
 

Abstract

 

After more than a decade of research, visual lan-
guages have still not become everyday programming tools.
On a short term, an integration of visual languages with
well-established (textual) programming languages may be
more likely to meet the actual requirements of pratical
software development than the highly ambitious goal of
creating purely visual languages. In such an integration
each paradigm can support the other where it is superior.
Particularly attractive is the use of visual expressions for
the description of domain-specific data structures in com-
bination with textual notations for abstract control struc-
tures. In addition to a basic framework for heterogeneous
languages, we outline the design of a development system
that allows rapid prototyping of implementations of hetero-
geneous languages. Examples will be presented from the
domains of logical, functional, and procedural languages.

 

1.

 

 

 

Obstacles to a VL breakthrough

 

In the last decade a lot of visual programming lan-
guages (VPLs) have been designed and implemented, but
in practice, visual programming still is the exception to the
rule. Why is there so little acceptance for VPLs in general?
There is at least one reason independent from the advan-
tages and disadvantages of visual programming: Software
design has a strong tendency to keep to well-established
programming paradigms, even if improved languages are
available. Partly this is due to investments made in the
older paradigm, and partly the reason is to be found in per-
sonal reservations of software developers who are afraid of
the efforts required to master a new paradigm. This is why
languages like Fortran and Cobol are still used in so many
places, and it could well be a reason for visual program-
ming not to become a standard in the near future.

Some reasons resulting from design problems of vis-
ual programming languages are evident, as well. Experi-
ence with graphical user interfaces and VPLs has shown
that visual notations are most efficient when taken directly
from an application domain, especially if the user is
already familiar with them instead of having to learn an
entirely new visual notation devised from scratch by the
VPL designer. Yet, in contrast to 

 

special purpose

 

 VLs and

 

graphical user interfaces, only very few visual 

 

program-
ming

 

 languages are employing domain specific visual
notations.
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 This is not so surprising, for most VPLs are
designed to be general purpose languages and thus cannot
commit to any particular application domain. Neverthe-
less, with a design philosophy like this the integration of
visual expression is neglected exactly where it might be
most useful. On the other hand, VPL designers are trying
to find visualizations for all kinds of abstract programming
concepts like data structures, control structures, abstrac-
tion, functions, variables, etc. While in some cases there
are easily comprehensible and usable visual counterparts
(e.g., data-flow graphs [3]), it is very hard, if not impossi-
ble, to find adequate visual equivalents for several other
concepts. Interestingly enough, exactly those concepts for
which convincing visualizations are difficult to find may
conveniently be described by texts. This is, e.g., the situa-
tion with complex control structures and recursion. There
seems to be evidence that more concrete concepts (e.g.,
data structures or simple control structures like iteration
over a number of elements) can in many cases best be
described visually, while highly complex and abstract con-
cepts (like recursion and functional abstraction) can often
better be described and explained textually [4]. In general,
no programming language can do entirely without using
texts.
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Observing this, it seems a reasonable goal to integrate
visual and textual languages such that both modes can be
used in parallel, each where it is superior. We are propos-
ing a schema for heterogeneous visual programming lan-
guages (HVPLs) that combines the convenience of visual
notations with the abstraction power of textual languages.
In our framework domain-specific 

 

visual

 

 notations can
easily be integrated with conventional 

 

textual

 

 program-
ming languages, and thus standard programming lan-
guages can readily be specialized as application-specific
HVPLs. The design of a HVPL does neither enforce nor
restrict the usage of textual or visual expressions in an
actual program. Both types can be arbitrarily mixed and

 

1. Among these exceptions are, e.g., LabView [1] and MPL [2], a lan-
guage that could be characterized as being heterogeneous in our sense.

2. In this context it is interesting to observe that almost every visual
language is using textual labels to indicate non-local connections
between different parts of visual programs.
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can even operate on the same structures. The programmer
is entirely free to choose whatever fits best and to find his
personal balance between both modes. The textual basis
for a HVPL is usually some standard programming lan-
guage (C, Lisp, Prolog, ML, etc.). In combination with the
programmer’s freedom to control the amount of visual
expression actually employed, this guarantees a smooth
migration from textual to heterogeneous languages with an
extremely low learning threshold.

The remainder of the paper is structured as follows: In
Section 2 the general notion of an HVPL is introduced,
and Section 3 outlines the structure of a prototyping sys-
tem for HVPLs. In Section 4 we will give a semi-formal
framework for the integration of visual sub-languages in
textual languages. In particular, we will demonstrate the
compilation of picture expressions and their integration
with textual source code. Some reasonably sized examples
will be given in Section 5, and finally, Section 6 presents
conclusions and shows directions for future work.

 

2. Heterogeneous programs

 

How does an HVPL integrate visual and textual ex–
pression? The basic idea is that a programmer often wants
to use his favorite standard programming language, while
at the same time he would like to be able to use graphical
notations from the problem domain in his code. These
graphical notations should not only serve as illustrations,
but should rather be real program code, in the sense of an
exact description of some part of an algorithm or a data
structure. Therefore, the concept of HVPLs allows to inte-
grate a visual sub-language 

 

V

 

 into a textual language 

 

L

 

such that 

 

V

 

-expressions can be used as substitutes for cer-
tain 

 

L

 

-constructs. The HVPL environment translates the 

 

V

 

-
expressions used in a program into their textual equiva-
lents and reintegrates these translations with the textual
parts of the original source program according to an
extended grammar for 

 

L

 

. As the target language for picture
translation is as well 

 

L

 

, the compilation output for a heter-
ogeneous program written in 

 

L

 

+

 

V

 

 is an 

 

L

 

-program. This,
of course, can be processed by any standard interpreter or
compiler for 

 

L

 

. A side advantage of this scheme is that we
can even modify and revise existing programs written in 

 

L

 

using visual expressions from 

 

V

 

. The resulting heterogene-
ous programs can then be reprocessed and can again be
translated by the original compiler for 

 

L

 

. Thus, we achieve
a way of maintaining and extending programs in a hetero-
geneous visual language which have originally been writ-
ten in a textual language. Hence, there is no need to
discontinue the maintenance of existing software when
migrating to a visual environment.

To give an impression of programming in HVPLs, let
us give a first (toy) example. Assume we need to work
with finite state diagrams. As finite automata can be deter-
ministic or non-deterministic, a suitable choice for such a

 

task is a logic language like Prolog. To obtain an HVPL for
this domain we extend Prolog by a visual sub-language of
state diagrams to be used as replacements of complex Pro-
log structures, see Figure 1. In such a language a program

to test whether a string 

 

W

 

 is accepted by a given automaton
can be written without having to textually code the autom-
aton or any access to its structure. The HVPL environment
compiles each picture into a corresponding Prolog struc-
ture, which then replaces the picture in the resulting code.
The third rule of 

 

accept

 

, e.g., is translated to 

 

accept(D, X, [W|Ws]) :-
 member(trans(X, Y, W), D), accept(D, Y, Ws).

 

 In this case we are only extracting data structures
from visual expressions, and each picture is locally
replaced by a textual data structure. More complex exam-
ples are possible in which picture translations are embed-
ded non-locally or where control information is extracted
in addition to data structures. This will be discussed in
Section 4. 

The only customizations needed to implement this
HVPL on the basis of Prolog are a grammar-like rule file
that specifies the translation of state diagrams plus a trivial
extension of Prolog’s attribute grammar to describe the
embedding of picture translations into textual Prolog code.
Full examples together with these specifications will be
given in Section 5.

 

3. Design of the programming environment

 

The prototyping environment provides a framework
for editing and compiling heterogeneous programs and can

 

Fig. 1: A Heterogeneous prolog program 
handling state diagrams

 

automaton( ).

accept(W) :- automaton(D), 

member( ,D),

accept(D,X,W).

accept(D,X,[]) :- member( ,D).

accept(D,X,[W|Ws])

 

 

 

:- member( ,D),

accept(D,Y,Ws).

accept(D,X,[W|Ws])

 

 

 

:- member( ,D),

accept(D,X,Ws).
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be customized for different heterogeneous languages with
minimal effort. In our approach processing an HVPL pro-
ceeds in three phases. First, the 

 

V

 

+

 

L

 

 program is split into a
purely textual part replacing all the pictures by unique
identifiers. Additionally, a database of pictures indexed by
these identifiers is created. The second phase is the transla-
tion of each picture into its textual equivalent. In the last
phase the converted textual source code is parsed accord-
ing to an attribute grammar for 

 

L

 

+pictures and is then
recombined with the pictures’ textual equivalents by
means of syntax directed translation. The resulting 

 

L

 

 pro-
gram is processed by a compiler for 

 

L

 

 (Figure 2). 

The translation of pictures consists of two different
steps. First, a picture graph (PG) representing its structural
and geometrical properties is extracted from each picture.
In a second step, a production system works on these PGs
to generate the textual translations. All these steps are
treated in depth in the next section. There are four tailora-
ble modules in the system (shown shaded in Figure 2). The
first part to be customized is the PG extractor that gener-
ates the PG database. As we understand pictures as sets of
spatially embedded objects (e.g., 

 

circles

 

, 

 

rectangles

 

,

 

points

 

, 

 

lines

 

) with certain spatial relations (like 

 

inside

 

,

 

intersects

 

), the implementor must specify the object set
and the relation set and must provide methods to test the
spatial relations. These methods are defined as Lisp/CLOS
functions. The second part to be customized is the PG
parser which generates textual translations from PGs. The

 

Fig. 2: Design and customizability of the 
prototype environment
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implementor must define a production rule set as the spec-
ification of picture translation.

Both, the PG extractor and the PG parser, must indi-
vidually be configured for a new visual sub-language. If
the host language or the mode of embedding changes, the
textual parser must be adapted by specifying an attribute
grammar for the new host language. For local embeddings
a standard grammar can be used almost without modifica-
tions. (An embedding is local if for every picture only a
single block of text is generated which is replaced into the
very position that the picture occupied before).

Most of the work of tailoring the system for a particu-
lar HVPL is spent on the HVPL editor. The base system
provides a MacDraw-like graphics editor and a heterogen-
eous editor that can handle pictures and texts in the same
flow. For most visual sub-languages and diagram types it
will be reasonable to extend or to replace the graphics edi-
tor, so that the system can support special interaction
modes required for convenient editing of 

 

V

 

-expressions. If,
e.g., we are working with circuit diagrams, we will need
only little functionality of a general purpose graphics edi-
tor, but at least some functionality of a circuit CAD tool
will be required instead. The graphics editor is the only
part of the system that has to be customized by real pro-
gramming. Garnet [5] is used as a powerful graphics tool-
kit so that extensions of the editor are easily implemented.
The graphics editor, of course, is totally independent from
changes in the textual host language.

 

4. A framework for  HVPLs

 

As we have pointed out, pictures are separated from
the textual part of the program in a first step, then trans-
lated into a textual equivalent, and finally reassembled
with the textual program. While the separation of textual
and visual structure is a task of the standard environment
and does not need to be modified for different HVPLs, the
parsers used in the second and the third phase must be cus-
tomized by a visual and a textual grammar, respectively. 

 

4.1 Translation of pictures into picture graphs

 

As a first step, each picture is translated into its corre-
sponding picture graph (PG). The PG that belongs to a vis-
ual expression depends on the picture vocabulary defined
for this particular visual sub-language. A picture vocabu-
lary consists of a set of atomic object types (e.g., 

 

OT

 

 =
{

 

circle

 

, 

 

rectangle

 

, 

 

point

 

, 

 

label

 

}) and a set of spatial rela-
tion types (e.g., 

 

RT

 

 = {

 

touches

 

, 

 

intersects

 

, 

 

inside

 

}). A PG
is a bipartite graph containing two types of nodes: Object
nodes and relation nodes. Let 

 

P

 

 be a picture consisting of a
set of objects 

 

O

 

. The corresponding picture graph PG(

 

P

 

)
contains exactly one object node for each element in 

 

O

 

.
The set of relation nodes 

 

R

 

 and the set of edges 

 

E

 

 are built
in the following way: For each 

 

n

 

-tuple (

 

o

 

1

 

, ..., 

 

o

 

n

 

) of



 

objects in 

 

O

 

 and each 

 

n

 

-ary relation 

 

r

 

 in 

 

RT

 

 test 

 

r

 

(

 

o

 

1

 

, ...,

 

o

 

n

 

). If it holds, insert a new relation node 

 

v 

 

into 

 

R

 

 and
insert (undirected) edges between each

 

 o

 

i

 

 and 

 

v

 

 into 

 

E

 

labeling each edge by the corresponding argument position

 

i

 

. Then PG(

 

P

 

) = (

 

O

 

∪

 

R

 

, 

 

E

 

). Edges that are incident to
nodes representing symmetric relations are not labeled.
This guarantees that semantically equivalent pictures have
isomorphic PGs. All the nodes in a PG are typed by either
a relation type or an object type. Furthermore, each node
has a list of named attributes which is used during picture
translation and is initially set to contain the geometry (

 

geo

 

)
for graphical objects and, in addition, the displayed text
(

 

val

 

) for objects of type 

 

label

 

. Figure 3 shows a picture and
its corresponding PG for the picture vocabulary 

 

OT

 

 = {

 

cir-
cle

 

, 

 

arrow

 

, 

 

label

 

} and 

 

RT

 

 = {

 

inside

 

, 

 

attached

 

, 

 

connects

 

}.

 

1

 

4.2 Translation of PGs into textual structures

 

The translation of PGs into text is performed by a pro-
duction system that computes the attributes of PG objects.
A translation may consist of several distinct text frag-
ments, each stored in a separate attribute. These attributes
finally serve as an interface to the textual parser, which
recombines the original textual structure with the trans-
lated picture code. Each rule has the form

 

G

 

 

 

⇒

 

 

 

g

 

1

 

,..., 

 

g

 

m

 

 | [

 

x

 

1

 

.

 

attr

 

1

 

 :=

 

 f

 

1

 

, ..., 

 

x

 

n

 

.

 

attr

 

n 

 

:=

 

 f

 

n

 

]

where 

 

G

 

 is a PG,

 

 attr

 

i

 

 is an attribute name and 

 

f

 

i

 

 is a
formula that calculates the value for this attribute. The
symbol “|” separates the attribute structure from the
optional guard conditions 

 

g

 

i

 

 that are evaluated before a
production is applied. A production is applicable if its left-
hand side 

 

G

 

 matches (i.e., is isomorphic to) a subgraph of
the PG being transformed and if all the guard conditions
are true in the context of the bindings induced by the cur-
rent match. 

 

G

 

 may either be a PG or (as a syntactic short-
hand) its corresponding picture. 

 

G

 

 can be extended by
labeling individual picture objects (nodes) with variable
names to be used in the formulas on the right-hand side.

 

1. We use Courier font to distinguish labels from object identifiers.
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Fig. 3: A picture and its PG
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The term 

 

var

 

.

 

attr

 

, which can be used in guards and assign-
ments, references the attribute named 

 

attr

 

 of the object
labeled by 

 

var

 

. An example of a rule to translate inner
nodes of binary tree pictures is:

 

2

 

⇒

 

 

 

left-of

 

(

 

y

 

,

 

 

 

z

 

) | [

 

x

 

.

 

code

 

 := 

 

branch(

 

y

 

.

 

code

 

,

 

 

 

z

 

.

 

code

 

)

 

]

and one of the rules used for translating the PG of the
introductory example is

 

 

⇒

 

 [

 

W

 

 .

 

code

 

 := 

 

trans(

 

X

 

 .

 

val

 

,

 

 

 

Y

 

 .

 

val

 

,

 

 

 

W

 

 .

 

val

 

)

 

]

Note that the translated code is actually collected in
the arc labels and not in the arcs themselves to allow for
multiply labeled arcs in state diagrams.

On every evaluation cycle the applicable rule with the
highest priority is executed. The priority is implicitly
given by ordering productions in the rule file. If a pattern
graph matches more than one subgraph, the actual match is
selected arbitrarily. Of course, the attribute list and the
guard conditions on the right-hand side can only be evalu-
ated if all the attributes used therein have already been
bound, either by an earlier rule application or, for 

 

geo

 

 and

 

val

 

, during PG extraction. If some guard formula cannot be
evaluated because of unbound values, it yields false, and
another match of the same rule is tried. If no match satis-
fies the guard, a rule with lower priority is selected instead.
If an attribute formula 

 

f

 

i

 

 cannot be evaluated for the same
reason, it is delayed, i.e., the rule fires, but it cannot set the
attribute 

 

attr

 

i

 

 immediately. Thus, the assignment 

 

x

 

i

 

.

 

attr

 

i 

 

:=

 

f

 

i

 

 is frozen and woken up again as soon as some other rule
application has set the missing value(s). This roughly cor-
responds to establishing a uni-directional constraint. 

Every attribute will be assigned only once,

 

3

 

 i.e., a rule
that would set some attribute which is already bound will
no more be applicable. Evaluation stops when no more
rules can be applied or when a rule containing the optional

 

STOP

 

 command is executed. After the evaluation has fin-
ished, the attributes of all nodes in the PG are collected
and grouped by their names according to the order in
which they were set. The resulting attribute collections
become the attributes of the picture and serve as the inter-
face structure to the textual parser.

 

4.3 Merging pictur e translations into program 
text

 

The first step in the compilation of a heterogeneous
program is to replace the pictures in the original program
by unique textual tokens. The resulting text is analyzed by

 

2. We are using the Times font for expressions of the rule language
and Courier for expressions that are handled as strings, i.e.,

 

branch(…,…)

 

 will actually appear in the attribute code, while 

 

y.code

 

and

 

 z.code 

 

will be replaced by the corresponding attribute values. 
3. An attribute with a frozen assignment is regarded as set.

 

y z

x

 

X

 

Y

 

W



 

an ordinary attribute grammar parser. Each time the non-
terminal ‹

 

picture

 

› is encountered, the parser reads a picture
token from the input and looks up the picture translation
for the appropriate PG. The attributes computed during its
translation become the attributes of this occurrence of
‹

 

picture

 

›. Thus, by using standard syntax-oriented transla-
tion techniques it is simple to assemble the final transla-
tion. Let us have a short look at two examples. The
attribute grammar for our introductory example is an
extension of Prolog’s standard grammar that allows to
replace term structures by pictures. The following rules are
used, given that the attribute 

 

code

 

 contains the texts
derived from a picture:

 

1

 

‹

 

term

 

› 

 

→

 

 ‹

 

atom

 

›
‹

 

term

 

›.

 

code

 

 := ‹

 

atom

 

›.

 

code

 

‹

 

term

 

› 

 

→

 

 ‹

 

picture

 

›

 

‹term

 

›.

 

code

 

 := 

 

concat

 

(‹

 

picture

 

›.

 

code

 

)
‹

 

term

 

› 

 

→

 

 ‹

 

atom

 

› 

 

(

 

 ‹

 

termlist

 

› 

 

)

 

‹

 

term

 

›.

 

code

 

 := ‹

 

atom

 

›.

 

code

 

 ⊕

 

 

 

(

 

 ⊕

 

 ‹

 

termlist

 

›.

 

code

 

 ⊕

 

 

 

)

 

The translated code obtained from a picture can as
well be distributed among several places. If, e.g., some
additional code has to be added at the end of the rule in
which the picture occurs, the picture translation may store
this code in an additional attribute 

 

trailer

 

, say. This
attribute would be used in

‹

 

term

 

› 

 

→

 

 ‹

 

picture

 

›
‹

 

term

 

›.

 

code

 

 := 

 

concat

 

(‹

 

picture

 

›.

 

code

 

)
‹

 

term

 

›.

 

trailer

 

 := 

 

concat

 

(‹

 

picture

 

›.

 

trailer

 

)

and would be passed from production to production
until finally used in:

‹

 

body

 

› 

 

→

 

 ‹

 

goallist

 

›

 

.

 

‹

 

body

 

›.

 

code

 

 := ‹

 

goallist

 

›.

 

code

 

 ⊕

 

 ‹

 

goallist

 

›.

 

trailer

 

 

 

⊕

 

 

 

.

 

In future, different types of non-terminals for integrat-
ing multiple picture sub-languages will be usable. Each of
these non-terminals will be specified by an individual pic-
ture vocabulary and a transformation rule set applicable
only to this particular picture type.

An important detail is that there is no restriction
imposed on pictures to only represent data structures. Any
code, including control information, can be derived from a
picture. Examples and applications of this will be shown in
Section 5.3.

 

5. Examples

 

We will now present some examples of reasonable
size. For the sake of brevity we will not use visual nota-

 

1. Note that every picture attribute like ‹

 

picture

 

›.

 

code

 

 is a collection
of values. Therefore a function is applied to transform the collection into
a linear text structure. Here 

 

concat

 

 is used to transform a collection of
strings into a single string. Another function is 

 

the

 

 to extract the single
element from a collection. 

 

tions adapted from real application domains here because
such structures are usually very rich and thus are complex
to translate and describe. Instead we focus on well-known
examples of data structure manipulation. 

Our first example is the maintenance of AVL trees.
Below, the code for insertion into an AVL tree is given in
two different language paradigms: Logic programming
(Prolog) and functional programming (ML). Both, logic
languages and functional languages, make intense use of
matching (unification) to analyze and to construct data
structures using terms of the respective languages as pat-
terns to be matched. This principle is exploited in embed-
ding the visual sub-language. Every visualization of a tree
structure is translated into a textual term, and the picture is
locally replaced by this term. Thus, a picture can be put
anywhere a term is used. 

The visual sub-language of trees defined here can be
used in both host languages without any change. It has an
amazingly simple definition. Its basic object types are

 

roundtangles

 

, 

 

triangles

 

, 

 

lines

 

, and 

 

labels

 

. The only rules
required to define and to translate it are:

 

 

⇒

 

 

 

left-of

 

(

 

l

 

, 

 

r

 

), 

 

left-of

 

(

 

i

 

, 

 

b

 

) | [

 

x.out

 

 := 

 

     branch(

 

i

 

.

 

val

 

, 

 

b

 

.

 

val

 

, 

 

l

 

.

 

out

 

, 

 

r

 

.

 

out

 

)

 

]

 

 

⇒

 

 [

 

x.out 

 

:

 

=

 

 

 

v

 

.

 

val

 

]

 

 

⇒

 

  

 

left-of

 

(

 

l

 

, 

 

r

 

), 

 

left-of

 

(

 

i

 

, 

 

b

 

) | [

 

x.code

 

 :=
 

 

branch(

 

i

 

.

 

val

 

, 

 

b

 

.

 

val

 

, 

 

l

 

.

 

out

 

, 

 

r

 

.

 

out

 

)

 

] 

 

STOP

 

The ordering of the rules insures that the root of a tree
picture is matched last. Not only can we use the same vis-
ual language for ML and Prolog, but also the extension of
both languages’ grammars is almost identical. In Prolog it
is:

‹

 

compound-term

 

› 

 

→

 

 ‹

 

picture

 

› 
‹

 

compound-term

 

›.

 

code

 

 := 

 

the

 

(‹

 

picture

 

›.

 

code

 

)

For ML, we need two rules (for patterns and ex-
pressions) obtained by simply exchanging ‹

 

compound-
term

 

› by ‹

 

pat

 

› and ‹

 

exp

 

›, respectively. To keep the ex-
amples short, we present only the code for insertion into
the left sub-tree here. The full program, of course, contains
analogous code for the insertion into the right sub-tree.
The logic of the program is simple. If a new element is to
be inserted into a tree 

 

T

 

, either a new tree is created (if 

 

T

 

 is
empty) or it is recursively inserted into the left (right) sub-
tree of 

 

T

 

 if it is smaller (greater) than the key in 

 

T

 

’s root.
Once it has been inserted, 

 

T

 

 must possibly be rebalanced
by rotation or by double-rotation if the depth of the modi-
fied subtree has increased. The latter information is passed
around as a boolean parameter. The most difficult parts to
understand in an AVL program are the rotation and the

 

i

 

x

 

b

 

l r

 

v

 

x

 

i

 

x

 

b

 

l r



 

double-rotation of a tree out of balance. In textbooks these
parts of the program are usually explained by graphical ex-
amples, see, e.g., [6]. Using an HVPL we can now directly
program with these illustrations, and thus the function of a
rotation becomes evident at once. 

 

5.1 Logic programming

 

The heterogeneous Prolog code for the AVL insertion
is given in Figure 4. According to the above translation
rules, the first rotation, e.g., is mapped into the following
standard Prolog code:

 

rebalanceL(true,
branch(K, -1, branch(A, -1, X, Y), R), 
branch(A, 0, X, branch(K, 0, Y, R)), false).

 

As can be observed in the visual program, the pro-
grammer is entirely free to choose visual or textual ex-
pressions to handle tree structures. Thus, simple code
fragments can be written very dense using textual terms
while difficult passages can be programmed with the aid of
visual structures. 

 

5.2 Functional languages

 

Since ML is a strongly-typed language we first need
the following type definition:

 

datatype T = branch of real * int * T * T
           | empty

 

This defines a term constructor 

 

empty

 

 of type 

 

T

 

 and a
constructor 

 

branch

 

 taking four arguments of the types as
defined above and returning a tree object. (Actually, it is
not difficult to imagine type definitions also given by pic-
tures.) Now, ML functions for inserting and rebalancing
look almost the same as the Prolog program from above.
We give a slightly different implementation which com-
bines rebalancing and insertion in a single function. Pic-
tures are used only in displaying complex patterns so that
the two rotations can easily be identified, see Figure 5.
(Note that expressions like 

 

T as 

 

‹

 

pat

 

› define 

 

T

 

 as a short-
hand for the complex pattern ‹

 

pat

 

›.)
The textual ML program corresponding to the hetero-

geneous one is simply obtained by substituting the tree
pictures by terms as it was already shown in the Prolog
example.

 

5.3 Imperative programming

 

In imperative languages programs containing a lot of
pointer manipulations are certainly the most difficult to
read. We show how pictures can be used instead of textual
pointer redirections to enhance understanding such pro-
grams. We consider a C-program for inserting elements

 

insert(X, empty, branch(X, 0, empty, empty), true).
insert(X, branch(K, B, L, R), Tree, Changed) :- 
       X<K, insert(X, L, L1, H), rebalanceL(H, branch(K, B, L1, R), Tree, Changed).

rebalanceL(false, Tree, Tree, false).

rebalanceL(true, , , false).

rebalanceL(true, , , true).

rebalanceL(true, , , false).

rebalanceL(true, ,

 

 

 

,false) :- f(C,C1), g(C,C2).

f(-1,0).   f(0,0).   f(1,-1).   g(-1,1).   g(0,0).   g(1,0).
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Fig. 4: Heterogeneous Prolog code for AVL tree insertion



 

into a doubly-linked list. Given the following list data
structure:

 

typedef struct dlist {
    int key;
    struct dlist *prev, *next;
} ELEM, *DLIST;

 

the heterogeneous C-program shown in Figure 6 in-
serts a new element right after the element pointed to by 

 

p

 

.

 

Fig. 6: Heterogeneous C program
 for list insertion

 

insert(p,i)
DLIST p;
int i;
{
    DLIST q;

    if (p->next != NULL) {

       }

    else … 
}

 

p

q

 

i

 

Thin arrows are interpreted as displaying the current situa-
tion in the pointer structure at the time 

 

insert

 

 is called
while bold arrows denote the intended pointer redirections.

The production system of Figure 7 defines the transla-
tion of pointer pictures into sequences of C assignments.
There are actually three rules for setting the 

 

redirect

 

attribute: This is to insure that those pointer assignments
are generated first that use cell addresses which are
changed by other redirections. Note that only “local”
pointer redirections can be properly handled by this rule
system. The difficulty is to generate consistent sequences
of assignments in general.

Finally, the integration into C is obtained by simply
adding the following rules to the C-grammar:

‹

 

compound-statement

 

› 

 

→

 

 ‹

 

picture

 

› 
‹

 

compound-statement

 

›.

 

code

 

 := 

 

concat

 

(‹

 

picture

 

›.

 

new

 

)

 

 ⊕

 

 
concat

 

(‹

 

picture

 

›.

 

upd

 

)

 

 ⊕

 

 concat

 

(‹

 

picture

 

›.

 

redirect

 

)

 

6. Conclusions and further work

 

We have shown how a smooth integration of visual
languages and textual languages can be achieved, and we

 

fun f(x) = if x=1 then ~1 else 0
fun g(x) = if x=~1 then 1 else 0

fun insert (x, empty) = branch (x, 0, empty, empty)
 |  insert (x, branch (K, b, L, R)) =
    if x < K then let
          val (Li, h) = insert (x, L)

          val T as  = branch (K, b, Li, R) in

       if h then
          case b of
              1 => (branch (K, 0, Li, R), false)
           |  0 => (branch (K,~1, Li, R), true)

           | ~1 => if bL = ~1 then ( , false)

                   else let

                      val  = T in

 

 

 

( , false)

                   end
       else … (* analogous case for x > K *)
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Fig. 5: Heterogeneous ML program for inserting into an AVL tree



 

have outlined the design of a prototyping environment for
working with heterogeneous languages. Looking back at
the experiences gathered with purely textual and purely
visual languages, making heterogeneous languages avail-
able seems to be a reasonable path to improved usability of
visual notations. The main benefit of HVPLs is the free-
dom to choose and work with domain-specific visual nota-
tions without having to design and implement entirely new
languages each time the visual sub-language is changed.
Both, the visual part and the non-visual part of an HVPL,
can be reused when the respective other part is changed.
Therefore, adaptions to new domains can be accomplished
with minimal effort. Another important advantage is that
the overall programming paradigm may be chosen inde-
pendently from the visual sub-language. Thus only mini-
mal learning is required to employ visual programming in
practice. The balance between textual and visual expres-
sion is not fixed by the language, but is rather left to the
programmer. As heterogeneous programs directly translate
into code of the corresponding textual host language, there
is no runtime performance penalty imposed.

A related approach is pursued in the Andrew project
[7]. Andrew is mainly a toolkit for programming multipar-
adigm environments, whereas we focus on developing a

 

Fig. 7: Rule system for pointer manipulations

 

 

 

⇒
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x.addr

 

 := 

 

p
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y.addr
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x.used
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y.used
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.
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]

 

⇒
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display
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bold

 

 | 
[

 

x.addr

 

 := 

 

a.addr
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 y.addr

 

 := 

 

a.addr
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 x.used

 

 := 

 

a.addr

 

, 

 

y.used

 

 := 

 

a.addr

 

]

 

 

⇒
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y

 

) |
 [

 

a.addr

 

 := 

 

x.addr

 

->next

 

]

 

 

⇒
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x
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y
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 [

 

a.addr

 

 := 

 

x.addr

 

->prev

 

]
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 | 
 [

 

x.addr

 

 := 

 

p

 

.

 

val
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 y.addr

 

 := 

 

p

 

.

 

val

 

,
 

 

 a.redirect

 

 := ' ',

 

  x.new

 

 := 

 

p

 

.

 

val

 

 = (DLIST) 

 calloc(1,sizeof(ELEM));

 

]
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 | 
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c.redirect

 

 := 

 

c.addr
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 | 
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c.redirect
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]

 

 

⇒
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 |
 [

 

c.redirect
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c.addr

 

 = 
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;

 

]
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framework and a platform for heterogeneous program-
ming languages along the lines of grammar theory and
compiler technology.

Some problems not yet solved remain. The foremost
difficulty concerns debugging: When programming with
visual structures we would certainly like to use them dur-
ing debugging, too. This is currently not possible since
heterogeneous programs are compiled without any infor-
mation about the visual structures remaining. Secondly, we
cannot yet handle multi-level embeddings of pictures and
text (i.e., texts that embed pictures which in turn embed
texts which embed pictures that ...). In future we will be
working on such extensions of our basic framework.

In some cases the approach of Section 4.2 leads to
very complicated rule systems. It is planned to replace the
picture translation modules by a more powerful parsing
mechanism in future. We regard a combination of picture
logic [8] with constraint handling methods like those pre-
sented in [9] as a promising candidate. With such a parser
the picture translation rules would themselves be a hetero-
geneous language. Thus, one reason to use a simpler and
easily implementable translation mechanism first is to
bootstrap the parser implementation. 

The prototype system presented here is currently being
implemented with Lisp/CLOS and the Garnet graphics
toolkit for X11 workstations and Macintosh platforms.
Next we will look into diverse application domains to gain
a deeper understanding of their requirements. We believe
HVPLs to be a great improvement over purely textual lan-
guages while at the same time avoiding the problems that
come along with a migration to purely visual languages.
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