Goal-Directed Debugging of Spreadsheets

Robin Abraham and Martin Erwig
School of EECS, Oregon State University
[abrahargerwigl@eecs.oregonstate.edu

Abstract various deposits made to the account, and colimimas

the figures for the withdrawals from the account. Column

We present a semi-automatic debugger for spreadsheet gnas the current running balance that is updated after
systems that is specifically targeted at end-user program-o . transaction. The user also likes to keep track of a sum-

mers. Users can report expected values for cells that yield mary of monthly expenditure. The summary categories are
|_ncorrect results. The system then generates c_hange SU99€SH columnG, and the corresponding values are in colufin
tions that could correct the error. Users can interactively Finally, G8 has a formula that identifies the category under

explore, apply, refine, or reject these change suggestions,, hich the maximum expense has occurred for the month.
The computation of change suggestions is based on a for-

mal inference system that propagates expected values (Y8 5 icrosoft Bxcel Homehccownts s [2JE)]]

wards across formulas. The system is fully integrated into |'=2 e LR

Microsoft Excel and can be used to automatically detect and Al B [@& [b [E [F[& [H [7

correct various kinds of errors in spreadsheets. Test IESUILS | 2 inmos e suare o 0

show that the system works accurately and reliably. T 200 o, oat o

Keywords: Spreadsheet, Debugging, Static Analysis, |2 1208 Poerbil o e el 2

End-User Software Engineering. E 1o s T 71 N !
4 4 » W\ Pass book ¢ Sheetl {temp / |« 2l
Ready UM

1 Introduction

The widespread use of spreadsheets by end-user pro- Figure 1. Monthly Expenditure Sheet
grammers has led to a situation where up to 90% of spread-
sheets have non-trivial errors in them [12]. This has gener- Atthe end of January, the user notices two problems with
ated considerable interest in the end-user-programming rethis spreadsheet. First, the summary figures for food-related
search community to develop tools and systems that wouldexpenses is very high compared to previous months—the
help end users develop correct spreadsheets. The apdser suspects the amount $899 in the spreadsheet is incor-
proaches can be principally grouped into two categories: rect since it is usually less than $500. Seco@d,shows

Rent as the category under which the maximum expense
(1) Detection of errors [13, 6, 2] and has occurred whereas it is obvious from the computed val-
(2) Error prevention [5] ues that food-related expenses (expected outrit) have
depleted the user’s bank account the most. To debug this

The error-detection tools that are currently available are spreadsheet, the user would have to go over the formulas in
limited in that they only do part of the work—they help cells G8 andH3 carefully to identify the error. If the prob-
identifying the errors, but they do not really help in remov- lem is still unclear, the user would have to identify and go
ing them. Most tools try to mitigate this problem by giving over all the cells referenced by the formula in ¢¢dl. In a
additional fault localization information [14] and better er- more complicated spreadsheet, this problem could be com-
ror messages [11] to help the users correct the spreadsheetpounded further if the cells referenced Bg themselves
However, it would be even more helpful if the tools could have formulas in them. This makes debugging a challeng-
suggest and perform corrective changes that would rectifying and potentially error-prone activity.
the error in the spreadsheet. In the approach presented in this paper, the user can spec-

Consider the spreadsheet shown in Figure 1, whichify the expected value of an erroneous cell. In case the user
shows the monthly income versus expenditure figures. Col-does not know the exact output value, she can simply spec-
umnB has the descriptions for the different transactions on ify a range. For example, in the case discussed above, the
the user’s bank account. Coluninhas the figures for the user might not know the correct output value &8, and

*This work is partially supported by the National Science Foun- could specify that some value less than 5(.)0 .IS the ex.pected
dation under the grant ITR-0325273 and by the EUSES Consortium OUtput from the cell. The system uses this information to
(http://EUSESconsortium.org). infer possible value or formula changes to cells that impact

B3 Microsoft Excel - Examples2.xls

EEX

(5] Ele Edt iew Insert Format ool Data Window Help Adobe PDF Type 3 question for help = 2 &1 %
H2 - A =IF(G2=F7,1,0)
A& [B [¢ [b | E] F [&6 | H | | [J =

| 1| Quiz_1 | Quiz_2 | Quiz_3 CQuiz_ 4 Maxofql & q2 Average Above/Below Ave Improvement LetterGrade
| 2 |Amanda 57 77 78 85 77 B0.0 0 1 90.0 A
| 3 |Andy 85 67 56 67 85 69.3 0 69.3 o]
| 4 |Christina g3 87 90 93 g7 80.0 1 90.0 A
| 5 |David 80 34 45 30 g0 517 0 517 E:
| B |Jane 82 89 7B 90 89 85.0 1 85.0 B
| 7 |Average 79.4 708 B3.0 730 836 7582

g w
W 4 » [Gradebook ¢ Payrall /temp / | < »
Feady MM

Figure 2. Gradebook spreadsheet

the value in the error cell. In the first step, only the cells that adopt an approach similar to the one described in [8, 15]
directly influence the value of the erroneous cell are consid-where the system allows the user to mark a bug and spec-
ered. The system uses a set of heuristics to rank the changi#y expected behavior of the system. In the Whyline sys-
suggestions since they are not all equally likely. For eachtem, the users can ask “Why did...?” and “Why didn't...?”
of the cells under consideration, five suggestions with the questions to inspect the runtime behavior of the program.
highest ranks are then presented to the user. The user cawhyline answers the “Why didn't...?" questions by consid-
then proceed in different ways. ering all possible runtime actions that did and did not hap-
pen. In our system, users provide constraints describing the
(1) The user might choose &pplyany one of the presented expected output values for the cells that are incorrect. This
suggestions. This action would result in the spreadsheetextra information regarding the expected output is then used
being modified according to the suggestion. as described formally in Section 3 to generate change sug-
The user might ask fanoresuggestions. In this case, gestions that are presented to the user.
the constraints are propagated backwards through the Figure 2 shows a spreadsheet used to store the grades of
sheet where possible, and more suggestions will be genthe students in a course.
erated. All the suggestions will be ranked again onthe ColumnH checks to see if a student is “above aver-
basis of the heuristics and the higher ranked ones areage” (designated by 1) or “below average” (designated by 0)
presented to the user. If the constraints cannot be prop-compared to the class average for the course, computed in
agated backwards, the system informs the user that nacell G7. The user might notice that Amanda’s average score
more suggestions can be generated. is 80, which is above the class average of 75.2. Therefore,
The user mighn'ejectone or more of the presented sug- the value inH2 should be 1 instead of 0. The value is in-
gestions. The system employs these rejected suggescorrect because the formulalt2 incorrectly compares2

tions as additional constraints in the further generation With F7 instead ofG7. The user can specify the expected
of suggestions. value forH2 in the change-request mechanism (shown in

Figure 3) that can be invoked by right-clicking 2 and

In the next section, we discuss how our system could helpselectingDebug from the menu.
users debug their spreadsheets. Section 3 presents formg
semantics of change inference and the heuristics we havd
used to rank the suggestions generated by the system. |
Section 4, we describe in detail how the system generated
change suggestions. Some preliminary steps we have taken
to evaluate our approach are described in Section 5. We
present related work in Section 6. Conclusions and direc-

tions for future work are given in Section 7.

@)

®)

Value Expectation

walua in ’HZ— should be ’E.quéﬂm—;| ,1_ o P—

Figure 3. Specifying expected value in a cell

The system generates change suggestions based on the
input from the user. The generated suggestions are ranked
. on the basis of the heuristics we will discuss in Section
2 Beyond Debugging 3.2. The cell with the highest ranked change suggestion

The typical scenario of existing debuggers involves find- is shaded orange, and all other cells for which change sug-
ing out how input values have been used to cause a wrongdestions have been generated are shaded yellow. In the cur-
result to be CompUted' In our system, we invert the debuQ- 1A similar Forms/3 spreadsheet with grade information for one student

ging question”: We determine how to change the input cells \yas used in empirical studies aimed at testing effectiveness of fault local-
or formulas so that the correct result will be produced. We ization techniques [14].

rent example, suggestions are generated onlyifoin the of constraints across cell formulas requires to also include
first step. The user can view the change suggestions byand andor constraints. A particular challenge for change
right-clicking on the cell and selectinguggestions from inference is that, in general, many possible changes exist
the menu. The user can select or ignore change suggestionand that we want to report to the user only a limited set of
from the list. We see in Figure 4 that the suggestion for the most promising or most likely changes.

changingrF7 to G7 is the second item on the list of possible For the following discussion, we regard a spreadsheet
changes (of which only the five highest ranked are shown) (s) as a mapping from addresses to formulas. The formula

that would result in the formula iH2 evaluating to 1. stored at the addressin s is obtained bys(a). The evalu-
& . | | I ; ation of a formulaf to a valuev in the context of a spread-
werage Above/Below Ave |mprovement LetterGra: sheetsis written asf —s>->V. Fora spreadshee'we are given
Gl | w0 A atarget cellwith addressa and atarget constrainty as de-
B9.3 u] = [}
0.0 1 A fined in Figure 6. Lambda abstractions are needed to define
51.7 O} informua: <IF(a2>F7,1,0) F constraint transformations.
85.0 1 change F7 to E7 B
752 change F7 to G7 V = wv | y/\y| y\/y |)\Xy
change F7 to D7 w = < | < | = | > | >

change F7 to F5
change F7 to C7

More

Figure 6. Syntax of constraints.

Constraints effectively describe predicates on values, so
Figure 4. List of suggestions for H2 that the application of a constraigtto a valuev, written
y(v), yields either true or false. For example, 3A > 1](2)
This change would correct the error in the spreadsheet.yields true. We assume that the formdlahat is stored in
If the user picks this change suggestion, she is presented evaluates to a valuefor whichy(v) yields false, because
with the window shown in Figure 5 which allows her to otherwise the cell computes a correct value, and no debug-
make modifications to the suggested formula (if necessary)ging is needed.
before applying it to the cell. Once the user cliggsply the We perform change inference in several steps: First, we
chosen change suggestion is performed and the spreadshegetermine possible changes for a given target value. This
is error free. We see in this example that only 3 actions/stepsprocess is described in Section 3.1. After that we rank the
were performed by the user (specifying the expected valueresults by a heuristic to distinguish more likely changes
for the cell with the error, selecting the change suggestion,from less likely ones. Possible heuristics are described in
and applying the change suggestion) in correcting the error.Section 3.2. Changes are suggested in chunks of decreasing
The cognitively difficult task of coming up with the correct relevance according to the computed ranking.
suggestion and entering it as the cell's formula (ensuring .
3.1 Change Candidates

syntactic correctness) was taken care of by the system.
Change inference is performed by a funct®@mwhich is

formally defined in Figure 7. The generated change sug-
gestions are of the fornfa: f ~ y} to express that the
(sub)formulaf that is contained in the cell with the address

Apply Changes?

Change cell H2 From

=IFi{G2>F7,1,0)
to

=IF(G22G7,1,0) ashould be changed to a valudor whichy(v) is true.
To illustrate the definition, let us consider a few example
puces_| | cases. The simplest case is that a cell with addzessn-
tains a constant, say, but the target constraint i (with
Figure 5. Applying the change suggestion =y(v)). In this case the only possible change is to change

the constant to a valuew with y(w) (as shown in definition
(1) in Figure 7)> We will discuss later how a constraipts
3 Change Inference converted into a value in the user interface.
If the cella contains a formula, saf(e, ..., ex), which
The basic idea of change inference is fairly simple: evaluates tw, we have two possibilities to derive a change:
Given a valuew, which represents the expected value for a Ejther we can change the formula itself, or we can try to
cell a, determine possible changes in the cell's formula and “backpropagate” the target constrainto the different ar-
in formulas of referenced cells that would cause the actualgumentse. This approach depends on the operatfon
value computed for the cedl to bew. In fact, we can con- 5 _ o o
sider the more general problem of specifying a constraint To be precise, there are actually infinitely many possibilities, for ex-
" . ample, changiny to formulas, such asr+1—1 orv+w—v, but the
on the result value of a cell. Initially, these constraints can change to the constamtis obviously the simplest change among those. In
be of the formww wherew € {<, <,=,>,>}. Propagation what follows we consider only fully evaluated suggestions.

3(a,v,y) ={a:v~y} (1)
3(a, f(ew,...,&),y) = U 0(a e, fi(e)(y)ufa: f(er,....,a) ~ v} (2)
d(a,1d,y) =8(a,s(@),y)U{a: 1d ~ 1a’[s(@’)>vAy(v)}ufa: f(er,....,a&) ~ v} (3)
d(a,ey) if p2TAE2vA-Y(V) (4a)

. ~ J3(a€,y) if p2FAeSvA-y(V) (4b)

3(a,if ptheneelsee,y) = 3a p,=F)Ud(a,ey) if p>TASVAY(Y) (4c)
da,p,=T)ud(a€,y) if pFAe3VAY(VY) (4d)

Figure 7. Change Inference
In general, we neek constraint transformations!, . .., f The two other cases are obtained by an analogous consid-

that can compute the change required for any argument thagration ofp evaluating to false and evaluating tow with
causes the formuld(ey, ..., &) to evaluate to a value that Y(W). The four cases are summarized in definition (4) of
satisfiesy. We write f'(g;,...,6_1,811,...,&)(y) to refer to Figure 7.

the constraint for thé" argument off. This constraint is We can observe that the functian propagatescon-
always defined such that straintsthrough formulas while the system reportduesin
the user interface. The change constraints that are derived
fi(a,....6_1,641,...8) () =Y = by & will be converted, if possible, into values by a func-
Wy (v) = y(f(8a,....,6-1,V,68+1,...,&)) tion 7. Before? is applied, the constraint to be converted

is simplified as much as possible. For exampte3A <1
For example, fort- the two constraint transformations are can be simplified to< 1. After that?’ can produce value

defined as follows. suggestions for constraints that do not contaior V.
+1(v2)(y) = AXy(X—V2) V() = vforwe{<,=>}
+2(v1)(y) = AXy(X— V1) V(<v) = max{w|w<v}
Now if a cell contains the formula 8 5 but should eval- zg; v) i ;an{W [w> v}
uate to a value that satisfies the constraint1, +? tells
to changez 3 toAx.[> 11](x — 5) = Ax.[> 6](X) = (> 6) Note that max and miry are type-dependent maximum and
whereast* asks for the change of 5 fo<.[> 11](x—3) = minimum functions. For example, makw | w < 3} yields

Ax.[> 8](x) = (> 8). Both constraints can be converted by 2 if w is an integer, while it yields .29 if w is a floating

the function?’ (see below) into values (here, integer values point value® In cases whegis a non-simple constraint, the

7 and 9, respectively) so that with either one of the inferred ser is presented with a suggestion that is a textual descrip-
changes we obtain formulas that correctly compute a resultijon of the constraint itself. For example, the suggestion
that is larger than 11, that isH75 or 3+ 9. In general, we {a:7~>1A < 3} is presented as “Change 3 to a value
obtaink suggested changes for a functionkoarguments, petween 1 and 3”. In general, these verbal descriptions are
which leads to the formula employed in definition (2) of qyite difficult to read. An explanation component could be
Figure 7. In that formula the notaticeh represents the se- aqded that tries to help the user come up with suitable val-

quenceey,...,8-1,641,..., &) ues, but currently it is not clear how frequently non-simple
The third case to consider is when a formula is a refer- constraints really occur.

ence to another cell. In that case, the change is inferred for
the referenced cell and its content. We can also change thg.2 Heuristics for Selecting and Presenting

reference to any other call’ that evaluates to a value that Change Suggestions
satisfiesy, or we can replace the reference by the constant
itself. This case is covered by definition (3) in Figure 7. In general, the system generates many change sugges-

Finally, we distinguish four cases for a conditional for- tONS. We use a set of heuristics to rank the generated sug-
mula depending on (i) whether or not the predicate is true gestions from unlikely (ran_ked 0)to mqstllkely_(ranked 10).
and (ii) whether or not one of the alternatives evaluates to Ve then use the cell-shading mechanism to direct the user's
a value satisfying/. For example, consider that the cell attention to .the cell(s) with the highest ranked suggestlon(s).
a contains the formuld — if ptheneelsee. If the condi- The heuristics used to rank the change suggestions are dis-

tion p evaluates to truef evaluates to its first alternative, CuSSed in the following.

that is, f-3v wheree-%v with —y(v). Therefore, reason- Formula changes. For rapking the suggegtions for for-

able change suggestions can be obtained thrégale, y) mula changes, we use the idea of node equivalence classes
'Y).

Should in additiore’ evaluate tow with y(w), any change 3The number of decimal places is currently fixed to 2. This should be

that causegp to evaluate to false is also a reasonable change.a user-definable parameter.

for formulas from [9]. A partial order on equivalence 4 Change Inference Example

classes can be defined based on a similarity measure be-))

tween the original formula in the cell and the suggested !N this section we take a closer look at how the change
change. The greater the similarity, the higher the rank of SU9gestions are generated by the system. In the Gradebook
the corresponding change suggestion. example shown in Figure 2, the user specifies that the ex-

pected value in celi2 is 1. This information is stored in the

For example, two formulas are considered todopy system as a constraint on the value in the cell. The formula
equivalentif they are identical when the relative references in the cell isIF(G2>F7,1,0). From the semantics of change
are compared in th®1C1 notation. Two formulas are inference shown in Figure 7, we see that rule (4) needs to
considered to bstructurally equivalentf they contain the be applied. Since the conditiag2>F7 evaluates to false,
same operations in the same order. Copy equivalence imwe might consider applying rule (4b) or (4d) for generat-
plies that the original formula and the suggested changeing change suggestions. But we see that this case is 1,
are more similar than would be the case if they were only which is the expected value. Therefore, we apply rule (4d),
structurally equivalent. Therefore, if a change suggestionwhich produces the union of the change suggestions gen-
recommends changing a formufato another ong that erated by the recursive call§H2,G2>F7,= T) (changes
is copy-equivalent tof, the change suggestion is ranked that make the predicate evaluate to true), aféR,0,= 1)
high. On the other hand, if a change suggestion recom-(changes that make the false branch of the function evalu-
mends changing a formulato another ong that is only ate to the expected value). FRy(H2,G2>F7,=T), rule (2),
structurally equivalent td, this suggestion would be ranked that isd(a, f(e,...,&),y) can be used, wherkis the log-
lower. Even lower ranked are changes to structurally non-ical operator>. The set of generated change suggestions is
equivalent formulas. In our system, this can only happen the union of the following sets.
in form of value changes, that is, a formula is changed to a
value. For example, a change+2 to 5 would only receive (1) 8(H2,1F7,< 80): Changes to the referender that
a very low ranking. would give some value less than 80 as the result.

)) i (2) d(H2,1G2,> 83.6): Changes to the referen@2 that
Reference changesSince our primary focus is on user-

+ Y would give some value greater than 83.6 as the result.
generated quantitative errors, we rank the change sugges—s) {H2:G2 > F7 ~—T}: Effectively replacing the pred-
tions that deal with changes to references based on thei icaté withT (see functi'onV) This suggestion is ranked
Manhattan distance from the original reference. In the ex- very low '
ample shown in Figure 2, the erroneous reference in the for- '
mula inH2 points toF7. The suggestion for changing the 5> 1£7, < 80) invokes rule (3) and results in the follow-
reference t&7 or E7 receives a higher rating than the sug- ing suggestions.
gestion for changing it to, s&y7, sinceG7 andE7 are only

one cell away fronF7 WhereasD7.is 2 cells away. Th_is (4) d(F7,AVERAGE(F2:F6),< 80): This change sugges-
heuristic is based on the assumption that the introduction of tion recommends that the formula iz should be

the incorrect reference is primarily the result of a mechani- changed so that the computed value in the cell changes
cal error (clicking an incorrect cell to select the target). This from 83.6 to some value less that 80. In the first step,
makes closer cells more likely suggestions. this is simply stored as a system-generated constraint

and does not generate any concrete change suggestions.
When the user rejects the suggestions generated at the
first level, or explicitly asks for more suggestions, the

Value changes. Generating specific values in change
suggestions is hard in some cases since the system might
not have enough constraints to do so. Therefore, value .
suggestions generally specify acceptable ranges. We rank propaga_ted constraints are used to populate the change-
value suggestions on the basis of their types. For example, suggestion qut/eue. N s .

a change suggestion that recommends changing an integd®) {H2:1F7 ~1a' [s(@)=> <80}: These suggestions
value to a float would have a lower rank than a suggestion ~ 9ive rise to all the addresses of the cells that have values
that recommends changing an integer value to some other €SS than 80 (for exampléy, G7, D7, C7, etc.).

integer value. A naive way to get the expected target value(6) 8(H2,1F7, < 80): This change suggestion recommends
in a cell is to replace the formula within the cell with the replacing the reference to célr with some value less
target value. Even though such suggestions are generated than 80.

by the system, they are given very low rank. L .
y y y g y The case foB(H2,1G2,> 836) is similar to the case dis-

In addition to the heuristics discussed above, the systemcussed above.
also performs some additional checks to ensure that the gen- Once the change suggestions have been generated, the
erated suggestions are reasonable and correct. For examplsystem ranks them on the basis of the heuristics described in
performing any of the generated suggestions would not in- Section 3.2. The suggestions are then presented to the users
troduce a circular reference in the spreadsheet. when they ask for it. In the example shown in Figure 4, the

suggestions generated from step 5 above include the change [Name Joe Mary
that would remove the error from the sheet, that is replacing Marital Status S M
reference ta=7 in the formula inH2 with reference tas7. Allowances 1 >
Consider a scenario in which the user does not notice this Gross pay 6000 8000
. >] . - Gross pay YTD 54000 72000
suggestion right away and instead decides that the first sug- | pre-tax child care 0 400
gestion (changing7 to E7) is incorrect and rejects it. The Life insurance policy amount 10000 | 50000
system would convert this additional information to a new Health insurance premium 390 480
constraint that would filter out all change suggestions that | Dental insurance premium 18 39
Id recommend changirgy to E7 for the cellH2. The Life insurance premium 5 25
wou g . : Employee insurance cost 413 544
system would also use propagated constraints (for exam- Employer insurance contribution 300 520
ple, the one shown in item 4 above) to generate new change | Netinsurance cost 113 24
suggestions (so that they can take the place of the sugges- | Adjusted gross pay 5887 7576
tions that have been rejected by the user). The complete set | Federal income tax withheld 55180 607.80
. . . Social security tax 372 496
of suggestions are then ranked once again according to the | edicare tax 87 116
heuristics and then presented to the user. Total employee taxes 1010.80| 1219.80
Net pay 4876.20| 6356.20

5 Evaluation of the System
Table 1. Sample test data for Payroll sheet

ot . ; this to the system by bringing up the debugging interface as
fault-localization techniques [14] in the WYSIWYT system described in Section 2. The system generates the change

[13], it was observed that subjects make many wrong de'suggestions, and the cell with the highest ranked change

cisions Oracle mlstak_e)swhlle perfqrmmg their tasks [10]. suggestion is shaded orange as shown in Figure 8. Notice
Oracle mistakes are incorrect decisions made by users dur;

. . . . that for this cell only one suggestion—the correct one—is
ing testing. In this section, we show how our system can

X generated.
prevent many of these mistakes.

During empirical studies to evaluate the effectiveness of

Two spreadsheets, seeded with errors, were used in the & Life Health Dental Adiust. Empl. Empl. Net
H s H H T |insur. insur. insur. gross insur. jinsur. insur. Empl.
studies. The first one, ;hown in Figure 2, computes the £ |ovem forem, [orem. [pay |cost |contrin |cost |taxes
grades for the students in a course, and the second sheet, B 5 30 18“ M3 300 113 6013
H H H 116 25 480 39 4
shown in F|gure_9, computes the payrqll f|gu_res for an em- T -
ployee. The subjects start with a sheet in which all the input In Farmula; =D2-F2-Li2
cells have been set to zero. As part of the task description, change L2 to W2

the subjects are also given two test cases for each spread-
sheet, and an informal specification of the spreadsheet that
explains how the different output values are to be computed.

Two sample test cases for the Payroll sheet are shown in Ta- Figure 8. Change suggestion for cell T2
ble 1. The test cases specify sample input values and ex- . i i
pected output values. The subjects then have to come up The original (incorrect) formula im2 was D2-F2-U2.

with additional test cases, inspect the output and decide ilehe systgrr:"n recfommends tha':]the refefrehncerObe rﬁ'
it is correct or nof If the output is incorrect, the users can Placed with a reference w2. The part of the spreadsheet

indicate that to the system by placinglan the cell. Simi- specification provided to the user that explains how “Ad-

larly, correct output values can be indicated by putting a !"usted Gross ng“ Is to be compqted Is shown below. :
in the cell. The WYSIWYT fault localization mechanism 'e-tax deductions (such as child care and employee in-

then uses the user feedback to shade the cells depending off'fance expense above the employer's insurance contri-
their fault likelihood. bution) are subtracted from Gross Pay to obtain Adjusted

We now take a look at how the user could go about de- Gross Pa%/'” h . d by th .
bugging the Payroll sheet using our system. After entering We see that the suggestion generated by the system Is cor-

the input values from the test cases, the user might noticerect since the formula should reference the net insurance

that the value in the celf2 is incorrect. More precisely, .COSt to the employee (computed W',Z) and 'not'the total
jidnsurance cost before the employer’s contribution has been

deducted (computed ia2). If the user applies the sugges-

tion, the formula inT2 is changed td2-F2-W2, and the

4The Forms/3 system, in which the WYSIWYT approach has beenim- computed value in the cell will be 5887 (the expected value

plemented, has an automatic test-case-generation mechanism called “Helgiccording to the test case).

me test” (HMT) described in [7]. The studies we are discussing in this Further comparison of the spreadsheet output with the

section did not involve the use of the HMT system—the users had to come P P P

up with the test cases by themselves based on their understanding of thd€St case values reveals that t.he telhas the value 538.9

spreadsheet specifications. whereas the expected value is 551.8. When the user pro-

More

the value currently in the cell is 5587. The user can specify

B3 Microsoft Excel - Examples2.xls g@]@
IE_] File Edit Yiew Insert Format Tools Data Window Help Adobe PDF Type a question for help = @ X
T2 - A =02-F2-U2
aAlBlel o [E[F e [H] T [JK[LIM[N[o]r[alr[s PR Julv |wlx][y¥ [z
e .
g Y¥TD PreTax Fed YTD |Gross § Life Health Dental Adjust. Empl. Empl. [Met
& Gross gross child Life with. Adjust. Single Married Fed gross over | Social = insur insur insur gross insur insurinsur. Empl
| 1 [Mame Allow. | = pay pay care insur. allow wage with, with with. pay B security E prerm. prem. prem. pa cost contrib. cost taxes Net pay
| 2 |Jos 13 6000 54000 0 10000 2500 5337 8089 5752 5089 60000 0 5324 a7 5 380 18] _5sa7l 413 3000 113 B01.3) 49657
| 3 |Mary G 8000 72000 400 50000 12500 46806 5558 7752 7752 BOOOO 0 7182 116 25 480 35 7086 544 5200 24 B354 B157 6
4 |Tom 25 9000 50000, 1000 B0O00 500 7088 B84 8752 6BB4 59000 0 8091 1305 4/ 390 18 7583 412 300 112 8226 B7654 -
"oy v\, Gradebook % Payroll { temp / < >
Feeady UM

Figure 9. Payroll spreadsheet

vides this information to the system, the suggestions showncells with errors correctly but then went on to make incor-
in Figure 10 are generated for the c#ll rect changes to the formulas in the cells. Our system would
have prevented all these errors.

Mew

=
Fed. YTD |Gross z Gradebook| Payroll
Life with. Adjust. Single Married Fed gross over Social = Number of subjects 51 51
insur. |allow wage with. with. with. pay 87K security =
10000 250 5637 5752 5380 60000, 0 5394 &7 Total errors 154 381
50000 1250 5808 7192 116 Errors on values 144 168
8000 500 7088 8.091 1305 Errors on formulas | 10 213
In formula: =IF{I2<119,0,{12-248)*0.1}) Formula_edit errors
ERERER 23 0 D Correct to incorrect | 81 68
SR U0 IR Incorrect to incorrect| 373 293

Mare

Table 2. User mistakes during debugging

Figure 10. Change suggestion for cell J2 To summarize, in cases in which the subject incorrectly

identified a correct cell as incorrect, our system would not
be very helpful. It would simply generate change sugges-
tions that compute the target value specified by the subject.
Unfortunately, this problem cannot be avoided or overcome
&s long as the user has the last word on whether a cell is cor-
§kct or incorrect. However, for the other cases in which the
user correctly identifies an error cell, our system generates
the suggestions that correct the error, and performs them
; N . .)) . accurately, which avoids a whole class of errors. Moreover,
W|thhold|ng_ tax is$0; otherwise the withholding amount is for the cases discussed above, the correct change sugges-
10% of (adjusted wages$119). tions are ranked highest.
Again, the highest ranked suggestion generated by our sys-
tem is correct since the amount to be deducted from the ad-
justed wages of a person who is single is $119 and not $2486 Related Work
as is in the formula. The user can apply this suggestion, and The main focus of research into reducing the incidence
the cell is evaluated to the expected correct value 551.8. of errors in spreadsheets has been on testing [13] and con-
The numbers for the incorrect testing decisions made bysistency checking [6, 4, 1]. We have also been working on
the users of the WYSIWYT system are shown in Table 2. an approach that avoids formula errors in spreadsheets by
We see that the subjects made 154 oracle mistakes in th@enerating correct spreadsheets from a predefined specifi-
Gradebook task and 381 oracle mistakes in the Payroll taskcation [5].
We also see from the data that there were 81 instances dur- The “data validation” tool in Microsoft Excel allows the
ing the Gradebook task and 68 instance during the Payrolluser to specify the acceptable values for a cell. The system
task when the subjects edited formulas that were actuallywarns the user whenever there is a violation and is useful
correct and introduced errors in the spreadsheets. Our sysin keeping track of potential errors in the spreadsheet. It
tem would not have protected the subjects from these mis-does not really help with debugging per se since Excel does
takes. On the other hand, we also see from the data thahot do any reasoning with the user-specified allowed val-
there were 373 instances in the Gradebook task and 293 inues. The “trace error” feature in Excel allows the user to
stances in the Payroll task when the subjects pinpointed thencrementally step through the spreadsheet dataflow graph

No suggestions are generated far in the first stage
sincelL2 has the formular(C2="S",J2,K2), and the value
in C2 is“s”. The formula inj2 is IF(12<119,0,(12-248)*0.1).
The highest ranked suggestion recommends that the valu
248 be changed to 119. The relevant part of the spreadshe
specification that explains how the federal income tax with-
holding is computed is shown below.
If single and the adjusted wage is not greater ti$4i9, the

and inspect predecessors and dependents of cells. This teclReferences

nigue tends to be tedious and error prone in large and com-
plex spreadsheets.

In the “interval testing” technique described in [3], users
can enter allowed ranges of values for cells. The system
uses this information to calculate allowed intervals on cells [2]
that are dependent on those for which the ranges have been
specified by the user. In case of conflict, heuristics are used
to determine the “most influential faulty cell”. The propaga- 3
tion of intervals over some functions (for example, if state- 3l
ments) is not trivial and has not been addressed in [3]. In the [4]
approach discussed in [4], the system generates a set of as-
sertions based on assertions entered by the user. The system
warns the user when there is a conflict between the system-
generated assertions and the user-specified assertions for d5]
cell. The feedback about the conflict in assertions only indi-
cates that there could be an error, either in the user-specified
assertions themselves, or in the cell formula. In our system,
the information provided by the user about the expected [6]
value in a cell can be considered as a user-specified asser-
tion. The system then back-propagates this information as a -,
series of constraints on the values of the cells that contribute
to the value in the cell with the error. These constraints are
then used to generate change suggestions.

(1]

(8]

7 Conclusions and Future Work
[9]

We have shown that user input of expected values can be
exploited to automatically suggest and perform corrective
actions to effectively remove errors from spreadsheets. We[10]
have also demonstrated that this approach can help to avoid
many errors that users make during the debugging process.

The current system has several limitations that we will
address in future work. For example, complex constraints [11]
cannot be communicated very well to the user. Moreover,
the current system does not produce good suggestions for
cases in which a cell has an incorrect value due to faults in
two or more cells it has references to. In order to keep the
number of generated suggestions small, we always propa-
gate constraints only along one argument at a time. One
approach to make the system more flexible is to work with 13]
more than one initial constraint and then consider different
cell orderings for constraint propagation.

Another improvement would be to integrate the system
with the UCheck system [1] we have developed based on thel14]
work described in [6]. This integration would allow the de-
bugger to generate unit-correct suggestions, thereby adding
an additional layer of consistency checking to the debug- 115
ging process, and further reducing the number of generated
suggestions.

Finally, we will look into ways to integrate automatic
change suggestions with the WYSIWYT system since test-
ing and debugging are complimentary actions.

(12]

R. Abraham and M. Erwig. Header and Unit Inference for
Spreadsheets Through Spatial AnalysedEIEE Int. Symp.

on Visual Languages and Human-Centric Computjyepes
165-172, 2004.

Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
In 18th IEEE Int. Conf. on Automated Software Engineering
pages 174-183, 2003.

Y. Ayalew and R. Mittermeir. Spreadsheet Debugging. In
European Spreadsheet Risks Interest Gr@g93.

M. M. Burnett, C. Cook, J. Summet, G. Rothermel, and
C. Wallace. End-User Software Engineering with Asser-
tions. In25th IEEE Int. Conf. on Software Engineerjng
pages 93-103, 2003.

M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmans-
berger. Automatic Generation and Maintenance of Correct
Spreadsheets. Ri’th IEEE Int. Conf. on Software Engineer-
ing, pages 136-145, 2005.

M. Erwig and M. M. Burnett. Adding Apples and Oranges.
In 4th Int. Symp. on Practical Aspects of Declarative Lan-
guagesLNCS 2257, pages 173-191, 2002.

M. Fisher Il, M. Cao, G. Rothermel, C. Cook, and M. M.
Burnett. Automated Test Case Generation for Spreadsheets.
In 24th IEEE Int. Conf. on Software Engineerjngages
141-151, 2002.

A.J.Koand B. A. Myers. Designing the Whyline: A Debug-
ging Interface for Asking Questions about Program Behav-
ior. In Conference on Human Factors in Computing Systems
pages 151-158, 2004.

R. Mittermeir and M. Clermont. Finding High-Level Struc-
tures in Spreadsheet Programs.9th Working Conference
on Reverse Engineeringages 221-232, 2002.

A. Phalgune, C. Kissinger, M. Burnett, C. Cook, L. Beck-
with, and J. Ruthruff. Garbage In, Garbage Out? An Empir-
ical Look at Oracle Mistakes by End-User Programmers. In
IEEE Int. Symp. on Visual Languages and Human-Centric
Computing 2005. To appear.

S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick, M. Main,
M. Durham, and M. Burnett. Strategies and Behaviors
of End-User Programmers with Interactive Fault Localiza-
tion. InIEEE Int. Symp. on Human-Centric Computing Lan-
guages and Environmentsages 203-210, 2003.

K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of Spreadsheet ErrorSymp. of the European Spread-
sheet Risks Interest Group (EuSpRIZ)01.

G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing SpreadsheaGM
Transactions on Software Engineering and Methodaology
pages 110-147, 2001.

4] J. Ruthruff, E. Creswick, M. M. Burnett, C. Cook, S. Prab-

hakararao, M. Fisher I, and M. Main. End-User Software
Visualizations for Fault Localization. lACM Symp. on Soft-
ware Visualizationpages 123-132, 2003.

] B. T. V. Zanden, D. Baker, and J. Jin. An Explanation-

Based, Visual Debugger for One-Way Constraints 1Tith
Annual ACM Symp. on User Interface Software and Tech-
nology pages 207-216, 2004.

