ds)

We can then simply divide by the number of runs in the space to find the average
time spent in interaction, which we can plot for varying models and number of
genes. An example of the results is shown in Figure 3.

MicroRNAs are significant in determining the function of genes. However,
it is not completely clear how about microRNAs have evolved—in particular,
biologists note that microRNAs are not present with equal likelihood in all genes.
Our model makes two concrete predictions about the presence of microRNAs:
First, microRNAs are more likely to be found in “variable” genomes rather than
“family” genomes, and second, as a probability per gene, microRNAs are more
likely to be found in organisms with smaller genomes. Preliminary experimental
results discussed in the forth-coming paper [1] supports both of these predictions.

10 20 30 40

0
5

10
15

Interaction (6 units, 3.0 initial changes)

Number of simulation runs: 500
of Genes

To
ta

l T
im

e
in

 P
ar

tia
l I

nt
er

ac
tio

n

Family
Variable

Fig. 3. Simulation results

6 Related Work

Work has been done on both probabilistic programming and modeling biological
systems.

A theoretical, set-oriented treatment of probabilistic computations is given
in [7]. The author points out that probabilistic computations can be considered
in a monadic domain.

A monadic probability implementation is demonstrated by [14]. The authors
show how probability distributions can be constructed using transitions similar
to our own. The transitions can be combined monadically and operators are
used to derive expected values and take samples. The authors also demonstrate
a formal stochastic lambda calculus for representing probabilistic computations.

A randomized probabilistic language is demonstrated by Park, et al. [12].
Their method is based on sampling from probabilities, which can then be com-
bined to form random results or probability distributions. Their method involves
repeated sampling of the probability space, whereas our method can concretely
represent this problem with deterministic probability distributions to find an
exact probabilistic result.

An early attempt to model biological systems was done by McAdams and
Shapiro [9]. The authors compared biological systems to electrical circuits noting
that, like electrical circuits, biological systems operate in parallel and switches
may describe activation or repression of either electricity or biological function.

Sato and Kameya [17] introduce a statistical logic learning language called
PRISM based on Prolog. This language is designed for modeling uncertainty at
a high level and can also infer parameters based on a set of given data.

A mathematical approach was taken by Nilsson and Fritzson with the Mod-
elica system [11]. Modelica is an equation-oriented programming environment,

which includes objects, allowing a direct modeling of biological components and
the continuous mathematical models that direct their behavior. The authors also
allow the introduction of thresholds, which allow discrete events to be modeled
based on continuous value equations. A graphical environment exists, which
allows straightforward access by mathematically trained scientists to develop
Modelica models.

Regev et al. [15] introduce an abstraction method for representing biological
components as units of computation. They call these components ambients. An
ambient is an isolated computation environment which may contain, in a hier-
archical fashion, other ambients. The authors also describe complex, multi-level
models which include functions at the molecular, cellular, and anatomical level.
These situations are modeled by having a set of ambients for each level of detail,
and using the hierarchy to specify the range of influence. A language, BioSpi,
is briefly described which includes the concept of ambients and is designed for
systems biology simulations.

Eker et al. introduce a method they called “pathway logic” [4], which is
an algebraic approach that allows analysis of the abstractions. For example, the
authors point out that the equality of (x+y)∗(x−y) and x2−y2 could be checked
numerically for many possible values, but it can also be derived using a set of
algebraic rewrite rules, which could form a proof. The authors define a specific
set of rewrite rules involving proteins and cells and then show how analysis can
provide several possible classes of results: explicit simulation, determining what
constraints a given start state has on all future states (for example, if some
property P is true, do we always reach a state that satisfies property Q?) and
meta-analysis, which asks broadly which classes of starting states would satisfy
some final criteria, thus allowing model disambiguation using actual data.

Pathway Modeling Language (PML) is introduced by Chang and Sridharan
[3]. This language is based on the concept of binding sites—where two compo-
nents have a compatible connector and so bind, allowing some private interac-
tions and transformations, and then break apart with new connectors ready to
bind to other components. They also provide for compartmentalization of reac-
tions. This approach allows an event-oriented design where reactions happen as
all preconditions are met and binding occurs. In this way, the order of reactions
does not need to be explicitly specified.

7 Conclusions

High-level declarative languages, extended by suitable domain-specific abstrac-
tions, offer a great potential as executable modeling languages for scientists,
because they support the incremental development of scientific models that can
be instantly tested and easily revised and adapted.

We believe that typed functional languages are particularly well suited for
this task since they allow the creation of type structures that closely reflect the
modeled domains. This aspect gains in importance as scientific models evolve
from being low-level and based on plain numbers toward incorporating higher-

level (data) structures, such as sequences, tuples, and other data types, as evi-
denced by the presented application from genome evolution.

References

1. E. Allen, J. Carrington, M. Erwig, K. Kasschau, and S. Kollmansberger. Compu-
tational Modeling of microRNA Formation and Target Differentiation in Plants.
2005. In preparation.

2. J. C. Carrington and V. Ambros. Role of microRNAs in Plant and Animal Devel-
opment. Science, 301:336–338, 2003.

3. Bor-Yuh Evan Chang and Manu Sridharan. PML: Toward a High-Level Formal
Language for Biological Systems. In Bio-CONCUR, 2003.

4. Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, Jose Meseguer,
and Kemal Sonmez. Pathway Logic: Symbolic Analysis of Biological Signaling. In
Pacific Symp. on Biocomputing, pages 400–412, 2002.

5. M. Erwig and S. Kollmansberger. Probabilistic Functional Programming in
Haskell. Journal of Functional Programming, 2005. To appear.

6. Giry, Michèle. A Categorical Approach to Probability Theory. In Banaschewski,
Bernhard, editor, Categorical Aspects of Topology and Analysis, pages 68–85, 1981.
Lecture Notes in Mathematics 915.

7. Jones, Claire and Plotkin, Gordon D. A Probabilistic Powerdomain of Evaluations.
In 4th IEEE Symp. on Logic in Computer Science, pages 186–195, 1989.

8. A. J. Lotka. The Growth of Mixed Populations: Two Species Competing for a
Common Food Supply. Journal of Washington Academy of Sciences, 22:461–469,
1932.

9. Harley H. McAdams and Lucy Shapiro. Circuit Simulation of Genetic Networks.
Science, 269(5224):650–656, 1995.

10. Morgan, Carroll and McIver, Annabelle and Seidel, Karen. Probabilistic Predicate
Transformers. ACM Trans. on Programming Languages and Systems, 18(3):325–
353, 1996.

11. Emma Larsdotter Nilsson and Peter Fritzson. Using Modelica for Modeling of
Discrete, Continuous and Hybrid Biological and Biochemical Systems. In The 3rd
Conf. on Modeling and Simulation in Biology, Medicine and Biomedical Engineer-
ing, 2003.

12. Park, Sungwoo and Pfenning, Frank and Thrun, Sebastian. A Probabilistic Lan-
guage based upon Sampling Functions. In 32nd Symp. on Principles of Program-
ming Languages, pages 171–182, 2005.

13. PFP. Probabilistic Functional Programming Library, 2005. http://eecs.

oregonstate.edu/~erwig/pfp.
14. Ramsey, Norman and Pfeffer, Avi. Stochastic Lambda Calculus and Monads of

Probability Distributions. In 29th Symp. on Principles of Programming Languages,
pages 154–165, 2002.

15. Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud
Shapiro. BioAmbients: An abstraction for biological compartments. Theoretical
Computer Science, Special Issue on Computational Methods in Systems Biology,
325(1):141–167, September 2004.

16. Renshaw, Eric. Modelling Biological Populations in Space and Time. Cambridge
University Press, 1993.

17. T. Sato and Y. Kameya. Parameter Learning of Logic Programs for Symbolic-
Statistical Modeling. Journal of Artificial Intelligence Research, 15:391–454, 2001.

