
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7 Prepared using smrauth.cls [Version: 2003/05/07 v1.1]

Research

Parametric Fortran: Program
Generation in Scientific
Computing

Martin Erwig1,∗, Zhe Fu2, Ben Pflaum1

1 School of EECS, Oregon State University, Corvallis, OR
2 Microsoft Corp., Redmond, WA

SUMMARY

Parametric Fortran is an extension of Fortran that supports defining Fortran program
templates by allowing the parameterization of arbitrary Fortran constructs. A Fortran
program template can be translated into a regular Fortran program guided by values for
the parameters. This paper describes the design, implementation, and applications of
Parametric Fortran. Parametric Fortran is particularly useful in scientific computing.
The applications include defining generic functions, removing duplicated code, and
automatic differentiation. The described techniques have been successfully employed
in a project that implements a generic inverse ocean modeling system.

key words: Automatic Differentiation, Fortran, Generic Programming, Haskell, Ocean Modeling,

Program Generation, Scientific Computing, Software Maintenance

1. Introduction

Fortran is widely used in scientific computing for efficiency reasons. For example, scientists
usually write simulation programs to evaluate scientific models in Fortran. Two examples are
the Inverse Ocean Modeling (IOM) system [1, 2] and the Weather Research and Forecasting
(WRF) model [3]. Since these simulation programs have to deal with huge data sets (up to
terabytes of data), they are often implemented in a way that exploits the given computing
resources as efficiently as possible. In particular, the representation of the data in the
simulation programs is highly specialized for each model. Unfortunately, this high degree
of specialization causes significant software engineering problems that impact the advance
of scientists in evaluating and comparing their models. One particular problem is that the

∗Correspondence to: Martin Erwig, School of EECS, Oregon State University, Corvallis 97331, OR, USA
Contract/grant sponsor: National Science Foundation; contract/grant number: ITR/AP OCE-0121542

Received
Copyright c© 2007 John Wiley & Sons, Ltd. Revised

Accepted

2 M. ERWIG ET AL.

simulation programs have to be rewritten for every individual scientific model, even though the
underlying algorithms are principally the same for all models. Re-implementing the simulation
program for every model is very tedious and error-prone, and the programs will be very difficult
to maintain.

One approach to solving this problem is to develop a software infrastructure that allows
the definition of well-defined interfaces to implement composable and reusable components.
This approach is pursued by the Earth System Modeling Framework (ESMF) collaboration
[4, 5]. One disadvantage of this approach is that model developers have to re-implement their
existing model programs against these newly defined interfaces, which is not trivial because
refactoring a collection of Fortran programs (often consisting of hundreds of files and tens
of thousands of lines of code) is a time-consuming and error-prone task. Furthermore, when
their models want to apply another simulation program with a different interface, they have
to modify their model programs against the new interface again. Therefore, model developers
seem to prefer re-implementing simulation tools specifically targeted for their model. This
software engineering problem in scientific computing shows a great opportunity for generic
programming. However, Fortran still lacks suitable supports for generic programming. Fortran
90 offers ad-hoc polymorphism, which allows different subroutines to share the same name, but
ad-hoc polymorphism is not enough to satisfy the needs of generic programming in scientific
computing.

We provide a solution to this problem by an extension of Fortran, called Parametric
Fortran, which allows the creation of generic programs. Instead of writing normal Fortran
programs, scientists can write Fortran program templates in which parameters are used to
represent the varying aspects of data structures and other model-dependent information of
the simulation programs. Any part of a Fortran program can be parameterized, such as
statements, expressions, or subroutines. When the model-dependent information is provided
in the form of values for these parameters, the Parametric Fortran compiler can translate
the program template into a specialized simulation program that fits the particular model.
Therefore, developers of the simulation programs only need to implement their algorithm once
and can generate different instances for different models automatically.

Parametric Fortran has been used for developing the IOM [1, 2] system. The IOM
system is currently intensively used with the ocean model PEZ at Oregon State University
and the National Center for Atmospheric Research, and with the model KDV at Arizona
State University. Other ocean modeling groups are currently in the process of adapting the
IOM system, such as ROMS (developed at Rutgers and University of Colorado), ADCIRC
(developed at Arizona State University and University of North Carolina), and SEOM (also
developed at Rutgers). The Fortran source code of the IOM system consists of more than 10
thousand lines. By using Parametric Fortran, the developers of the IOM system only need to
maintain one version of their code in Parametric Fortran. Fortran code specialized for different
models is generated fully automatically, which increases the productivity greatly. When the
IOM system needs to be applied to a new ocean model, they only need to provide the parameter
values for that ocean model, and the Parametric Fortran compiler will generate the IOM code
for that particular ocean model automatically.

Three different groups of people are concerned with Parametric Fortran. First, scientists
who implement simulation algorithms in Fortran want to use the genericity provided by

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 3

Parametric Fortran. Second, computer scientists or scientists with knowledge of Haskell [6]
extend the Parametric Fortran compiler with new parameter types. Third, the clients/modelers
provide the model information in the form of parameter values and will use the generated
Fortran programs for their model. Rather than defining one particular extension of Fortran,
our approach provides a framework for extending Fortran on a demand basis and in a domain-
specific way. Figure 1 illustrates the principal interactions between the different groups of users
and the Parametric Fortran system.

PF Compiler

Haskell

simulation_1.f

Fortran

simulation.pf

Parametric Fortran

Computer Scientists

M1.param M2.param Mn.param

Simulation program developers

Clients/Modelers

…

simulation_2.f

Fortran

simulation_n.f

Fortran

…

Figure 1. User Groups

In the left box, simulation.pf is the simulation program template developed by scientists
in Parametric Fortran, which implements their simulation algorithm. This simulation program
needs to work for different models named M1 through Mn. The clients of the simulation
program, who are the developers of the models, provide the parameter values representing
the information of their models. These parameter values can range from simple numbers to
whole Fortran program fragments. The program generator, that is, the Parametric Fortran
compiler, generates the different Fortran program simulation 1.f through simulation n.f
for all the models and provides the generated simulation program to the clients. Note that the
Parametric Fortran compiler does not automatically create instructions for parallel program
execution. Any parallelizing is the responsibility of the user who can supply parallelized Fortran
code via parameters. Parallelization can also be implemented through MPI calls parameterized

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

4 M. ERWIG ET AL.

by Parametric Fortran parameters, such as the number of dimensions. The Parametric Fortran
compiler is written in Haskell [6] by computer scientists.

The following table shows how different kinds of users interact with the Parametric
Fortran framework. Scientists developing the simulation programs write program templates
in Parametric Fortran to implement their algorithms. All the model-dependent information
is represented by parameters used in the templates. Model developers who want to run the
simulation programs for their model provide their model information in the form of parameter
values. They need to know how to provide parameter values in a correct way. Model developers
can be provided with a graphical user interface, as in the IOM [1, 2] system to facilitate the
input of parameter values. The parameter values are represented as Haskell values so they
can be used by the Parametric Fortran compiler directly. If a graphical user interface is not
available for model developers, they need to know how to define parameter values in Haskell,
which usually happens using a constructor on plain values, such as integers or strings.

The rest of this paper is organized as follows. In Section 2 we illustrate the use of Parametric
Fortran by examples. We will describe how Parameter Fortran is used in developing an inverse
ocean modeling system in Section 3. In Section 4 we describe another application of Parametric
Fortran for automatic differentiation. We discuss related work in Section 5 and present some
conclusions in Section 6.

2. Overview of Parametric Fortran

In this section, we will demonstrate the use of Parametric Fortran with examples. We first
introduce the syntax of Parametric Fortran in 2.1. A generic array addition subroutine will be
presented in 2.2. In Section 2.3 we described how the program generation is realized. A generic
array-slicing subroutine is described in Section 2.4 where a feature called parameter accessors
is introduced. In Section 2.5 we will show how to remove duplicated code using another feature
of Parametric Fortran called list parameters. We conclude this section by commenting on the
expressiveness and scope of Parametric Fortran in Section 2.6.

2.1. Syntax

Parametric Fortran is an extension of Fortran that allows Fortran constructs to be
parameterized. The various parameterization constructs and their meanings are listed in Table
I. Braces denote the scope of parameterizations. A parameterization construct must surround
a complete Fortran syntactic object. When a parameterization construct begins at one kind
of syntactic object, it must also end at the same kind. A parameterization construct can span
multiple statements or declarations, but not a combination of both.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 5

Table I. Parameterization Constructs

Syntax Efffect

{p : ...} every syntactic object inside the braces is parameterized by p
{p(v1,..,vn) : ...} only variables v1, ..., vn are parameterized by p inside the braces
{#p : ...} only the outermost syntactic object is parameterized by p
!{ ... } everything inside the braces is protected from parameterization by an

enclosing parameter
!v the variable v is not parameterized

{ dim: subroutine arrayAdd(a, b, c)
real :: a, b, c
c = a + b

end subroutine arrayAdd }

Figure 2. Dimension-independent array addition in Parametric Fortran

2.2. Array Addition for Arbitrary Dimensions

The example in Figure 2 shows how to write a Parametric Fortran subroutine to add two arrays
of arbitrary dimensions.† The dimensionality of the arrays is not specified in the Parametric
Fortran code and has to be provided through parameter values.

For simplicity, we suppose that the size of each dimension is 100, because we want to use an
integer, which represents the number of dimensions of the arrays, as the parameter. It is not
difficult to lift this limitation by extending the parameter type with size information for every
dimension. In this example, the program is parameterized by an integer dim. The value of dim
will guide the generation of the Fortran subroutine. The braces { and } delimit the scope of
the dim parameter, that is, every Fortran syntactic object in the subroutine is parameterized
by dim. For dim = 2, the Fortran program shown in Figure 3 will be generated.

We can observe that in the generated program, a, b, and c are all declared as 2-dimensional
arrays. When a variable declaration statement is parameterized by an integer dim, the variable
will be declared as a dim-dimensional array in the generated program. The assignment
statement that assigns the sum of a and b is wrapped by loops over their dimensions, and index
variables are added to each array expression. The declarations for these index variables are also
generated. This particular behavior of the program generator is determined by the definition

†This example is meant for illustration. Dimension-independent array addition is already supported in Fortran
90 by array syntax.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

6 M. ERWIG ET AL.

subroutine arrayAdd(a, b, c)
real, dimension (1:100, 1:100) :: a, b, c
integer :: i1, i2
do i1 = 1, 100
do i2 = 1, 100
c(i1, i2) = a(i1, i2) + b(i1, i2)

end do
end do

end subroutine arrayAdd

Figure 3. Generated Fortran program

of the parameter type for dim, which is implemented in Haskell by computer scientists as part
of the Parametric Fortran compiler.

In the following we will explain the principles behind the Parametric Fortran compiler that
enable the described program generation.

2.3. Implementation of the Parametric Fortran Compiler

Fortran programs are generated from Parametric Fortran templates. The generation process is
performed by the Parametric Fortran compiler whose source language is Parametric Fortran
and whose target language is Fortran. The compiler is implemented in Haskell [6]. In this
section, we will briefly describe the implementation of the compiler in an abstract way.

Every Parametric Fortran program is represented as a Fortran abstract syntax tree, in which
some nodes are annotated with one parameter. Figure 4 shows an example Parametric Fortran
syntax tree.

In the syntax tree, every square represents a Fortran syntactic object, and p1 and p2 are
two parameters. Three nodes are parameterized by p1, two nodes are parameterized by p2,
and three other nodes are not parameterized at all. In a Parametric Fortran syntax tree, every
parameter is a name. Program generation is based on the parameter values which are stored in
a file. When a template is input to the Parametric Fortran compiler, the compiler will retrieve
the values for parameters used in the template and replace the parameter names with their
values in the syntax tree. Every parameter has a type. In this example, we suppose that p1 has
the type T1 and p2 has the type T2. Each parameter type has an associated program generation
function gen that takes a parameter value of that type and a Fortran syntactic object as input
and produces a Fortran syntactic object, which must be in the same syntactic category as the
argument. The generation function of a parameter type is implemented in Haskell employing
pattern matching for syntax tree transformations. The process is illustrated abstractly by an
example in the following. The details of the Haskell implementation are beyond the scope of
this paper and can be found in [7, 8].

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 7

P1

P1

P1 P2

P2

Figure 4. Parametric Fortran syntax tree

The Parametric Fortran compiler takes a Parametric Fortran syntax tree as input, performs
a top-down traversal on the syntax tree, and applies the generation function for a particular
parameter type to every node parameterized by that type. In this example, the Parametric
Fortran compiler traverses the syntax tree and applies the generation function for the
parameter type T1 to every node that is parameterized by p1, and applies the generation
function for T2 to every node that is parameterized by p2. This type-based generic traversal is
implemented using the so-called “Scrap Your Boilerplate” approach introduced in [9], which
allows one to only write the code transformation rules for the interesting cases and have the
generic traversal parts for the remaining syntactic cases be inferred automatically. Details are
given in [8]. The output of the Parametric Fortran compiler will be a Fortran syntax tree in
which no node is parameterized. The resulting syntax tree represents the generated program
and will be converted to a textual representation by a pretty printer.

We can take the arrayAdd program in Section 2.2 as a concrete example. In arrayAdd, we
use a parameter dim containing an integer value. The parameter type for dim is defined as a
Haskell data type Dim as follows.

data Dim = Dim Int

The generation function for the parameter type Dim can be defined by pattern matching
for every Fortran syntactic object, such as expressions and statements. For example, when
a variable expression is parameterized by a parameter of the type Dim with an integer n,
the generated expression will be an n-dimensional array expression. The function gen can be
defined as follows for this case. We use the syntax genp[e] to express the application of the gen
function to the parameter value p and expression e.

genDim n[v] = v(i1, i2,...,in) (1)

The index variables i1 through in are new variables generated by the Parametric Fortran
compiler. These variables will be only used as array indices and loop variables.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

8 M. ERWIG ET AL.

When a Dim parameter of value n parameterizes a Fortran statement s, if n is a positive
number, the generation function gen will generate n loops over array dimensions around the
statement; otherwise, the generation function leaves s unchanged. In this example, we suppose
that all dimension have the same size 100. If the sizes of different dimensions are different, we
can extend the parameter type with the size information of array dimensions. The definition
of the function gen is shown below.

genDim n[s] =

{
genDim (n-1)[do in=1,100 s end do] if n > 0.

s otherwise.
(2)

The process of program generation can be illustrated by how the Parametric Fortran compiler
transforms the following Parametric Fortran statement into a Fortran statement.

{dim: c = a + b}

This statement is represented by the syntax tree shown in Figure 5.

=

c +

a b

dim

dim dim

dim dim

Figure 5. Syntax tree of {dim: c = a + b}

Since the parameterization is recursively propagated, every node in the syntax tree is
parameterized by the parameter dim. When the value for dim is provided, for example,
Dim 1, a Fortran statement can be generated from this parameterized one. The Parametric
Fortran compiler traverses the syntax tree top-down and applies the generation function for
the parameter type Dim to every node. Figure 6 shows the transformation for each single node.

The root node, which is an assignment statement, is transformed into a loop statement. The
node c is transformed into an array expression c(i1), and the nodes a and b are also variables
and transformed like c. The parameterization does not affect the “+” node which causes the
Parametric Fortran compiler to leave the node + unchanged.

After applying the gen function for the type Dim to all the nodes, the Parametric Fortran
compiler outputs the Fortran syntax tree in Figure 7, that represents the following generated
Fortran statement. The resulting syntax tree is obtained by composing all the generated nodes.

The syntax tree represents the generated Fortran program shown in Figure 8.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 9

c dim

Array

i1 c

a dim

Array

i1 a

b dim

Array

i1 b

+ dim +

= dim

For

i1 100 1 =

Figure 6. Transformation of nodes

The shown example included only one parameter and one simple form of parameterization.
In the following we will illustrate the potential of Parametric Fortran’s code generation
capabilities with a more sophisticated example.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

10 M. ERWIG ET AL.

Array

i1a

For

i1 1001 =

Array

i1c

+

Array

i1b

Figure 7. Syntax tree of generated for loop

do i1 = 1, 100
c(i1) = a(i1) + b(i1)

end do

Figure 8. Generated Fortran loop

2.4. Generic Array Slicing

Array slicing means to project an n-dimensional array on k dimensions to obtain an (n − k)-
dimensional array. With different combinations for n and k, we can obtain different versions of
array slicing subroutines. In this section, we will show how to define a template in Parametric
Fortran for array slicing. All the different versions of array slicing can be generated from the
template automatically.

In this program template shown in Figure 9, the parameter p is not a plain value, but a
record structure, which contains several fields of which each can be used as a parameter. The
value of each field can be accessed through accessors, written as p.f, where p and f represent
the parameter name and the field name, respectively. When a field is used to parameterize a
syntactic object e by {p.f:e}, the value of the field is used as a normal parameter. When a field
is mentioned in a program without parameterizing anything, its value is used to parameterize
an empty syntactic object. In this example, the parameter p contains four fields, n, o, dims,
and inds, which have the following effects. p.n represents the number of dimensions of the

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 11

1 subroutine slice(a, p.inds, b)
2 {p.n: real :: a}
3 {p.o: real :: b}
4 integer :: p.inds
5 {#p.o:
6 {p.o: b} = {p: a(p.inds)}}
7 end subroutine slice

Figure 9. Template for array slicing

input array, p.o represents the number of dimensions of the output array, p.dims is a list of
numbers representing the dimensions to be sliced on, and p.inds represents the index variables
that will be used for the sliced dimensions. Similar to the example in Section 2.2, we assume
for simplicity that the size of each dimension is 100.

In the subroutine slice, a is the input n-dimensional array, a’s declaration is parameterized
by p.n. The variable b is the result (n − k)-dimensional array and is parameterized by p.o.
The field p.inds is used at three places. In the parameter list of the subroutine, p.inds has
the effect of inserting the index variables in the parameter list of slice as input parameters.
In line 4, p.inds is used to declare the type of the index variables to be integers. In line
6, p.inds is used in the right-hand side of the assignment statement where it means that
the index variables will be inserted as a’s indices. p.o is used at two places. In line 5, p.o
parameterizes the assignment statement to add loops. Also, p.o parameterizes the variable
b to insert index variables. We use p to parameterize the right-hand side of the assignment,
instead of a field of p, because in this parameterization, for inserting the index variables to the
correct positions, both p.dims and p.o are needed. When the values for all the fields of p are
provided, one specific array slicing subroutine can be generated. For example, the following
value for p describes the generation of a Fortran subroutine that computes the slice on the
first and third dimensions of a 4-dimensional array.

p = {n=4, o=2, dims=[1,3], inds=[i,j]}

The code in Figure 10 shows the Fortran subroutine, which is automatically generated by the
Parametric Fortran compiler.

We can observe that in the generated program, a is a 4-dimensional array and b is a 2-
dimensional array. In line 8, the index variables i and j are inserted to the array expression
of a at the first and third position, which is specified by p.dims. The assignment statement is
wrapped by 2 additional loops because the output array is 2-dimensional.

The fields n and o are redundant considering we know how many dimensions to slice by the
length of the field dims. The following relationship holds.

p.n = p.o + length dims

Since only parameter names or field names can be used as parameters, but not expressions of
parameters, we can remove neither p.n nor p.o to eliminate the redundancy. Furthermore, the

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

12 M. ERWIG ET AL.

1 subroutine slice(a, i, j, b)
2 real, dimension (1:100,1:100,1:100,1:100) :: a
3 real, dimension (1:100,1:100) :: b
4 integer :: i, j
5 integer :: i1, i2
6 do i1 = 1, 100
7 do i2 = 1, 100
8 b(i1, i2) = a(i, i1, j, i2)
9 end do

10 end do
11 end subroutine slice

Figure 10. Generated array slicing Fortran subroutine

above relationship between the field values is not guaranteed. If users provide field values for
which the above relation does not hold, the generated program will contain type errors. We
are currently investigating the possibility to allow users to input constraints about parameter
values. The Parametric Fortran compiler then could check if the parameter values satisfy the
constraints before generating programs.

2.5. Avoiding Duplicated Code

In this section we demonstrate how Parametric Fortran can be used to solve a typical
problem of duplicated code [10] in scientific computing applications. This example motivates
the introduction of a feature of Parametric Fortran called list parameters.

In scientific computing, simulation programs are often used to perform computations on some
state variables representing the measurements in scientific models. In different models both the
number and the meanings of the state variables may be different, which makes writing generic
simulation programs very difficult. This problem can be solved using Parametric Fortran by
representing the information about the state variables in parameters. Once the parameter
values for a particular model are provided, the computation code for all the state variables
can be generated automatically.

Similar code fragments in the simulation programs often lead Fortran programmers to
duplicate code through “copy and paste”, which can easily introduce errors when the copied
parts are not adapted properly to the new context. Moreover, when a change is required in
one part of the computation, all the copies of the code fragment have to be changed in the
same way, which is also prone to errors. Programs that contain duplicated code are known
to be very difficult to maintain [10]. With Parametric Fortran, only one code fragment for
duplicated code is maintained, which simplifies the program maintenance.

In Figure 11, we show how to write a simple simulation program in Parametric Fortran to
avoid duplicated code.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 13

program simulation
{#stateVars:
{stateVars.dim : real :: stateVars.name}

}
{#stateVars:
{stateVars.dim : allocate(stateVars.name)}
call readData(stateVars.name)
call runComputation(stateVars.name)
call writeOut(stateVars.name)
deallocate(stateVars.name)

}
end program

Figure 11. Simulation template

In this simulation program, we have a list parameter stateVars containing a list of
Parametric Fortran parameters of which each contains the information about one single state
variable, as shown in Figure 12.

stateVars = [temp, veloc]
temp = {dim=3, name="temperature"}
veloc = {dim=2, name="velocity"}

Figure 12. State variables

In this simple example, we suppose that every state variable is stored in an array whose
number of dimensions is specified by the parameter field dim. Again for simplicity, the size
of each dimension is fixed to 100. Another information for a state variable is its name,
which can be accessed through the parameter field name. The declaration and body part
of the simulation program are parameterized separately since they belong to different Fortran
syntactic categories. In Parametric Fortran, a parameterization construct can span multiple
statements or declarations, but not a combination of both. The parameter value for stateVars
shown in this example is used for generating the simulation program for a scientific model that
has two state variables representing temperature and velocity, and the arrays storing the two
variables are 3-dimensional and 2-dimensional, respectively.

The simulation program shown in Figure 13 will be generated for this model. In the generated
program, a declaration statement and a code fragment for the computation are generated for
both state variables.

List parameters are very helpful for reducing code size of scientific simulation programs. In
the IOM project (see next section), after using list parameters to remove duplicated code, the
code size could be reduced by almost 50%.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

14 M. ERWIG ET AL.

program simulation
real, dimension (:,:,:), allocatable :: temperature
real, dimension (:,:), allocatable :: velocity
allocate(temperature(1:100, 1:100, 1:100))
call readData(temperature)
call runComputation(temperature)
call writeOut(temperature)
deallocate(temperature)
allocate(velocity(1:100, 1:100))
call readData(velocity)
call runComputation(velocity)
call writeOut(velocity)
deallocate(velocity)

end program

Figure 13. Generated simulation program

2.6. Summary and Scope of Parametric Fortran

The design of Parametric Fortran essentially consists of two parts. The first is an extension of
the Fortran syntax to annotate arbitrary parts of Fortran programs by parameters, which are
simply placeholders for values to be provided later. The second part is a mechanism to define
the meaning of these parameter annotations. The effect that values provided for parameters
have on an annotated Fortran program is defined with rewriting rules on syntax trees given in
Haskell. The details of this aspect are given elsewhere [7, 8].

As we have illustrated, the ability to annotate different parts of a Fortran program with
different parameters that can be defined to have arbitrary effects provides great flexibility. In
fact, Parametric Fortran does not just provide a fixed set of extensions for Fortran, but rather
provides a framework for defining arbitrary program generation extensions to Fortran. The
shown parameter types and their effects are not built into the Parametric Fortran compiler,
but are extensions built using the framework.

This generality has both advantages and disadvantages. A major benefit is the ability to
implement any program generation/manipulation through a suitable encoding as a parameter
type. The use of Haskell [6] as a metalanguage to formulate syntax transformations principally
offers Turing-complete expressiveness, although this full generality will probably not be used
very often. A downside of this expressiveness is that static analyses concerning, for example,
the consistency of parameter values are principally limited. For example, constraints among
parameter values like the ones for the array slicing example cannot be detected, in general,
automatically. These observations mean a responsibility for the designer of Parametric Fortran
parameters to define parameters in a way to balance expressiveness against ease of use and
proneness to errors.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 15

3. Inverse Ocean Modeling

Ocean models have been invented to simulate and to predict the state of oceans. Most ocean
models are typically represented by equations of motion. The equations need to be solved
by numerical approximation. For efficiency reasons, ocean models are usually implemented in
Fortran. Model developers use data assimilation systems, such as the Inverse Ocean Modeling
(IOM) system [1, 2], to combine their models with real observations of the ocean. The output
of the IOM is a weighted least-squared best-fit to the equations of motion and to the data.
The IOM can provide important information about the quality of data produced by ocean and
weather forecasting models. The accuracy of forecasting models is important for the successful
planning of flight or ship routes, navy operations, and many other applications.

The IOM consists of tools that are used for computing the equations of best fit from ocean
models. Models usually use arrays over time and space to store the state values of oceans,
such as velocity or temperature. Different ocean models may use different data structures to
describe the ocean, for example, different dimensional arrays, which makes writing the IOM
system very difficult. The problem is that the genericity that is inherent in this problem
cannot be expressed succinctly in Fortran and requires low-level work-arounds. In this section
we will illustrate how different components used in the IOM system can be implemented in a
model-generic way in Parametric Fortran.

3.1. An Example Tool: Markovian Convolution in Time

Convolution is essentially the process of averaging over weighted values. The basic idea is
the value of one point is computed by averaging over the weighted values of its neighbors.
The weights of the neighbors depend on the distances from the point. The number of different
possible convolutions is unlimited since each new weighting functions defines a new convolution.
Every convolution has the following form.

b(x) =
∫ X

0

F (x, x′)a(x′)dx′ (3)

F (x, x′) is the weighting function, x and x′ can range over either time or space from 0 to X,
which is an upper boundary of time or space. The field a contains the initial values, and b
contains the result values. A similar kind of convolution is also used in image processing to
reduce noise in images [11].

The IOM tool described here is Markovian Convolution in Time, which is formally defined
by the following continuous equation.

b(t) =
∫ T

0

exp(−|t− t′|/τ)a(t′)dt′ (4)

The weighting function is exp(−|t − t′|/τ), and the variables t and t′ range over time, which
means that the convolution is in time. The coefficient τ is the correlation time scale, which is

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

16 M. ERWIG ET AL.

provided by the ocean modelers when they use the tool. The smaller τ is, the more quickly
the values of the old points will be forgotten.

The above formula is a continuous equation. Computer simulations are based on the
following corresponding discrete equations that can be derived from the continuous one through
techniques developed in [1].

hL = 0 (5)
hn − hn−1

∆t
+ τ−1hn−1 = −2τ−1an (6)

bU = −(τ/2)hU (7)
bn+1 − bn

∆t
− τ−1bn+1 = hn (8)

In fact, the shown equations represent a slight generalization of the continuous formula that
offers flexibility in how arrays are indexed, for example, starting at 0 or 1. Moreover, the
equations also support the parallel execution of the subroutine. With L = 0 and U = T
we obtain as a particular instance the equations that correspond exactly to the continuous
formula.

When implementing these discrete equations in Fortran, a, b, and h are defined as arrays,
and L (U) is the lower (upper) boundary on the time dimension of the arrays. The array h is
used to hold temporary values. All these arrays are over time and space. In different models,
the number of space dimensions may be different, and time may be stored in a different array
dimension. Therefore, the IOM has to provide different subroutines for all the possible data
structures used in all the models. Moreover, the IOM should also be able to provide tools for
any new model that uses data structures in a completely new way.

3.2. Expressing Markovian Convolution in Parametric Fortran

For parameterizing Markovian Convolution, we first have to find the parameters representing
the model-dependent information. In this example, the model-dependent information is the
number of space dimensions of the arrays and the size (lower bound and upper bound) of each
dimension. To simplify the following description, we assume that the time dimension is always
the first dimension of the arrays in all the models. In the convolution tool that is actually
implemented for the IOM system we also parameterize the position of the time dimension.
We can define a Haskell data type Space to represent the space dimensions of the arrays as
follows. Therefore, we can use a parameter of the type Space to parameterize the Markovian
convolution.

data Space = Space Int [(Bound, Bound)]

The type Bound is defined as follows.

data Bound = BCon Int | BVar VName

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 17

The information of space dimensions is parameterized by an integer representing the number
of space dimensions, and a list of pairs of array boundaries, which can be either an integer
constant of a variable. For example, the parameter value Space 2 [(BVar "X", BVar "Y"),
(BCon 1, BCon 100)] specifies that the number of dimensions of the arrays in the model is
2, that the first dimension is bounded by variables X and Y, (where X is the lower bound and
Y is the upper bound), and that the second dimension is bounded by 1 and 100.

We use a parameter s of the type Space to parameterize the time convolution subroutine
as follows. The body of the subroutine shown in Figure 14 implements the discrete equations
in Section 3.1.

1 subroutine timeConv {s: (L, U, dt, tau, a, b)}
2 integer :: L, U
3 real :: dt, tau
4 {s: real, dimension (L:U) :: a, b, h}
5 integer :: n
6 {#s(a,b,h):
7 h(L) = 0.0
8 do n = L+1, U
9 h(n) = h(n-1) - dt*(h(n-1)/tau + 2.0*a(n)/tau)

10 end do
11 b(U) = -0.5*h(U)/tau
12 do n = U-1, L, -1
13 b(n) = b(n+1) - dt*(h(n) + b(n+1)/tau)
14 end do
15 }
16 end subroutine timeConv

Figure 14. Time convolution template

The parameter s is used at 3 places. The meanings of the parameterizations are described
below.

• In line 1, the parameter list of the Fortran subroutine is parameterized by s. This
parameterization tells the program generator to add the new variables used in s’s value
as dimension boundaries to the parameter list of the generated Fortran subroutine.

• In line 4, the declarations of the array variables is parameterized by s to append the
space dimensions to the current time dimension of these arrays.

• The body of the subroutine is parameterized by s to add loops over space dimensions
to the body. The meaning of the symbol # is that s parameterizes whole body of the
subroutine, but not the single statements inside the body. Therefore, in the generated
program, the loops over space dimensions are added outside the body, no loops will be
generated for each single statement inside the body. Furthermore, this parameterization
will add index variables to particular array variables used in the program body. These
array variables are specified in parenthesis after the parameters. In this example, the

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

18 M. ERWIG ET AL.

syntax {s(a,b,h):. . .} expresses that the parameter s only parameterizes the variables
a, b, and h, or array expressions using these names, such as h(n).

To generate the Fortran subroutine timeConv for the model in which the arrays have 1 space
dimension and the boundaries of that dimension is (X:Y), we use the following value for s of
type Space.

s = Space 1 [(BVar "X", BVar "Y")]

The Fortran program shown in Figure 15 can then be generated automatically by the
Parametric Fortran compiler.

subroutine timeConv (X, Y, L, U, dt, tau, a, b)
integer :: X, Y
integer :: L, U
real :: dt, tau
real, dimension (L:U, X:Y) :: a, b, h
integer :: n
integer :: i1
do i1 = X, Y
h(L,i1) = 0.0
do n = L+1, U
h(n,i1) = h(n-1,i1) - dt*(h(n-1,i1)/tau + 2.0*a(n,i1)/tau)

end do
b(U,i1) = -0.5*h(U,i1)/tau
do n = U-1, L, -1
b(n,i1) = b(n+1,i1) - dt*(h(n,i1) + b(n+1,i1)/tau)

end do
end do

end subroutine timeConv

Figure 15. Generated Fortran subroutine

The program generator performed the following actions. (1) X and Y are added to the
parameter list of the generated subroutine. (2) The arrays a, b, and h are declared as 2-
dimensional arrays with boundaries specified in the parameter value. (3) The body of the
subroutine is wrapped by a loop over the space dimension. (4) Every array expression is
extended by an additional index variable i1. (5) i1’s declaration is generated. How a parameter
type affects the program generation is defined in Haskell. We have seen the details of defining
the behavior of a parameter type in Section 2.3.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 19

3.3. A Program Generating System for IOM

We have implemented a program generating system that can generate IOM instances for
different models automatically. The IOM modules, such as the Markovian convolution, are
written as Parametric Fortran templates, in which parameters are used to capture aspects
that are specific to individual ocean models. Values for these parameters have to be provided
by each model for which an IOM instance is to be created.

In Section 3.2 we have seen how an individual tool can be generated when model information
is provided. Individual tools will be combined into larger inversion programs. This process is
controlled by a graphical user interface that presents ocean modelers with a variety of inversion
options, such as the selection of inversion outputs and the choice of different inversion algorithm
options. The graphical user interface also controls system configurations, such as Makefile and
Fortran compiler options, the values of model parameters, and different execution options
which are particularly important for efficient parallel execution on supercomputers. Currently,
the GUI supports three different execution options: The IOM module and the model module
run in one single executable with either of them being the main module and calling the other,
or the IOM module and the model module run as two separate executables that communicate
via shared data files. We plan to support more fine-grained parallelism in future versions.

The graphical user interface is implemented in Java and runs together with the Parametric
Fortran and Fortran compilers on Windows, Mac OS, and Solaris. A snapshot of the current
system is shown in Figure 16.

The first 3 fields in the “Parameters” section of the graphical user interface correspond the
parameters that we have seen in Section 3.2. For example, when a user inputs “number of space
dimensions” as 1, “position of the time position” as 1, and “sizes of space dimensions” as (X,Y),
the Parametric Fortran compiler will generate the Fortran program for Markovian convolution
shown in Section 3.2. The parameter “number of inner iterates” is used for other convolution
tools. Users can also select other options on the graphical user interface to customize the
simulation program they want to run. The ability to provide model parameters, to select a
particular combination of inversion outputs, and to customize the inversion algorithm offers
to ocean modelers a flexible customization of inversion programs.

The use of Parametric Fortran had significant impact on the development and maintenance
of the IOM system. Instead of writing different instances of the IOM for all the models,
IOM developers only need to keep one copy of Parametric Fortran templates. The Parametric
Fortran compiler can generate instances for all the models automatically. Table illustrates the
benefits obtained from using Parametric Fortran by showing the code savings achieved in the
development of the IOM system. We list 5 models that the IOM is currently applied to, and 5
modules in the IOM that are automatically generated. The numbers are the number of lines of
the code for a particular module and a particular model. For example, the main convolution
module for the model PEZ has 502 lines of code. The rightmost 3 columns show the sums of
lines of code of the IOM modules for all the models, the number of lines of the Parametric
Fortran templates for the IOM modules, and the code saving, respectively.

In the tools listed in Table II, the Markovian time convolution has been explained in detail in
Section 3.1, and the Bell-shaped space convolution is a similar convolution tool. In some ocean
models, the IOM generates multiple instances of these two convolution tools to convolve state

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

20 M. ERWIG ET AL.

Figure 16. Graphical User Interface.

variables of different dimensions. The main convolution module convolves all state variables in
an ocean model. The combination module is an IOM tool that converts a vector into an array
whose shape is parameterized, and the measurement module performs the opposite conversion.
The models listed in Table II use different data structures for storing the ocean data and the
number and meanings of state variables are different in these models. The IOM is not limited to
these listed models, but can be applied to other models as well. From the table we can observe
that the sizes of the Parametric Fortran templates are small compared to the generated code.
For all the generates modules, the code saving is at least 88%, which makes the development
and maintenance much easier.

4. Application of Parametric Fortran to Automatic Differentiation

Automatic differentiation (AD) [12] refers to the technique to compute the derivatives of a
model defined by a computer program. Two kinds of derivatives are computed, the tangent
linear model and the adjoint model. A model can be considered as a mapping of a vector

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 21

Table II. Code savings achieved by Parametric Fortran

SW2D KDV PEZ ADCIRC ROMS Σ PF 1-
PF/Σ

Markovian Time
Convolution

20 38 60 60 84 262 16 94%

Bell-Shape Space
Convolution

27 58 85 85 120 375 27 93%

Main
Convolution

Module

374 390 502 390 578 2234 245 89%

Combination
Module

241 257 321 257 377 1453 177 88%

Measurement
Module

183 199 263 199 307 1151 127 89%

Explanation of model acronyms:

SW2D Shallow Water 2D Model
KDV Korteweg-de Vries Model
PEZ Primitive Equation Z-coordinate Model
ADCIRC Advanced Circulation Model
ROMS Regional Ocean Modeling System

of control variables X to a vector of predictions Y . For example, in a model for analyzing
the relationship between people’s income and education level, the control variable could be
people’s education level, and the prediction is their annual income. The tangent linear model
maps variations of the control variable δX of a model to variations of the model prediction
δY . Therefore, tangent linear models can be used to quantify how changes of the control
variables influence the model predictions. In contrast, the adjoint model maps in the reverse
direction and computes the influence of the control variables on a given anomaly of the model
predictions. Adjoint models can be used to analyze the origin of any anomaly of a model
prediction.

4.1. Implementing Automatic Differentiation in Parametric Fortran

The tangent linear model is constructed by applying the chain rule shown in Figure 17, which
can be realized by using pattern matching and syntax tree transformation.

The approach for constructing the adjoint model is to apply rules for each code fragment of
the original model to obtain the adjoint code fragment. The adjoint code fragments will then be
composed in reverse order, compared to the original model code. The result of the composition
is the adjoint model. Giering proposed the rules in for obtaining the adjoint code fragment
from each kind of Fortran statements in [13], including assignments, loops, conditionals, and

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

22 M. ERWIG ET AL.

c′ = 0, c is a constant

(uk)′ = kuk−1u′

(eu)′ = u′eu

(sin(u))′ = u′ cos(u)

(cos(u))′ = −u′ sin(u)

(log(u))′ = u′/u

(u + v)′ = u′ + v′

(u− v)′ = u′ − v′

(u ∗ v)′ = u′v + uv′

(u/v)′ = (u′v − uv′)/v2

Figure 17. Function Derivatives for Computing the Tangent Linear Model

subroutine calls. For example, since the adjoint model reverses the data-flow in the original
model, the adjoint code of a loop statement is just the loop with a reverse order. As a concrete
example, the adjoint correspondent of the following loop

do i=1, 100, 1 ... end do

is

do i=100, 1, -1 ... end do

Rules for other statements are not that trivial. For example, the rules for getting adjoint code
from assignments are achieved through the manipulations of the Jacobian matrix. Interested
readers can find the details in [13].

We have implemented the chain rule in Figure 17 and the algorithm proposed in [13] as the
generation function of a parameter type Diff.

data Diff = TL [VNames] | AD [VNames]

The parameter value of the type Diff can be either TL or AD, followed by a list of the variable
names representing the active variables of the model, which are either the control variables or
the predictions. For example, when TL . . . is used to parameterize a Fortran subroutine, the
Parametric Fortran compiler will generate the tangent linear model of that subroutine. When
the parameter value is TL . . ., the generation function applies the chain rule in Figure 17 to
the right-hand side of the assignment statements whose left-hand side is an active variable.
The active variable at the left-hand side is renamed to distinguish from the original variable.
When the parameter value is AD . . ., the generation function applies the rules proposed in [13]

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 23

for all the statements that assign a value to an active variable or the loops containing such
assignments. The active variable at the left-hand side of assignments is also renamed. The
following code shows part of the definition of the generation function for the parameter type
Diff for generating tangent linear code. Below we show the implementation of the fourth and
seventh case from Figure 17.

genp[x=sin(u)] = tl x = genp[u] * cos(u)

where p = TL [...,x,...]
(9)

genp[x=u+v] = tl x = genp[u] + genp[v]

where p = TL [...,x,...]
(10)

When the parameter value is AD ..., the following code generates the adjoint code for a loop
statement. The generation function reverses the loop boundaries and negates the loop step.

genAD vs[do i=l,u,step s end do]

=

{
do i=u,l,-step s end do if s changes any active variables in vs
do i=l,u,step s end do otherwise

(11)

Generating the adjoint code for assignments is more complicated. The algorithm can be
described as follows. If the left-hand side of the assignment is an active variable, the tangent
linear code of the right hand side is first calculated. The Jacobian matrix [14] is constructed
from the tangent linear code. The adjoint matrix is the transposed Jacobian. From this matrix
the adjoint assignments are generated. Details of constructing the Jacobian matrix can be
found in [13]. As a concrete example, if x, y, and z are all active variables, the adjoint code of
the assignment

z = x * sin(y*y)

is shown in Figure 18.

ad_y = ad_y + ad_z * x * cos(y*y) * 2 * y
ad_x = ad_x + ad_z * sin(y*y)
ad_z = 0

Figure 18. Generated adjoint code

In the remainder of this section, we will demonstrate how to use the AD tool built in
Parametric Fortran to generate differential programs for a practical example. We have applied
the AD tool to generating differential programs for the Primitive Equation Z-coordinate Model
(PEZ), which is a variant of Bryan-Cox-Semtner class model [15], developed jointly at Oregon
State University and the National Center for Atmospheric Research.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

24 M. ERWIG ET AL.

4.2. An Example: The Inviscid Burger’s Model

In this section and Section 4.3 we show how to use the AD tool to generate the tangent linear
and adjoint code for a simple model, called the inviscid Burger’s model [16], which is widely
used in physics [17, 18]. The inviscid Burger’s model can be represented by the following
equation. In the equation, u is the function to be calculated, and x and t represent space and
time, respectively.

∂u

∂t
+ u

∂u

∂x
= 0 (12)

The above formula is a continuous equation. Computer simulations are based on the
corresponding discrete equations that can be derived from the continuous one. The
corresponding mathematics background can be found in [16]. Below we show the discrete
equations of the inviscid Burger’s model.

u1
0 = u0

0 −
∆t

2∆x
u0

0(u
0
1 − u0

X) (13)

u1
x = u0

x −
∆t

2∆x
u0

x(u0
x+1 − u0

x−1), for x = 1, 2, . . . , X − 1 (14)

u1
X = u0

X − ∆t

2∆x
u0

X(u0
0 − u0

X−1), (15)

ut+1
0 = ut−1

0 − ∆t

∆x
ut

0(u
t
1 − ut

X), for t = 1, 2, . . . , T − 1 (16)

ut+1
x = ut−1

x − ∆t

∆x
ut

x(ut
x+1 − ut

x−1), for t = 1, 2, . . . , T − 1 x = 1, 2, . . . , X − 1 (17)

ut+1
X = ut−1

X − ∆t

∆x
ut

X(ut
0 − ut

X−1), for t = 1, 2, . . . , T − 1 (18)

The discrete equations describe how the value of u changes over time. Time ranges from 0 to
T , and space ranges from 0 to X. ∆t and ∆x represent the length of a time step and the size
of a spatial grid, respectively. The values of u0

x, for 0 ≤ x ≤ T form the initial condition and
should already exist before the calculation. The periodic boundary condition is used, which
means the right neighbor of the rightmost point is the leftmost point and the left neighbor of
the leftmost point is the rightmost point.

4.3. Differentiating the Inviscid Burger’s Model Using Parametric Fortran

The discrete equations can be directly translated into the Parametric Fortran subroutine,
shown in Figure 19, which is parameterized by diff. In the subroutine, we perform
computations on array indices so that all the discrete equations can be represented by one
assignment statement in line 24. The value for diff can be TL [u] or AD [u] since u is the
only active variable in the inviscid burger’s model. TL and AD will lead the Parametric Fortran
compiler to generate the tangent-linear code and the adjoint code of the inviscid Burger’s
model, respectively.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 25

1 {diff:
2 subroutine burger(X,T,dx,dt,u)
3 integer :: X, T
4 real :: dx, dt, c
5 real, dimension(0:X,0:T) :: u
6 integer :: x, t, xm1, xp1, tm1, tp1
7 c = dt / (2 * dx)
8 do t = 0, T-1
9 tp1 = t + 1

10 tm1 = t - 1
11 if (t == 0) then
12 tm1 = 0
13 else
14 c = dt / dx
15 end if
16 do x = 0, X
17 xp1 = x + 1
18 xm1 = x - 1
19 if (x == 0) then
20 xm1 = X
21 else if (x == X) then
22 xp1 = 0
23 end if
24 u(x,tp1) = u(x,tm1)-u(x,t)*(u(xp1,t)-u(xm1,t))*c
25 end do
26 end do
27 end subroutine burger
28 }

Figure 19. Inviscid Burger’s model template

When the value for diff is TL [u], the tangent-linear program of the inviscid Burger’s model
will be generated. The following code shows the generated Fortran subroutine for calculating
the tangent-linear derivative. The program generator changes the output variable name of the
generated subroutine to tl u to distinguish from u. In addition to this name change, the only
difference from the original subroutine is in the assignment statement for u since that is the
only place where the value of the output variable is changed. The program generator applies
the chain rule to the right-hand side of this assignment, and the new assignment in the code
fragment shown in Figure 20 is generated.

1 subroutine tl_burger(X,T,dx,dt,u,tl_u)
2 ...
3 tl_u(x,tp1) = tl_u(x,tm1)-(tl_u(x,t)*(u(xp1,t)-u(xm1,t))
4 +u(x,t)*(tl_u(xp1,t)-tl_u(xm1,t)))*c
5 ...
6 end subroutine tl_burger

Figure 20. Part of generated subroutine

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

26 M. ERWIG ET AL.

When the value for diff is AD [u], the program for the adjoint model of the inviscid Burger’s
model will be generated as shown in Figure 21.

1 subroutine ad_burger(X,T,dx,dt,u,ad_u)
2 ...
3 do t = T-1, 0 ,-1
4 ...
5 do x = X, 0 ,-1
6 ...
7 ad_u(x,tm1) = ad_u(x,tm1)+ad_u(x,tp1)
8 ad_u(x,t) = ad_u(x,t)-(c*(u(xp1,t)-u(xm1,t)))*ad_u(x,tp1)
9 ad_u(xp1,t) = ad_u(xp1,t)-(c*u(x,t))*ad_u(x,tp1)

10 ad_u(xm1,t) = ad_u(xm1,t)+(c*u(x,t))*ad_u(x,tp1)
11 ad_u(x,tp1) = 0
12 end do
13 end do
14 end subroutine ad_burger

Figure 21. Generated adjoint subroutine

Similar to the tangent-linear program, a new variable ad u is added to hold the adjoint
values. The original assignment statement is replaced by a group of assignment statements in
the loop body. These generated assignments are obtained from the rule in [13] for assignment
statements. Following the rule for loop statements shown in Section 4.1, the loops over time
and space are reversed.

5. Related Work

Parametric Fortran provides a framework to allow developing simulation programs for scientific
models. A different approach was chosen by the Earth System Modeling Framework (ESMF),
which defines an architecture that allows the composition of applications using a component-
based approach [4, 5]. The focus of the ESMF is to define standardized programming interfaces
and to collect and provide data structures and utilities for developing model components. One
disadvantage of the ESMF approach is that developers of the scientific models need to refactor
their existing code to fit the interface, which is usually not easy. In contrast, using Parametric
Fortran to develop the simulation programs will not require model developers to change their
code. The simulation programs for their models can be generated automatically.

Parametric Fortran was developed for the use in scientific computing. Most scientific
computing applications deal with huge data sets. Usually, these data sets are represented by
arrays. The data structures of these arrays, such as the number of dimensions, are often changed
in different models to which the same algorithm will be applied. The programming languages
APL [19] and J [20] have built-in mechanisms for computing with variable-dimensional arrays.
However, since APL and J only provide efficient operations for array processing, they have
not been widely used in scientific computing area, which also requires efficient numerical
computations.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 27

Parametric Fortran is essentially a metaprogramming tool. For a comprehensive overview
over the field, see [21]. Existing Fortran metaprogramming tools include Foresys [22],
whose focus is on the refactoring of existing Fortran code, for example, transforming a
Fortran77 program into Fortran90 program. Sage++ [23] is a tool for building Fortran/C
metaprogramming tools. However, to express applications as the ones shown here a user has
to write metaprograms in Sage++ for transforming Fortran, which is quite difficult and error
prone and probably beyond the capabilities of scientists who otherwise just use Fortran. In
contrast, Parametric Fortran allows the users to work mostly in Fortran and express generic
parts by parameters; most of the metaprogramming issues are hidden inside the compiler and
parameter definitions that are implemented by computer scientists. Macrofort [24] can generate
Fortran code from Maple programs and does not provide the mechanism to deal with generic,
model-dependent code. Forge [25] is a program generator that transforms discrete equations
into Fortran code. With Parametric Fortran we can create complete Fortran programs, whereas
Forge is limited to the specification and generation of subroutines that will be part of larger
simulation programs. Rosing and Yubasaki present a customizable preprocessor for Fortran
in [26]. Similar to Parametric Fortran, their preprocessor works by taking annotated Fortran
code and transforming it into a new Fortran program. The preprocessor uses a C-like language
called DL to describe how the Fortran program should be changed, whereas Parametric Fortran
uses Haskell. The preprocessor is only meant to be used to parallelize programs, whereas
Parametric Fortran is meant to be more general and extensible by adding new parameter
types. In particular, their preprocessor library could be implemented as Parametric Fortran
parameter types, and directives could be represented by parameter values.

Parametric Fortran can be used for removing duplicated code. Some work has been done
for removing duplicated code from programs. For example, CloRT [27] automatically rewrites
duplicated code into programming abstractions. The approach of linked editing is used to
manage duplicated Java code in [28].

Another application of Parametric Fortran described in this paper is automatic
differentiation (AD). Much has been done in this area, and some tools have been developed,
such as TAMC [29], COSY [30], and TAPENADE [31]. All these tools have developed their
own algorithm for doing source program transformation. Their algorithms can be integrated
into Parametric Fortran as parameter types. For example, the AD tool described in Section 4
implements the algorithm used in the TAMC system.

6. Conclusions

Parametric Fortran extends Fortran by allowing the parameterization of Fortran code
fragments. This approach increases the productivity of Fortran programmers and helps with
the maintenance of Fortran programs. We have successfully applied Parametric Fortran in
scientific computing to enable ocean scientists to implement model-generic algorithms [8, 7].
Beyond the IOM system, Parametric Fortran also has the potential to be applied to many
other scientific computing projects, such as the WRF [3] system, the DART system [32], and
the ESMF [4, 5]. Parametric Fortran is also applied to automatic differentiation (AD). The

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

28 M. ERWIG ET AL.

AD tool built in Parametric Fortran can incorporate different AD algorithms and is easy to
use for Fortran programmers.

REFERENCES

1. B. Chua and A. F. Bennett. An Inverse Ocean Modeling System. Ocean Modelling, 2001, 3:137–165.
2. IOM. Inverse Ocean Modeling System. http://iom.asu.edu/ [29 Jan 2007].
3. Michalakes J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock. Development

of a Next Generation Regional Weather Research and Forecast Model. Developments in Teracomputing:
Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology,
World Scientific Publishing Co., Hackensack, NJ, 2001. 269–276.

4. R. Ferraro, T. Sato, G. Brasseur, C. DeLuca, and E. Guilyardi. Modeling The Earth System. Int. Symp.
on Geoscience and Remote Sensing, IEEE Computer Society, Los Alamitos, CA, USA, 2003. 630–633.

5. R. E. Dickenson, S. E. Zebiak, J. L. Anderson, M. L. Blackmon, C. DeLuca, T. F. Hogan, M. Iredell,
M. Ji, R. Rood, M. J. Suarez, and K. E. Taylor. How Can We Advance Our Weather and Climate Models
as a Community? Bulletin of the American Meteorological Society, 2002, 83(3):431–434.

6. S. L. Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press,
Cambridge, UK, 2003, 270 pp.

7. M. Erwig, Z. Fu, and B. Pflaum. Generic Programming in Fortran. ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, ACM Press, New York, NY, USA, 2006. 130–139.

8. M. Erwig and Z. Fu. Parametric Fortran – A Program Generator for Customized Generic Fortran
Extensions. 6th Int. Symp. on Practical Aspects of Declarative Languages, LNCS 3057, Springer-Verlag,
New York Berlin Heidelberg, 2004. 209–223.

9. R. Lämmel and S. Peyton Jones. Scrap Your Boilerplate: A Practical Design Pattern for Generic
Programming. ACM SIGPLAN Workshop on Types in Language Design and Implementation, ACM
Press, New York, NY, USA, 2003. 26–37.

10. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Reading, MA, 2000, 464 pp.

11. K. R. Castleman. Digital Image Processing. Prentice-Hall International, Englewood Cliffs, NJ, 1996, 667
pp.

12. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Automatic Differentiation of
Algorithms: From Simulation to Optimization. Computer and Information Science. Springer-Verlag, New
York Berlin Heidelberg, 2001, pp. Selected papers from the AD2000 conference, Nice, France, June 2000.

13. R. Giering and T. Kaminski. Recipes for Adjoint Code Construction. ACM Transactions on Mathematical
Software, 1998, 24(4):437–474.

14. F.H. Clarke. Optimization and nonsmooth analysis. Wiley-Interscience, New York, 1983, 320 pp.
15. Pacanowski and Griffies. MOM 3.0 Manual. NOAA/GFDL, 2000. http://www.gfdl.noaa.gov/

~smg/MOM/web/guide parent/guide parent.html [8 Feb 2007].
16. D. R. Durran. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag,

New York Berlin Heidelberg, 1999, 482 pp.
17. Y. B. Zel’Dovich. Gravitational instability: an approximate theory for large density perturbations.

Astronomy and Astrophysics, 1970, 5:84–89.
18. M. Kardar, G. Parisi, and Y.C. Zhang. Dynamical scaling of growing interfaces. Physical Review Letters,

1986, 56:889–892.
19. K. E. Iverson. Introduction to APL. APL Press, 1984, 110 pp.
20. K. E. Iverson. J Introduction and Dictionary. Iverson Software Inc., Toronto, Canada, 1995. 411 pp.
21. Tim Sheard. Accomplishments and Research Challenges in Meta-Programming. 2nd Int. Workshop on

Semantics, Applications, and Implementation of Program Generation, LNCS 2196, Springer-Verlag, New
York Berlin Heidelberg, 2001. 2–44.

22. Simulog, SA, Guyancourt, France. FORESYS, FORtran Engineering SYStem, Reference Manual v1.5,
1996. 80 pp.

23. F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Srinivas, N. Srinivas, and B. Winnicka. Sage++: A Class
Library for Building Fortran 90 and C++ Restructuring Tools. OON-SKI’94, Second Object-Oriented
Numerics Conference, Computer Science Department, Indiana University, Bloomington, IN, April 1994.
122–138.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

PARAMETRIC FORTRAN: PROGRAM GENERATION IN SCIENTIFIC COMPUTING 29

24. C. Gomez and P. Capolsini. Macroc and Macrofort, C and Fortran Code Generation Within Maple.
Maple Technical Newsletter, 1996, 3(1):14–19.

25. M. Erwig and Z. Fu. Software Reuse for Scientific Computing Through Program Generation. ACM
Transactions on Software Engineering and Methodology, 2005, 14(2):168–198.

26. Matt Rosing and Steve Yabusaki. A programmable preprocessor for parallelizing Fortran-90. ACM/IEEE
Conf. on Supercomputing, ACM Press, New York, NY, USA, 1999. 3.

27. M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Partial redesign of Java software
systems based on clone analysis. 6th Working Conference on Reverse Engineering, IEEE Computer
Society, Los Alamitos, CA, USA, 1999. 326–336.

28. M. Toomim, A. Begel, and S. L. Graham. Managing Duplicated Code with Linked Editing. IEEE
Symposium on Visual Languages and Human-Centric Computing, IEEE Computer Society, Los Alamitos,
CA, USA, 2004. 173–180.

29. R. Giering and T. Kaminski. Using TAMC to generate efficient adjoint code: Comparison of automatically
generated code for evaluation of first and second order derivatives to hand written code from the Minpack-
2 collection. In C. Faure, editor, Automatic Differentiation for Adjoint Code Generation, 31–37. INRIA,
Sophia Antipolis, France, 1998.

30. L. M. Chapin, J. Hoefkens, and M. Berz. The cosy language independent architecture: Porting cosy source
files. 7th Int. Conf. on Computational Accelarator Physics, volume 175 of Institute of Physics Conference
Series. IOP Publishing Ltd., 2002, 37–45.

31. L. Hascoet, R.-M. Greborio, and V. Pascual. Computing Adjoints by Automatic Differentiation with
TAPENADE. In B. Sportisse and F.-X. LeDimet, editors, HGP05. Institut National de Recherche en
Informatique et en Automatique (INRIA), Sophia Antipolis, France, 2005. http://www-sop.inria.fr/
tropics/Laurent.Hascoet/papers/HGP05.pdf [2 Feb 2007].

32. National Center for Atmospheric Research. The Data Assimilation Research Testbed – DART.
http://www.image.ucar.edu/DAReS/DART/ [29 Jan 2007].

AUTHORS’ BIOGRAPHIES

Martin Erwig is an Associate Professor of Computer Science at Oregon State University. He received
his M.S. in Computer Science from the University of Dortmund, Germany, in 1989, and his Ph.D.
and Habilitation from the University of Hagen, Germany, in 1994 and 1999, repsectively. His research
interests include functional programming, domain-specific languages, and visual languages.

Zhe Fu received his Ph.D. from Oregon State University in 2006. Before joining Oregon State
University, he received his B.S. from Peking University in 1998 and his M.S. from the Software Institute
of the Chinese Academy of Sciences in 2001. He is now working at Microsoft on software development
for the C# language.

Ben Pflaum received his B.S. degree in Computer Science from Oregon State University in 2006. He
is currently an M.S. student at Oregon State University working on automatic program generation for
scientific computing.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 00:1–7
Prepared using smrauth.cls

