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Abstract

We present an explanation-oriented, domain-specific, visual language for explain-
ing probabilistic reasoning. Explanation-oriented programming is a new paradigm
that shifts the focus of programming from the computation of results to explanations
of how those results were computed. Programs in this language therefore describe
explanations of probabilistic reasoning problems. The language relies on a story-
telling metaphor of explanation, where the reader is guided through a series of well-
understood steps from some initial state to the final result. Programs can also be ma-
nipulated according to a set of laws to automatically generate equivalent explanations
from one explanation instance. This increases the explanatory value of the language by
allowing readers to cheaply derive alternative explanations if they do not understand the
first. The language is comprised of two parts: a formal textual notation for specifying
explanation-producing programs and the more elaborate visual notation for presenting
those explanations. We formally define the abstract syntax of explanations and define
the semantics of the textual notation in terms of the explanations that are produced.

1. Introduction

Probabilistic reasoning is often difficult to understand, especially for people with
little or no corresponding educational background. Even simple questions about con-
ditional probabilities can have counterintuitive solutions, causing confusion and even
disbelief among laypeople despite elaborate justifications. Consider, for example, the
following conditional probability problem: Three coins are flipped. Given that two of
the coins show heads, what is the probability that the third coin shows tails? Many
people respond that the probability is 50%, but it is, in fact, 75%.

If you do not understand the solution to the above problem, an explanation will
be provided shortly. If you do understand, pretend for a moment that you do not—
what would you do? Your best recourse might be to simply ask someone that does
understand. A good personal explanation is ideal because the explainer can rephrase
the explanation, answer questions, clarify assumptions, and provide related examples
as further illustration. Unfortunately, good personal explanations are a comparatively
scarce resource; they are not always available, and cannot be easily shared or reused.
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If you cannot get a personal explanation, you might refer to a probability textbook
or seek other explanatory material on the web. These explanations have much higher
availability and reusability; a web-based explanation, in particular, can be accessed
any number of times from almost anywhere in the world. The trade-off is that these
explanations lack the flexibility and adaptability of a personal explanation. They are
rarely presented in terms of the specific problem at hand and cannot respond to the
questions and confusions of a particular person.

In this paper we bridge this gap with a domain-specific, visual language called
Probula' for explaining probabilistic reasoning problems like the three coins problem
above. Using Probula, we can produce visual explanations for a wide range of con-
ditional probability problems, combining the flexibility and accessibility benefits of
personal and electronic explanations. We also provide a set of laws for transforming
explanations created in Probula into alternative, equivalent explanations. This adds
some of the adaptability of personal explanations, allowing users who do not under-
stand an initial explanation to view the problem from different perspectives, to reduce
understood parts of the explanation to focus on more difficult parts, and to add and
remove abstraction. However, our goal is not to replace personal or web-based expla-
nations, but to complement them. For example, a web page might provide a textual
explanation along with a Probula explanation as a supplementary resource, or a teacher
might use a Probula explanation as a visual aid for a verbal explanation, employing
automatically generated alternatives to illustrate different points.

Probula is an example of an explanation-oriented language—a language that sup-
ports explanation-oriented programming (EOP). EOP is a new paradigm where the
focus of programming is shifted from describing the computation of values to provid-
ing explanations of how and why those values are produced. A case for EOP is made
in Section 2, along with a brief account of our previous work in this area.

A Probula explanation of the three coins problem is given in Figure 1. The expla-
nation is read from top to bottom, like a story describing how an initial probability dis-
tribution is transformed into the solution of the problem. This story-telling model is the
central metaphor on which the language is built. The idea is that each step in the story
is small and easy to understand, and that by following each of these well-understood
steps, the reader can see how the ultimate conclusion is reached. In Section 3 we mo-
tivate the choice of the story-telling model for explaining probabilistic reasoning and
describe its impact on the design of Probula.

We begin the explanation in Figure 1 with an empty probability distribution, that
is, a distribution with a 100% probability of no event. The first three steps of the
explanation are all generator steps, which introduce new events into a distribution. In
this case, each generator represents a coin flip. The filter step encodes our conditional
constraint that we consider only cases where two of the three coins show heads. Finally,
we group the possibilities in the resulting distribution into two cases according to the
question posed by the problem—whether or not the remaining coin shows tails.

The Probula language consists of two levels, each represented by a distinct nota-
tion. The visual notation shown in Figure 1 represents the story-level and is the more

! A portmanteau of probability and fabula, the Latin word for story.



GENERATE /‘\A First coin flip

50% 50%
GENERATE /\ /\ Second coin flip

GENERATE Third coin flip

HHH[HHT [HTH|HTT |THH|THT |TTH [ TTT
12.5% | 12.5% | 12.5% | 12.5% | 12.5% | 12.5% | 12.5% | 12.5%

; :_[ I I I Consider only cases where
FILTER \ two heads have been flipped

HHH|HHT [HTH [THH

25% 25% 25% 25%

Group by whether or
GROUP v \ v / not tails has been flipped

HHH|[HHT HTH THH

25% 75%

Figure 1: Explanation of the three-coins problem.

important and interesting of the two. An object at this level is a story—a view on a
transformable explanation that is intended to be read by explanation consumers. The
second level is the plot-level, represented by a simple textual notation. An object in this
language is a plot, also called an explanation program, which is a formal specification
of a story written by the explanation creator. A plot can be instantiated or executed
with an initial distribution to produce a story.

In Section 4 we formally define the notations of stories and plots and relate the
two through a third notation, a mathematical representation of distribution graphs. A
distribution graph is essentially a sequence of probabilistic distributions, where each
distribution is a group of nodes (one for each value in the distribution), and where the
nodes in each adjacent distribution are possibly connected by edges. Specifically, in
Section 4, we equate distribution graphs to the abstract syntax [9] of the visual story
notation, then define the denotational semantics of plots also in terms of distribution
graphs. In other words, a distribution graph represents a story, and the meaning of a
plot is the story it produces. We also discuss and motivate many aspects of the concrete
syntax of the visual notation, beyond the overarching story-telling metaphor.

Each step of a story is represented at the plot-level by an operation (such as gen-
erate, filter, or group) that, given a preceding distribution D;, extends the distribution
graph by a new distribution D;;; and new edges connecting nodes in D; and D;y;. In
Section 5 we define the semantics of all six operations provided by Probula in terms of
distributions graphs, as described above.



Finally, a story represents only a single instance from a field of potential expla-
nations for the underlying probabilistic reasoning problem that it explains. Through
the use of the above-mentioned transformation laws, we can automatically transform
the underlying plot for this story into several “equivalent” alternatives. In Section 6
we define this notion of plot equivalence, then enumerate and formally describe all
such transformations. We also discuss the trade-offs that each of these transformation
presents, both informally and through the development and application of a simple
measure of vertical vs. horizontal distribution graph complexity.

The rest of the paper consists of a discussion of related work in Section 7, followed
by conclusions and directions for future work in Section 8.

This work is an extension and consolidation of two earlier papers on explaining
probabilistic reasoning [12, 13]. Prior to these papers, we presented a domain-specific
embedded language (DSEL) in Haskell for creating and manipulating (but not explain-
ing) probabilistic values [10]. In [12] we reused this DSEL in the design of a second
Haskell DSEL for explaining probabilistic reasoning that became the basis for Probula.
That paper also provides the first examples of Probula’s visual notation along with an
extended discussion of philosophical research on explanations and a lengthier motiva-
tion for the story-telling metaphor than is provided here. We formalized a subset of
the visual notation of Probula in [13] and also provided a formal semantics for a subset
of the operations used for creating Probula explanations. That work also contained the
first set of laws for transforming a Probula explanation into equivalent alternatives.

In this paper, we improve and complete the formalization of the visual notation
begun in [13] and provide a formal semantics for all of the supported operations. In
particular, we formalize for the first time the branching operation and the selection of
representative examples, and improve the treatment of grouping operations. We also
define a formal specification language for generating these explanations and clarify the
relationship of this formal notation to the visual notation. Finally, we provide a more
complete and detailed description of the explanation-generating transformation laws.

2. Explanation-Oriented Programming

EOP is fundamentally motivated by two simple observations. The first is that pro-
grams often produce unexpected results. The second is that programs have value not
only as tools for instructing computers, but also as a medium of communication be-
tween people.

When a program produces an unexpected result, a user is presented with several
questions. First, is the result correct? If so, what is the user’s misunderstanding? If
not, where is the bug and how can it be fixed? In these situations an explanation of
how the result was generated or why it is correct would be very helpful. Unfortunately,
such explanations are difficult to come by; in many cases a user’s only recourse is to go
through a long and exhausting debugging process. For less critical problems, the user
may simply give up. With a large and growing class of end-user programmers [33], the
ability to provide good explanations is more important than ever.

Although many tools for explaining programs exist, such as debuggers and soft-
ware visualization tools, these often suffer from a fundamental disconnect from the



languages they are meant to explain. If a language provides explanation tools at all,
they are typically designed post hoc, as an add-on to the language itself. This forces
these tools to reflect a notion of computation that was not designed for explainabil-
ity (rather, usually to maximize other properties like efficiency and expressiveness),
leading to explanations that are difficult to produce and have low explanatory value.

In an explanation-oriented language, the focus on explaining programs is shifted
to an earlier stage in language and tool development process, making it a primary
design goal of the language itself. In devising syntax and semantics, language designers
consider not only the production of values, but also explanations of how those values
are obtained and why they are correct.

This idea has a huge potential to innovate language design. Besides the obvious
applications to debugging and program analysis, it also suggests an entirely new class
of domain-specific languages where the explanation itself, rather than a final value,
is the primary output of a program. This represents a stronger sense of explanation
orientation and reflects the second observation above, that formal languages are an
effective medium for communicating ideas with other people. Probula is an example of
such a language, for producing explanations in the domain of probabilistic reasoning.

Using a strongly explanation-oriented language like Probula, an explanation de-
signer, who is an expert in the application domain, can create and distribute explana-
tion artifacts for specific problems in the domain. These artifacts can be customized
and explored by non-expert explanation consumers who do not understand the prob-
lems or who are trying to gain a greater understanding of the domain itself. There are
many possible application domains for such languages, including the explanation of
medical procedures, electrical systems, computer algorithms, and all kinds of scientific
phenomena. In this paper we address the application domain of probabilistic reasoning,
something which is generally not well understood but of great scientific and practical
importance, and can thus benefit greatly from a language for creating explanations.

3. The Story-Telling Model of Explanations

The visual notation of Probula relies on several interrelated metaphors. In this
section we motivate the most important of these that likens the process of explaining
a phenomenon to that of telling a story. This story-telling metaphor fundamentally
directed the design of Probula. In this section, we will motivate this design decision
and demonstrate its impact on the design.

In our previous work we have conducted a brief survey of the study of explana-
tions and their representation [12]. Our criteria for selecting a model for explaining
probabilistic reasoning was that the model should be (1) simple and intuitive since the
language is intended to be used not just by philosophers, mathematicians, or scien-
tists, but by laypeople who likely have no background in explanation theory or formal
modeling; and (2) constructive, in the sense that the model should identify specific
components of an explanation and their relationships, so that these can in turn be re-
alized by specific language constructs. These criteria rule out several potential models
of explanation, such as advanced statistical models [27, 31], models based on physical
laws [32], and those based on process theory [6], all of which are too complicated for



our purposes. Also ruled out are unificationist models [24], which do not provide a
constructive approach (and are also quite complicated).

We believe that the most promising explanation models are those based on cau-
sation; that is, to explain a phenomenon means to identify what caused it. The idea
that explanations reveal causes for why things have happened seems intuitive and goes
back at least to Plato [30]. Popular models in the philosophical study of causation are
based on causal graphs [16, 37]. In these models, explanations are represented by di-
rected graphs with variables as nodes (typically representing events or states), where
an edge leads from X to Y if X has a direct effect on Y. In our previous work we have
worked extensively with one such representation called neuron diagrams [27], formal-
izing and extending the language in [14] and designing a Haskell DSEL for creating
and analyzing neuron diagrams in [36].

While causal graphs are a useful and expressive explanation model, they also place
a navigational burden on the user. That is, a user must decide which nodes, edges, or
paths to look at and in which order. A more linear representation is simpler and easier
to understand but also less expressive.

Our explanation-oriented focus and the selection criteria stated above lead us to
choose a more linear view of causation and ultimately to the story-telling model of
explanation. Specifically, we represent an explanation as a sequence of points in a story,
where each point corresponds to some state. We move from point to point through the
story by an interleaved sequence of state-modifying steps that guide the reader from
the initial state to the explanandum.? In designing domain-specific languages, we often
embrace limited computational generality to achieve a close fit with the target domain.
Likewise for explanation-oriented DSLs, we embrace a less general explanation model
if it fits the needs of our domain, leading to simpler and thus more understandable
explanations. The intuitiveness of this model is supported by empirical evidence that
suggests that presenting facts and explanations in the form of a story makes them more
convincing and understandable [28].

The story-telling model is also constructive in that it suggests a path for realiza-
tion within a particular domain. Specifically, we must identify (1) some notion of
state within the domain that will be manipulated throughout the story, and (2) a set
of composable operations for defining the transitions at each step. Tying this back to
the linearized notion of causal graphs, we must essentially realize the representation of
the nodes (which correspond to states in the story-telling model) and the edges (which
correspond to operations). The explanation of the three-coins problem presented in
Section 1 demonstrates our adaption of the story-telling model to the domain of prob-
abilistic reasoning. The state, shown at each point in the explanation, is a probabilistic
distribution, while operations correspond to the annotated steps between states.

The story-telling model also suggests a distinction between two different levels of
notation. An explanation is sufficiently defined by its initial state and the sequence of
operations that eventually transform it into the explanandum, which we call the plot.
For example, the plot of an explanation of how an omelette is made might list the
ingredients and directions for how to make one. However, the presentation of an ex-

2The thing that is to be explained.



planation, or the story, must also include intermediate states generated by each step.
For example, a story explaining the creation of an omelette might show a sequence of
illustrations demonstrating each preparation and cooking step that transforms the ingre-
dients into the finished omelette. This distinction between definition and presentation,
or plot and story, is reflected in the two notations of Probula.

4. A Language for Explaining Probabilistic Reasoning

In this section we describe how each of the language features motivated by the
story-telling model—state, state-transforming operations, and a distinction between
story and plot—are represented both visually and formally. We begin with the represen-
tation of state as probability distributions in Section 4.1 and of distribution-modifying
operations in Section 4.2, which together lead to a notion of distribution graphs that
serve as the abstract syntax of stories in Probula. In Section 4.3 we introduce a lim-
ited form of branching to Probula stories, enabling the exploration of choices between
probabilistic outcomes in explanations, something which is common in probabilistic
reasoning. Finally, in Section 4.4 we bring everything together by formalizing the ab-
stract syntax of stories as distribution graphs, presenting a simple textual notation for
representing plots, and a semantics function for generating a story (distribution graph)
from a plot and an initial distribution. Throughout this section, we also discuss the con-
crete syntax of the visual notation, pointing out and motivating the important design
decisions and visual metaphors used.

4.1. Probability Distributions

Each point in a Probula story is represented by a typed, discrete probability distri-
bution. A distribution D over a discrete random variable of type A is a set of pairs (x, p)
where x: A and Y ¢ ue(p) P = 1.3 We write the type of D as (A). For readability, when
we write distributions explicitly we render each pair (x, p) as x” where p is expressed
as a percentage, and list all such pairs in D between angle brackets. For example,
Icoin = (H%°, T40) is the distribution of a loaded coin that lands on heads with 60%
probability. In this example, lcoin has type (C) where type C has values {H,T}.

Visually, we represent a distribution using the common metaphor of spatial parti-
tioning. A horizontal area is partitioned into blocks, where each block corresponds to,
and is labeled by, a different value-probability pair in the distribution (therefore, we
often refer to these pairs in the formal notation also as blocks) and where the area of
each block is proportional to its probability. Spatial partitioning is a good metaphor for
representing distributions since it directly captures many abstract probabilistic axioms.
For example, the sum of the areas (probabilities) of all blocks equals the area of the
entire distribution (which represents 100% probability), and as the area of one block
increases, the area of other blocks must necessarily decrease. From the perspective of
operations that will transform this state, we can view the probability space as a resource
that operations can split, merge, and redistribute amongst values.

3This representation is isomorphic to a probability mass function, A — [0..1]. Also note that we access
the domain and range of a set of pairs with dom(-) and rng(-), respectively.



In addition to standard distributions, we also introduce a notion of grouped distri-
butions, an example of which can be seen as the explanandum (final state) of the ex-
planation in Figure 1. A grouped distribution is a distribution whose blocks have been
consolidated into one or more groups. In the visual notation, we represent grouped dis-
tributions by drawing thick borders around each group and by eliminating the thinner
lines between blocks in the same group.

We indicate a grouped distribution D in the formal notation with boldface. An
ungrouped distribution D : (A) can be grouped (by the group operation, see Section 5.2)
according to a grouping function g : A — T that maps values in D onto some type T
whose elements can be checked for equality. All values that map to the same 7 : T
will be put in the same group. For example, the grouping function used to produce
the explanandum in Figure 1 is a predicate from sequences of coin values to a boolean
value indicating whether or not one of the coins is tails, which we write as C* — Bool.
We represent a group by a pair (¢#,X) where X = {(x,p) | (x,p) € D, g(x) =1}. A
grouped distribution D is then a set of groups. We write the type of D, a distribution
of type (A) grouped according to a type T, as (A)” . For example, the type of the final
grouped distribution in the example is (C*)5°',

In the visual notation, a group is labeled by the set of the values it contains and the
sum of their probabilities. While the latter is not represented explicitly in the formal
notation it can be easily derived. Note also that the grouping value ¢ is not shown
explicitly in the visual notation.

Grouped distributions give us a way to visually organize or categorize the blocks
in a distribution for the purpose of enhancing an explanation, but they do not signifi-
cantly affect the underlying distribution from a mathematical perspective. A grouped
distribution D is just a lightweight view imposed on the original distribution D, and
we can easily recover D by simply removing this view, D = |Jrng(D); this is the pur-
pose of the ungroup operation presented in Section 5.5. Alternatively, we can consider
plain distributions as a special case of grouped distributions, grouped by the iden-
tity function. That is, D : (A) is similar to a grouped distribution D : (A)*, where
D = {(x,{(x,p)}) | (x,p) € D}. Because of these similarities and since it is conve-
nient, we often refer to both plain and grouped distributions as simply “distributions”
(and range over these with D), unless the distinction is important. We always distin-
guish between the types of plain and grouped distributions, however, so despite the
similarity above (A) # (A)*

4.2. Operations

While each point in a story is represented by a distribution, the structure and pro-
gression of the story (its plot) is fundamentally determined by its operations, which
describe the steps from one point in the story to the next. An operation can therefore
be viewed as a function from one distribution to another. In the following we refer to
the ith operation in the plot as o0; and the function implementing this operation as f;;
we use D;_; for the (plain or grouped) distribution at the preceding point in the story
and D; for the subsequent distribution, generated by applying f;(D;_1).

At the non-visual plot level, f; is a sufficient description of an operation. In the
visual story notation, however, operations are a bit more intricate. In addition to the



name of the operation (generate, filter, group, etc.) and a brief annotation describing the
transformation it performs, the visual representation of a step from one point to the next
includes edges between the blocks in the distributions D;_; and D;. This reflects the
convention of data flow diagrams, making explicit the flow of values (possibly modified
by the intermediate operation) from one distribution to the next. The basic story telling
model implies a representation of state and a set of state-manipulating operations, with
the idea that each operation will be small and simple enough to understand in isolation.
In Probula, we extend that basic model with an explicit representation of the state
transformations produced by the operations. In other words, instead of just showing
each point in the story (as we did in our textual DSEL [12]), edges in Probula describe
how each step produces its subsequent story point, allowing readers to direct their effort
on more important aspects of the explanation.

In addition to the subsequent distribution D;, each operation o; generates a set of
edges E; where each edge is a pair (v,w) where v € dom(D;_1) and w € dom(D;) U{L}.
An edge (v, L) represents a terminating edge, an edge from D,_ that does not connect
to a block in D; but ends instead with a horizontal bar. This indicates a value in D;_
that does not flow to the next distribution, for example, because it was filtered out,
as seen in the filter step of the explanation in Figure 1. Note that since values in a
distribution are unique, we can uniquely identify a block in a plain distribution by its
value. For grouped distributions, we connect edges to groups rather than blocks, and
each group can be uniquely identified by its representative value 7.

The meaning of an operation o; from the perspective of story generation is therefore
not just f;, but a function from D;_; to the pair (E;, D;). We call this function the story
semantics of the operation, written [o;]. In Section 5 we will define the story semantics
of all of the operations in Probula.

Note that although each operation has an associated annotation, we do not capture
this in the formal representation above. While it would be trivial to add an annotation
value to the representation and story semantics of each operation, this would clutter
the notation without adding any real benefit. More significantly, however, we do not
consider the automatic transformation of annotations in Section 6. Instead annotations
are considered a purely secondary notation [15], that is, a way to convey information
outside the constraints of the formal notation.

We call a sequence of distributions and block/group-connecting edges a distribution
graph, and these form the abstract syntax of Probula’s visual notation. A simplified
view of distribution graphs follows directly from the definitions of distributions and
operations above. A plot can be viewed as a sequence of operations oy, ...,0k, from
which a distribution graph (Do, E,Dy,...,Ey, D) can be generated by mapping the
story semantics across the operations and reducing the list with function application
and the initial distribution Dy (saving the intermediate edges and distributions). Now
we add another wrinkle to Probula stories, however, in order to represent a new class
of probabilistic reasoning problems.

4.3. Story Branching

Many probabilistic reasoning problems involve a question of choice—a scenario is
established and the reader is asked which course of action has the best expected benefit
to the actor in the scenario. One of the most famous (and famously misunderstood)
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Figure 2: Explanation of the Monty Hall Problem.

examples is the so-called “Monty Hall Problem” [10, 17, 26]. In this scenario, a game
show host presents a contestant (the actor) with three doors, one of which hides a prize.
The contestant selects one of the doors, then the host opens one of the remaining two
doors that does not contain a prize. The contestant is then presented with a choice:
stay with the originally selected door or switch to the other closed door? Most people
believe that switching doors makes no difference, but this is incorrect—switching doors
doubles the contestant’s chance of winning from 33'% to 66% %.

A Probula explanation for the Monty Hall Problem is presented in Figure 2. It in-
troduces two new operations and the concept of story branching. The story reads as
follows: Initially, there are three possibilities to consider—either the prize is hidden be-
hind the first, second, or third door—and each case is equally likely. This is represented
by an initial distribution where each value is a triple with elements corresponding to
doors; $ indicates the door containing the prize (unknown by the contestant), and 0
indicates a door without a prize. In the first step, we select one of these cases as a
representative example of the problem since for the purposes of probabilistic analysis,
it does not matter which door the prize is behind, just that one of the three doors con-
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tains a prize. In other words, the three cases are isomorphic.* The next two generator
steps represent the contestant initial selecting a door and the host opening a prizeless
door. The selected door is represented visually by underlining, while the opened door
is outlined in a small rectangle. Note that when the contestant has chosen the door
with the prize, the host can open either one of the other two doors, while he has no
such choice in the other two cases (he must open the remaining door not containing the
prize). The generator will therefore split the block in half in the first case, and leave the
probability unchanged in the other two cases. Next, we group the results according to
whether or not the contestant is currently unknowingly winning the prize or not. This
brings us to the choice point, represented in Probula by a branch in the story. In the left
branch, the contestant does not switch doors, while in the right branch, the contestant
switches. Finally, we map the potential outcomes in each branch onto the values “Win”
and “Lose”, indicating whether or not the contestant won the prize. By comparing the
explananda at the end of each branch, we can see that switching doors leads to a 66.7%
chance of winning, while not switching doors leads to only a 33.3% chance of winning.

Visually, we represent story branching by showing both possible paths for the story
to take, separated by a dotted line. One branch is always preferred in that the edges
from the last unbranched distribution lead to the first distribution in only one of the two
branches, and step annotations are shown only for the step to the preferred branch. This
is simply to reduce noise in the visual notation. An interactive implementation would
allow readers to change the preferred branch. Additional annotations (in parentheses)
are provided to label each alternative in the branch, to help the reader understand the
choice that the branch represents.

Branching fundamentally extends the expressiveness of Probula by allowing us
to explain a class of real-world-applicable problems concerned with making the best
choices in the face of probabilistic information. However, the verbose notation clearly
will not scale beyond only a very small number of branches. This is an intentional
design decision, consistent with our emphasis on explainability over other qualities.
By embracing the mostly-linear story-telling model, we embraced explainability over
expressiveness. With branching, we give some of that expressiveness back, but our
particular choice of notation sacrifices scalability to avoid compromising the simplic-
ity and explicitness of the explanations. These sorts of design trade-offs are expected
when designing languages for usability [15].

Having demonstrated branching in the visual notation at the story level, in the next
subsection we extend the formal representations of plots and distribution graphs to also
incorporate branching. We also tie this entire section together with a semantics function
for producing stories from a plot and an initial distribution.

4.4. Distribution Graphs, Plots, and Stories

As described in Section 1, the visual notation of Probula tells a story intended to
be read by an explanation consumer—someone who presumably does not understand
the problem being explained. For this end-user, the visual notation is the only aspect

4Using Theorem 11, users can generate alternative explanations if they are not convinced of this. For an
example, see Figure 10 in Section 6.7.
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of Probula they need ever see. However, we have made a point of distinguishing the
visual notation of stories in Probula from the formal/textual notations of plots and
distribution graphs, which have different intended audiences. Plots are created by
explanation producers—domain experts who understand the problem to be explained
and want to explain it to others. A plot is essentially an explanation-producing program
while a story is the result of executing that program. Distribution graphs are a formal
representation of the abstract syntax of stories, and are used mainly by us, as language
creators, to define the language of Probula, formally describe the relationship between
plots and stories, and discuss the transformation of stories and plots. In this subsection
we will complete the definitions of plots and distribution graphs, and relate the two by
extending the story semantics of operations (see Section 4.2) to plots.

In Section 4.2 we said that the plot of a story (its structure and progression) is
fundamentally determined by its operations. In Section 5 we catalog and define these
operations; here, we consider their organization. Primarily, we compose operations
into plots via a right-associative sequencing operator >, terminated by the end-of-plot
symbol €. To produce branched stories like the explanation of the Monty Hall Problem,
a plot branching operator : is provided. A simplified grammar for plots is given below,
using o to range over operations.

P = ¢ End of Plot
| o>P Plot Sequence
|

P:P Plot Branch

The grammar is simplified in that it does not encode the syntactic constraints that only
some operations can be applied to grouped distributions—while these constraints could
be encoded in the grammar, we prefer to enforce them separately to keep the grammar
clear and simple. Note also that the syntax allows for empty plots (€) that produce triv-
ial, single-distribution explanations, and that it does not restrict branching in any way,
despite the lack of scalability in corresponding stories. It is the explanation creators’
responsibility to use branching judiciously, to keep explanations understandable.

The formal notation of distribution graphs follows directly from the definition of
plots, and the notations are almost structurally identical. We reuse the sequence and
branch symbols from plots directly since their meaning is similar here and since it is
always clear from the context which language we refer to.

G = D Explanandum
| (D,E)>G Story Sequence
| G:G Story Branch

Graphs terminate in an explanandum and each step in a story sequence is represented by
a pair of a preceding distribution and a set of edges connecting it to the next distribution
in the sequence. Note that this representation introduces a small amount of redundancy
when representing branches since the distribution immediately preceding a branch in
the story will be represented multiple times (once at the beginning of each branch) in
the graph. This representation is chosen because it leads to a more straightforward
semantics function.

We define the story semantics of an operation o; in Section 4.2 to be a function
[oi] : D— (E,D) from a preceding distribution D;_ to a pair containing the subsequent
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Syntactic Category ~ Semantics Domain  Description of Semantics Function

D A —1[0..1] probability mass function

0 D — (E,D) story semantics of an operation
P D—G story semantics of a plot

G (D,D*) limits of a distribution graph

Figure 3: Summary of denotations of constructs in the formal notation.

distribution D; and a set of edges E; connecting the two distributions. We use this
definition to extend the notion of story semantics to plots. The story semantics of a
plot P is a function from an initial distribution to the distribution graph representing
the abstract syntax of the generated story, [P] : D — G. In the following, [-](D) means
to apply the function returned by [-] to D.

[el=AD.D
[o>P] = AD.(D,E)>[P](D') where (E,D") = [o] (D)
[P:P]=AD.[P](D):[P](D)

For the base case, we simply return the argument distribution as the explanandum when
the end of the plot is reached. For branches, we recursively compute the story seman-
tics of each branch and compose the results with a corresponding branch in the graph.
For plot sequences, we compute the story semantics for the current operation and ap-
ply that function to the preceding distribution, yielding the next distribution and a set
of connecting edges. We use these to create a story sequence in the graph and then
recursively compute the semantics of the rest of the plot. Using this semantics function
we can generate a story given a plot and an initial distribution.

Finally, when describing transformations in Section 6, we will need to talk about
whether or not a transformation preserves the meaning of the affected part of the dis-
tribution graph. This poses two requirements: (1) a notion of a distribution subgraph,
and (2) a definition of the semantics (meaning) of a subgraph. The first is straight-
forward; given a distribution graph (Do,E;)>...>(D;—1,E;)>...> D, we can obtain
the subgraph corresponding to steps j through k < n as (D;j_i,E;)>...>Dy. For the
second requirement, there are many possibilities. We define define the semantics of a
(sub)graph G to be its limits, written lim(G), defined as the pair of G’s initial distri-
bution and a sequence D* of the explanandum at the end of every branch in G. For
the simple and common case where G is a k-step story without branching, the limits of
the graph will therefore be the pair (Do, Dy). Thus, when we say that the meaning of
a subgraph is preserved over some transformation, we mean that the subgraph begins
and ends in the same place, although it will presumably change in the middle. This is
important for ensuring the locality of transformations.

We conclude this section with a summary of the semantics of the major constructs
introduced throughout this section, given in Figure 3.
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o = Ae Generate
| Yg Group
| *f Map
| ?p Filter
| A Ungroup
|

'x  Example

Figure 4: Probula operations.

5. Catalog of Operations

At the heart of the story-telling model is the idea that a story can be told as a se-
quence of steps where each step can be easily understood on its own, allowing the
reader to focus on the progression of the explanation from the beginning to the ex-
planandum. For explaining the domain of probabilistic reasoning, we identified six
types of these steps, implemented as distribution manipulating (and distribution graph
generating) operations. In this section we will discuss each of these operations in
turn, defining them formally and describing their representation in the visual nota-
tion. We will also describe the syntactic constraints on each operation (mentioned in
Section 4.4), since some operations can only be applied to either plain or grouped op-
erations, but not both.

Probula’s six operations are listed in the syntax definition in Figure 4, in the order
that they will appear in this section. Operations are distinguished in the formal notation
by a prefixed symbol and may include an argument, usually a function, defining the
behavior of the operation. In the syntax, the metavariables e, g, f, and p all range over
functions, but each have different constraints on their types. These constraints will be
discussed in the context of their associated operations and are also summarized later in
Section 5.7. The metavariable x ranges over distribution values.

Recall from Section 4.2 and Figure 3 that the story semantics of an operation o; is a
function from the preceding distribution D;_ to a pair of the subsequent distribution D;
and the connecting edges E;. In this section, we will define the story semantics of each
operation explicitly. When discussing the interaction of types in an operation, however,
we will usually refer to just the distribution transformation—the function from D;_
to D;, omitting the edges which carry no interesting type information. In Section 5.7
we will summarize the types of the distribution transformations of all of the operations
presented in this section.

5.1. Generate

A generator Ae introduces new probabilistic events into a plain distribution. The
event generating function e : A — (B) maps the values in the preceding distribution
D: (A) to distributions of type (B), where B is usually derived in some way from A. The
distributions produced by e are concatenated and scaled according to the probabilities
of the original values in D, in order to produce the resulting distribution D' : (B).
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As an example, consider the definition of the second generator in the explanation
of the Monty Hall Problem in Figure 2, in which the host opens a door that was not
chosen and does not contain the prize. This operation can be defined as AopenDoor
with the function openDoor defined below (using pattern-matching).

openDoor($00) = <§@050,§0@50>
openDoor($00) = <$Q@IOO>
openDoor($00) = ($[0]0'%)

If the contestant has selected the door with the prize, there is a 50% chance of the host
opening either remaining door. However, if the contestant has chosen a door without
the prize, then there is a 100% chance of the host opening the other prizeless door. The
effect of applying AopenDoor to its preceding distribution can be seen in Figure 2.

Often a generator simply extends a distribution of sequences A* with a new proba-
bilistic A value. For example, each of the three generators in the three coins problem in
Figure 1 adds a new coin flip to the distribution. We can represent a coin flip with the
following event generating function flipCoin : C* — (C*) that appends heads or tails to
the sequences in the existing distribution with 50% probability each.

flipCoin(x) = (xH>,xT%)

For these simple sequence-extending cases, we can automatically derive an event gen-
erating function of type A* — (A*) given just the distribution of the new value to append
D: (A). Since this case is very common, we introduce as syntactic sugar the notation
AD for ae where e = Ax.{(xy, p) | (v, p) € D}. Using this, we can define the first three
steps of the plot for the three coins problem as Acoint> Acoin> Acoin where coin : (C)
is the distribution (H,7°°).

The story semantics of a generate operation Ae is given explicitly below. Edges
are defined between every value x in D and every y produced by e(x). The probabilities
in the resulting distribution D’ are scaled by multiplying the original probabilities in D
with those in the distributions generated by e. We also have to add the probabilities for
identical y values that are produced by different invocations of the generator. This is
done in the definition of D",

[ae] = AD.(E,D")
where E = {(x,y) | x € dom(D), y € dom(e(x))}

D' ={((x,y);pq) | (x,p) €D, (y,9) € e(x)}
D' = {(yaZ((x,z),p)GD/,z:yp) | MAS rng(dOm(Dl))}

Visually, we represent edges in generate steps by collapsing the common tails of edges
from the same source x, emphasizing the idea that generators partition or split blocks
in the probability space when a value in D leads to more than one value in D”.

5.2. Group

A group operation Yg transforms a plain distribution D into a grouped distribution
D'. As described in Section 4.1, grouping introduces a simplified view of a distribution,
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hiding some of its underlying structure by visually merging sets of blocks into groups
in order to emphasize some aspect of the explanation. Unlike generators (and most
other operations), grouping does not fundamentally modify the underlying probability
distribution. The operation is provided purely to support the explanation of probabilis-
tic situations rather than their computation.

The operation’s argument is a grouping function g : A — T that maps values in
D : (A) onto some type T whose elements can be checked for equality. When several
values in D map to the same ¢ : T, their blocks will be placed in the same group (repre-
sented by ¢) in the resulting grouped distribution D’ : <A>T. These blocks will then be
shown merged in the visual representation, and labeled by the sum of their probabilities.
For example, we can represent the final step of the explanation of the three coins prob-
lem in Figure 1 by the operation YhasTails, where the predicate hasTails : C* — Bool
is true if its argument coin sequence contains at least one tails value and false other-
wise. In the visual notation, the blocks of the three sequences that satisfy hasTails are
grouped together in the explanandum, and the probability of the group is the sum of its
component blocks. The remaining block (that does not satisfy the predicate) is isolated
in its own group. We also distinguish grouped distributions visually by drawing the
distribution with thick borders indicating that the view imposed by the group overrides
the standard representation of the distribution.

Recall from Section 4.1 that a grouped distribution is represented by a set of groups.
Each group is a pair (¢,X), where 7 is the grouping value produced by g (true or false
in the hasTails example above), and X is the set of blocks contained in the group. We
build a grouped distribution D’ from a preceding plain distribution D and the grouping
function g in the story semantics of group operations below.

[Yel = AD.(E,D")
where E = {(x,g(x)) | x € dom(D)}
D' ={(t,{(x,p) | (x,p) €D, g(x) =1}) |1 € {g(x) | x € dom(D)}}

We connect edges to blocks in plain distributions and to groups in grouped distribu-
tions, using values to address blocks and grouping values to address groups (see Sec-
tion 4.2). This is demonstrated in the definition of E, where we produce an edge from
each block in D to its corresponding group in D’.

There are some differences between the structural representation of grouped distri-
butions in the abstract syntax (distribution graphs) and their rendering in the concrete
syntax (visual notation). One is that a group’s representative value ¢ is not reflected in
the visual notation. We could imagine, for example, replacing the values displayed in
a group by their common grouping value ¢. This would introduce a mechanism for ab-
straction that might sometimes be useful in representing more complex problems. We
choose not to do this for a couple reasons: (1) similar (but irreversible) functionality
is provided already by the map operation, discussed in Section 5.3; and (2) there is a
trade-off between introducing abstraction and mapping closely to our domain of prob-
ability distributions [15]. For a language focused on explainability, we again prefer
simplicity, concreteness, and a high closeness of mapping over generality and scalabil-
ity. Grouping values are needed in the abstract syntax, however, for edge addressing,
as seen above, and for the filtering of grouped distribution, discussed in Section 5.4.

16



Another difference between the abstract and concrete representations of grouped
distributions is that in the visual notation we display the probability of a group as
the sum of the probabilities of the blocks it contains. This reflects that the primary
purpose of grouped distributions, from an explanation standpoint, is to reduce the need
for readers to perform hard mental operations [15] by organizing distributions into the
relevant cases explicitly. We do not represent this sum explicitly in the abstract syntax
since it can be easily derived.

5.3. Map

While the generate and group operations may only be applied to plain distribu-
tions, the map operation (and filter in the next section) can be applied to either plain
or grouped distributions. When applied to a plain distribution, a map operation * f
transforms D : (A) by applying the function f : A — B to each value in the distribution,
producing a new distribution D’ : (B). When applied to a grouped distribution D : (A)T,
map behaves similarly, applying f to every value within every group, preserving the
grouping and producing a distribution of type D’ : (B)T. We will consider the plain
distribution case first and adapt this to grouped distributions afterward.

If f is one-to-one, the structure of D is unchanged by a map operation. That is, D/
will have the same number of blocks as D and each will have the same probability—
only the values in D will be changed. This is equivalent to the traditional functional
programming view of mapping a function over a list or other data structure.

If f is not one-to-one, however, the blocks of A values that map to the same B value
will be merged; that is, the probability of a value y : B in D’ will be the sum of the
probabilities of all the x values in D for which f(x) =y. For example, consider the
following distribution of coin sequences, produced by applying the generator sequence
Acoin> Acoin to an empty initial distribution.

twoCoins = (HH> ,HT® , TH* , TT>) : (C*)

Suppose we also have a function countTails : C* — Int that returns the number of tails
values in a sequence of coin flips. Applying *countTails to twoCoins yields the follow-
ing plain distribution of integers.

numTails = (0%,1%°,2%) : (Int)

In this way, a map can function similarly to a group operation, except that it actually
changes the values and structure of the underlying distribution, so the original cannot
easily be recovered. If instead we apply Y countTails to twoCoins, we get a distribution
of coin sequences, grouped by integers.

(0. {HH}), (1,{HT® ,TH?}), (2 {TT**})) : (€)™

This overlap in functionality leads to a design decision for explanation creators of
whether to employ a map or group operation when combining events.

When choosing between map or group, if subsequent steps in the story fundamen-
tally rely on the combined result (that is, if the combined value is needed as input in a
later generate or map step) then a map operation must be used. On the other hand, if the
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combined result is needed only for explanatory purposes, to categorize the events into
equivalence classes, then a group may be better since it directly shows the values that
make up the cases instead of abstracting these away in the combined value. To demon-
strate this, consider again the final step of the explanation of the three coins problem
in Figure 1. If we had applied *hasTails instead of YhasTails at this step, we would
have produced the less useful plain distribution (false25 ,true’) instead of the grouped
distribution shown.

To define the story semantics of the map operation, we first introduce a helper func-
tion map : (A — B) x (A) — (B) that maps a function over a plain distribution, merging
blocks that map to the same values by summing their probabilities, as described above.

map(f.D)={(y, Y, p)|y€{f(x)|x€dom(D)}}

(x,p)eD
flx)=y

With the heavy lifting off-loaded to map, the definition of the story semantics for * f
when applied to a plain distribution is mostly trivial.

[#/] = AD.(E,D)
where E = {(x,f(x)) | x € dom(D)}
D' = map(f,D)

The edges for a map operation connect each block in D to its corresponding block in
D’. Thus, every block in D will have one departing edge while blocks in D could have
potentially many arriving edges, if f is not one-to-one.

When applying *f to a grouped distribution D, we just apply our helper function
map to the subdistribution X contained in every group (¢,X), thereby mapping f first
over the groups in D, then over the values in those groups. Note that each X is not
properly a distribution since its probabilities do not sum to 1, but that this use of map is
still valid since X is structurally identical to a distribution and since map does not rely
on its argument representing a complete sample space.

[*f] = AD.(E,D)
where E = {(¢,¢) | (¢,X) € D}
D = {(l,map(f,X)) ‘ (taX> ED}

A subtle feature of this implementation is that maps act locally with regard to groups.
That is, if two values in D map to the same value through f, they will only be merged
in D’ if they were already in the same group. If they were in different groups in D,
however, they will remain in different groups in D’ and thereafter, until a subsequent
ungroup operation (see Section 5.5).

Concerning edges for maps applied to grouped distributions, we draw only a single
edge between corresponding groups in D and D', regardless of the effect of f on the
values contained within. For example, see the last two steps of the Monty Hall expla-
nation in Figure 2. This is to reduce visual noise in the explanation and provides a way
for explanation creators to indicate that all values in a group are affected in a similar
way by the map operations.
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5.4. Filter

Like map, the filter operation can be applied to either plain or grouped distributions,
and has a different story semantics for each case. Again, we consider the case for plain
distributions first, then adapt it to grouped distributions.

A filter operation ?p transforms a plain distribution D : (A) by removing blocks
from D according to the predicate p : A — Bool. The area of the removed blocks is
redistributed proportionally among the remaining blocks in the resulting distribution
D' : (A). For example, recall the distribution numTails = (0%3,1°,22%) from the pre-
vious subsection. Applying the filter ?isPos to numTails, where isPos : Int — Bool is
true if its argument is greater than zero, yields the distribution (1°0-7,233-3) Note that
the ratio of the probabilities of the values that pass through the filter is preserved in the
resulting distributions.

The story semantics of the filter operation when applied to a plain distribution is de-
fined below. In the definition, the constant c represents the proportion of the probability
space that is not filtered out by the predicate. This is used to scale the probabilities of
the remaining values.

[?p] =AD.(E,D')
where ¢ = Z(x,q)ED,p(x)q
E ={(x,x) | x € dom(D),p(x)} U{(x,L) | x € dom(D),—p(x)}
D' ={(x,q/c) | (x,q) € D,p(x)}

As described in Section 4.2, edges from blocks eliminated by a filter end with termi-
nating bars while edges from blocks whose values pass the predicate are connected to
their corresponding blocks in the subsequent distribution.

For grouped distributions, filters work slightly differently, filtering out whole
groups of values at once. Thus, the type constraints on a filter operation ?p applied
to a grouped distribution D : <A>T are slightly different. The predicate p must have
type T — Bool instead of A — Bool, since the predicate is on the grouping values
rather than the values in the underlying distribution. Often, a filter is performed imme-
diately after a group, where the grouping function is the predicate and the argument to
the filter operation is just Az.r = true. This accentuates the effect of the filter, grouping
together all of the elements that will and won’t pass the filter, and presenting the sum of
each groups probabilities. Section 6.5 provides an example of this explanation strategy.

The story semantics of filtering a grouped distribution are given below. Again, ¢
accumulates the proportion of the probability space that passes the filter and is used to
scale the probabilities of values in the resulting distribution.

[?p] =AD.(E,D")

where ¢ = Z(t,X)ED,qErng(X),p([)q
E ={(t,t) |t €edom(D),p(t)}U{(t,L) |t € dom(D),—~p(t)}
D' ={(t.{(x,q/c) | (x,q) € X}, (t.X) €D, p(t)}

Edges for the grouped distribution case are similar to the plain distribution case, except
connecting between groups rather than blocks.
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5.5. Ungroup

An ungroup operation A removes the view imposed by a previous group operation
by transforming a grouped distribution back into a plain distribution. That is, it defines
the distribution transformation (A)” — (A). This is almost, but not quite as simple
as taking the union of the subdistributions contained in each group, as originally de-
scribed in Section 4.1. The hitch is that sometimes a map operation can map values in
different groups to the same value—we must merge these during the flattening process
by summing their probabilities as if the map had been applied to a plain distribution.
To do this, we can reuse the map helper function defined in Section 5.3.

In the following story semantics for the ungroup operation, we build an intermedi-
ate plain distribution of type (T x A) in which each value x is prefixed by the value ¢
of its group in the previous distribution. This allows us to flatten the distribution while
ensuring that every value is unique. We can then attain the desired distribution of type
(A) by invoking the helper function map with the function snd that returns the second
value of a pair. This will combine values that were the same but in different groups in
the original grouped distribution, accumulating their probabilities.

[Al = AD.(E,D")
where E = {(t,x) | (t,X) € D, x € dom(X)}
D' = map(snd,{((t,x),p) | (t,X) €D, (x,p) € X})

We produce an edge leading to each block in the ungrouped distribution from its con-
taining group in the grouped distribution.
An example use of the ungroup operation will be provided in Section 6.5.

5.6. Representative Example Selection

Like the group and ungroup operations, the final operation in Probula is not strictly
needed for computation with probabilistic distributions (unlike the other three opera-
tions), but rather to support the creation of effective explanations. The operation !x
means to select the value x as a representative example from the previous plain distri-
bution. This operation is used when all of the cases in a distribution are isomorphic
and equally probable, simplifying subsequent distributions throughout the explanation
by assuming a single case rather than considering all cases simultaneously.

A typical example of this operation’s use is provided in the first step of the explana-
tion of the Monty Hall Problem in Figure 2. In the initial distribution, we represent that
the prize could be hidden behind any one of the three doors, each with equal probabil-
ity. The important observations are that (1) it does not really matter which door hides
the prize and (2) the probabilities of winning or losing are the same for any one case
as for the problem as a whole. We could confirm this by removing the second step of
the plot and observing that the number of values in subsequent distributions would be
multiplied by three (and their probabilities correspondingly divided by three), but that
the final probabilities in the explananda would remain unchanged.

Given the above description, it should be obvious that there are significant con-
straints on when we can employ the representative example operation. Fortunately,
these constraints are easy to check and enforce. Given a preceding distribution D and
a plot ! x> P where (x, p) € D, we require that V(y,q) € D, p = ¢ and the limits of the
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distribution graphs [P](({x'%°)) and [P]({y'?’)) are the same. The second of these con-
straints reveals the story semantics of the operation, given below, in which we simply
create a new distribution where the value x has 100% probability.

['x] =AD.(E,D)
where E = {(y,x) | y € dom(D)}
D = <x100>

The edges generated by a representative example step are also trivial, but we represent
them in the visual concrete syntax by merging their heads and making the line from the
chosen example block bold.

The representative example operation requires a somewhat deeper understanding
or intuition of probabilistic reasoning to accept in isolation. In Section 6.7 we present a
simple transformation for changing the particular example chosen as a representative.
This can help to convince the readers of an explanation who do not immediately see
the isomorphism between the cases.

5.7. Summary

The operations presented in this section can be separated into two classes of three
operations each, according to their primary role in the creation of explanations of prob-
abilistic reasoning. The generate, map, and filter operations represent probabilistic
computations. These operations manipulate the values and probabilities in distributions
directly; that is, they are primarily concerned with the computation of results essential
to the explanation. The group, ungroup, and example operations are concerned instead
with the presentation of explanations. Group and ungroup manipulate a grouping view
overlaid on a distribution while the example operation reduces a set of equivalent cases
to a single representative case. These operations organize the computed results in order
to make the important points clear and the explanation understandable.

In Figure 5 we summarize the type information for each operation, including the
types of the distribution transformations (from input to output) and of the arguments to
each operation. Whether an operation is applied to a plain or grouped transformation
can be determined from the type of the input distribution ((A) is plain, (A)” is grouped).
Note that there are two entries for the map and filter operations since they can be
applied to either plain or grouped distributions, and their implementations, constraints,
and distribution transformations differ depending on this context.

In the next section we develop theorems for rearranging, merging, and introducing
these operations to automatically generate alternative but equivalent explanations.

6. Generating Alternative Explanations

One of the most important features of Probula is the ability to algorithmically trans-
form a single explanation, defined by an explanation creator, into many alternative,
equivalent explanations of the same probabilistic reasoning problem. This allows us
to bridge the gap between the two qualitatively different kinds of explanations dis-
cussed in Section 1. On one end we have explanations given directly from one person
to another. Personal explanations are extremely adaptable. The explainer can answer
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Name Syntax Input — Output Type Constraints
Generate Ae Ay — (B) e:A— (B)
Group Yg @ - @ g:A—=T

Map *f Ay — (B) f:A—B

Map' #f @’ - B f:A-B

Filter ?p A - (A p:A — Bool
Filter'  ?p A" - " p:T = Bool
Ungroup A @ = (A)

Example !x @ - (A x: A*

Group preserving variant.
*See also the constraints in Section 5.6.

Figure 5: Summary of operations and their types.

questions, rephrase points, clarify assumptions, and provide alternative examples. The
drawbacks of personal explanations are that they are inconsistent, time-consuming to
share, and often difficult to come by in the first place. At the other end are what might
broadly be called static explanations, those given in text or pictures, provided in a
book or on the web. These explanations are much less adaptable but make up for it
with higher consistency, availability, and shareability. In the middle, and intending to
complement both, are explanation stories like those provided by Probula.

Probula explanations can be presented as simple illustrations, as throughout this
paper, conferring the benefits of static explanations. But they are also highly adaptable,
able to transformed through a set of laws into alternative explanations that tell the same
basic story in a different way, emphasizing one point or another. In this section we will
present these laws, define what it means for an explanation to tell the same basic story,
and define some simple metrics for discussing the differences between tellings.

6.1. A Story and its Telling—Fabula and Sujet

Narrative is one of the most important and fundamental ways of sharing knowledge
and ideas. It is the basis not only of arts like literature and cinema, but also of history,
journalism, and the entire institution of academic authorship. It is the idea that infor-
mation can be conveyed as a story, that the same essential story can be told in different
ways, and that how that story is told impacts how it is perceived and understood.

The basic advantage of personal explanations can be boiled down to the fact that
a personal explanation’s narrative is flexible—it can be modified on the fly to suit the
particular needs of the situation. If the same person gave an explanation of the Monty
Hall Problem to three different people, she would likely tell three different stories.
The important point of this section, however, is that while these stories might differ in
their telling, they must also, as explanations of the same problem, share some common
essence. In narratology, this point is sometimes captured in the terms fabula, mean-
ing the basic facts or “raw material” of a story, and sujet, meaning how the story is
organized and told [5]. In our scenario, the fabula of the three personal explanations is
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constant while the sujet is likely to change between tellings, depending on the individ-
ual needs of the listeners and other factors.

In Probula, a plot and the story it generates correspond to a particular sujet—one
telling or view of a larger class of related stories with a common fabula. The laws pre-
sented in this section represent transformations from one sujet in this class to another.
Through the combination and repeated application of these laws, we can view a Prob-
ula explanation not just as a single story, but as a navigable space of different stories
that all explain the same basic problem.

The laws are defined as transformations of a part of a Probula plot (a subplot),
usually translating one sequence of operations into another. To help ensure that a law
preserves the underlying fabula of generated stories, we compare the limits of the dis-
tribution subgraph (see Section 4.4) generated by the affected subplot, before and after
the transformation. If the limits are the same, we say that the transformation is limit
preserving. While limit preservation does not capture the preservation of fabula di-
rectly, it does so indirectly by guaranteeing that a story transformation is strictly local.
Specifically, a limit preserving transformation affects only the intermediate distribu-
tions produced by a subplot and nothing else in the story.

Transformation locality is important for several reasons. First, it enables the com-
position of transformation laws—new Probula explanations can be generated not only
by applying the laws described in this section directly, but by composing these laws
into larger transformations, broadening the space of potential explanations. Second, it
allows us to consider the effect of a transformation independent of its context. In the
next subsection we will define a couple of simple metrics to support the isolated analy-
sis of a transformation and to frame its effects on the perception and understandability
of its generated stories.

6.2. Measures of Story Complexity

In order to quantify the effect of an explanation transformation, we introduce the
notions of the horizontal and vertical complexity of a distribution (sub)graph. These
metrics are not intended to measure the effectiveness or understandability of an expla-
nation directly, but to provide a way to quantify the effect that a transformation has on
an explanation, to support the comparison of transformations and other discussion.

The vertical complexity of a (sequential) distribution subgraph is simply the num-
ber of steps it contains. The horizontal complexity of a subgraph is the total number
of edges it contains divided by the number of steps. For example, consider the sub-
graph corresponding to the first three generate steps in the explanation of the three
coins problem in Figure 1. The vertical complexity of this subgraph is 3, while the
horizontal complexity is (2+4 4+ 8)/3 = 4.67. Note that the merging of the heads and
tails of edges in the concrete syntax has no effect on the computation of the horizontal
complexity of a subgraph.

Vertical complexity intends to capture the intuition that the length of an explanation
affects its understandability. A longer explanation presents more individual steps that
must be examined and understood, and increases the cognitive load when considering
the explanation as a whole. Horizontal complexity represents instead the average dif-
ficulty of understanding each step in the explanation. The reasoning is that steps with
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Figure 6: The three generators from Figure 1 fused into one.

more edges require more effort for readers to untangle and accept. Again, however, nei-
ther of these metrics are intended to absolutely quantify understandability—we cannot
take a graph with a vertical complexity of 4 and conclude that it is easier to under-
stand than an unrelated graph with a vertical complexity of 5 (even if their horizontal
complexities are identical). Instead we use complexity to discuss the relative under-
standability of graphs related through a transformation law.

As we will see in the rest of this section, most interesting transformations present a
trade-off between the vertical and horizontal complexity of an explanation. This means
that there is usually not a unique “best” explanation to be achieved; different explana-
tions fill different roles and have different benefits and drawbacks. Using the transfor-
mation laws presented below we can move between these different explanations. This
not only enables users to get the particular static explanations that work best for them,
but also to explore the explanation space and view many alternative explanations for
the same problem, increasing the value of Probula explanations further.

6.3. Operation Fusion

The first class of transformations we will consider follows from the observation
that often adjacent operations of the same kind can be merged by combining the effects
of their argument functions. We call this operation fusion. For example, consider again
the first three generate steps in the example in Figure 1. In Figure 6 we show how these
can be fused into a single generate step that represents the flipping of all three coins at
once. Adjacent generators, maps, and filters can all be merged. In this subsection we
will consider each of these in turn.

Recall that a plot transformation is considered valid if it preserves the limits of
the distribution subgraph generated by the affected subplot. When fusing two adja-
cent generators Aej and Aep, we must therefore identify an event generating func-
tion e3 such that if [[Aé’] > Aep I>P]] (D()) = (D(),El) > (D] ,Ez) > (D27E3) > G, then
[aes>P] (Do) = (Do,E}) > (D2,E3)>G. Such a function is defined in the following
theorem for fusing adjacent generate steps. Note that, throughout this section, we use
the symbol ~~ to indicate a directed, limit-preserving plot transformation and we omit
the common subsequent plot P from the notation. That is, we write a plot transforma-
tion 01 >...>0;>P ~» 0] >...>0} > P more concisely as 01 >...>0j ~ 0| >...>0,.

Theorem 1. Generator Fusion
ney>Aey > AAxA{(z,qr) | (v,q) € e1(x), (z,7) € e2(y)}
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Any number of adjacent generators can be fused by repeatedly applying this theorem.

That generator fusion is limit preserving follows directly from the story semantics
of plots from Section 4.4 and of generate operations in Section 5.1. The initial distribu-
tion Dy is trivially preserved. The preservation of D; can be confirmed by computing
and comparing the semantics of the LHS and RHS of the transformation. For the LHS,
we first compute the intermediate distribution D and use that to compute the semantics
of D», as follows.

Dy = [aer](Do) = {(y,pq) | (x,p) € Do, (v,q) € e1(x)}
Dy =[2ex](D1) ={(z,pqr) | (:pq) € D1, (z,7) € e2(y)}

For the RHS we compute D, directly.

Dy =[2es](Do) = {(z.pqr) | (x,p) € Do, (z.qr) € e3(x)}
where e3 = Ax.{(z,q7) | (,q) € e1(x), (z,7) € e2(y)}

Since the two resulting distributions are also identical, the transformation is limit pre-
serving. We will not work through the limit-preservation proofs of all the transforma-
tions as verbosely, but they can all be confirmed likewise by computing and comparing
the story semantics.

By fusing two generate steps into one, generator fusion trivially reduces the vertical
complexity of a story by one. To compute the change in horizontal complexity, we first
observe that the number of edges at any one generate step is equal to the number of
values in the produced distribution (D, above). For example, in Figure 1, the sizes of
the first three distributions after the initial distribution are 2, 4, and 8, and these are
also the number of edges in each of the three generate steps. Therefore, the horizontal
complexity of the story produced by the LHS of Theorem 1 is (|D; |+ |D2|) /2, while the
horizontal complexity of the RHS is |D;|. Additionally, we know that |D,| > |D; |, since
generators can only add values to a distribution. Therefore, the horizontal complexity
of the RHS is greater than (or equal to) that of the LHS by (|Dz| — |D1])/2.

In qualitative terms, the trade-off between vertical and horizontal complexity with
generator fusion is a trade-off between many small steps that incrementally build up
a complex distribution or fewer larger steps that do the same. We expect that the ex-
planatory value of each view is not constant throughout the process of reading and un-
derstanding an explanation. When an explanation is first presented, it might be helpful
to see how a complex distribution is produced from smaller steps. Once this aspect is
understood, however, the additional generators become visual noise that distract from
the more subtle and interesting parts of an explanation. Through generator fusion, the
user can take advantage of both views—seeing the more verbose explanation initially
and fusing generators together as they are understood.

Like generators, adjacent maps and filters can also be fused. For maps, we use the
composition of the two mapped functions as the argument to the new map operation.

Theorem 2. Map Fusion
Ffiv*fo~ *(fr0 f1)

We fuse adjacent filters by filtering with the conjunction of their predicates.
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Theorem 3. Filter Fusion
?p1>2py ~ 2Ax.p1(x) A pa(x)

That these transformations are limit preserving can be confirmed in the same way as
generator fusion, by expanding the story semantics of both sides of the transforma-
tions and comparing. As with generator fusion, these transformations trivially reduce
the vertical complexity of a story by one and increase (though again, not strictly) the
horizontal complexity of the explanation.

The number of edges in a filter or map step is determined not by the size of the
produced distribution, as with generators, but rather by the size of the input distribu-
tion. Assume a similar Dy and D, as above, for representing the identical limits of the
generated distribution graphs before and after map or filter fusion, and a similar D; for
representing the intermediate distribution produced by the plot on the LHS only. Then
the horizontal complexity of the graph before each transformation is (|Dg| + |Di])/2
while the horizontal complexity after each transformation is |Dy|. In this case, we have
the partial inequality |Do| > |Dy|, since maps and filters can only remove values from
distributions. So the horizontal complexity after each transformation is greater than
before by (|Do| — |D1])/2. These differences present a similar trade-off for explanation
consumers as generator fusion.

Note that given a suitable representation, it is also possible to split previously fused
generators, maps, or filters. However, such transformations are not possible in gen-
eral (that is, on operations that were not previously fused) unless we impose further
restrictions on these operations, making their arguments somehow decomposable.

6.4. Operation Commutation

In addition to fusing adjacent operations of the same kind, many operations can
be commuted with each other. These transformations present less clear explainability
trade-offs than operation fusion (or the transformations we will look at in the next
subsection) but they are often useful as preparatory steps to setup other transformations.
Therefore, we will present some commutation transformations here, relatively briefly.

Since filters do not affect the types of the distributions they modify, they can be
freely commuted with each other. Note that we use «~ to indicate a limit-preserving,
undirected plot transformation.

Theorem 4. Filter-Filter Swap
2p1>2ps e Ipa>2py

That this transformation preserves the limits of the corresponding distribution subgraph
is obvious—in either case, the resulting distribution contains only the values that pass
both predicates. Observe that this theorem can also be viewed as a corollary of Theo-
rem 3 (Filter Fusion) since applying that transformation to both ?p;>?p; and ?p,>?p;
will result in the same fused filter operation.

Like all commutation transformations, filter swapping has no effect on the vertical
complexity of the produced graph; no operations are added or removed, they are simply
rearranged. The transformation’s effect on horizontal complexity depends on the spe-
cific predicates p; and p;. If fewer values in Dy pass p; than p;, the graph produced by
the LHS will have a lower horizontal complexity, while the opposite will be true if p,
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filters more values out of Dy than p;. Although the transformation impacts horizontal
complexity inconsistently, swapping the order of two filters might still help a user to
understand the exact effect that each filter has on the resulting distribution. Once these
are understood, the filters might be fused with Theorem 3.

Unlike filters, maps do affect the types of their argument distributions, meaning
that maps cannot be as freely commuted as filters. However, often we can push a map
* f below another operation o by composing f with the function associated with o. In
other words, we can perform the mapping described by f implicitly within o, in order
to delay the actual map step. These transformations should be used judiciously since
they can obscure the original meaning of o, but they are safely limit preserving and
may be useful to setup other transformations.

The following theorem provides a limit-preserving transformation that pushes a
map operation below a filter operation.

Theorem 5. Map-Filter Swap
#felp~2pof)pEf

Assuming that the input distribution to this subplot is Dy : (A), then f : A — B and
p: B — Bool. By composing p and f, we change the type of the predicate passed
to the filter to A — Bool, allowing it to be applied directly to Dy. The intermediate
distribution of the subgraph produced by the LHS will have type (B), while on the
RHS it will have type (A). The final distribution graphs will be the same, however, and
be of type (B).

To illustrate map-filter swapping, consider the following plot posTails. Recall from
Sections 5.3 and 5.4 that the function countTails : C* — Int returns the number of tails in
a sequence of coin values. The function isPos : Int — Bool returns whether its argument
is positive or not.

posTails = *countTails> ?isPos> €

This plot, given an initial distribution of coin sequences, produces an explanation of
the number of tails in each sequence that contains at least one tails. For example,
given the initial distribution (HH>, HT?> , TH*, TT?), the map step produces the in-
termediate distribution (0?°,1%°,22%)  and the filter step produces the final distribution
(1667 2333y This is exactly the running example from Sections 5.3 and 5.4.

Applying the map-filter swap transformation results in the following alternative
plot posTails'.

posTails' = ?(isPos o countTails) > *countTails> €

Given the same initial distribution, the filter step eliminates the HH sequence, produc-
ing the intermediate distribution (H7333, TH333 TT333), and the map step produces
the same final distribution (1667 2333},

Map-filter swapping decreases the horizontal complexity of the produced graph
since moving the filter up can only decrease the number of edges produced by the map
step. However, this is a case where horizontal complexity doesn’t tell the whole story
since the predicate itself is now more complicated.

Using the same strategy as Theorem 5, we can also push maps below group opera-
tions. This transformation is captured in the following theorem.
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Theorem 6. Map-Group Swap
*foYg~ Y(gof)p*f

As with map-filter swapping, this transformation will produce a graph with a dubious
decrease in horizontal complexity.

To illusrate map-group swapping, consider the following variant of our previous
example, where we use the isPos function to group, rather than filter the intermediate
distribution.

posTailsGrp = *countTails>isPos> €

Given the initial distribution (HH?>, HT?>>, TH* , TT*), the map step produces the in-
termediate distribution (023,10,22%) and the group step produces the grouped distri-
bution { (false, {0?}), (true,{1°°,22°})}, which has type (C*)5°"!.

Applying the map-group swap transformation to the posTailsGrp plot yields the
following equivalent plot.

posTailsGrp' =Y (isPos o countTails) > *countTails > €

If we apply this to the same initial distribution, we get the following intermediate dis-
tribution {(false, {HH?Y), (true, {HT* , TH?® TT*>*})}, which will map to the same
resulting grouped distribution as we obtained with posTailsGrp.

Not all pairs of operations containing a map can be swapped, however. Re-
call from Section 5.3 that the map operation merges values only locally within
groups. For example, if we apply the operation *countTails to the grouped distri-
bution {(false, {HH?® , TH*}), (true, {HT*® , TT>>})}, we get the grouped distribution
{(false,{0%,1?°}), (true,{1%3,2%3})}, in which the two blocks that map to 1 are not
merged since they are in different groups. This means that although we can lift a group
above a map by simulating the map in the group operation, as in Theorem 6, we cannot
lift an arbitrary map above a group, since it could result in blocks being merged in
the intermediate distribution. For the same reason, we cannot swap map and ungroup
operations.

Finally, since filters on grouped distributions affect groups rather than their con-
tained values (see Section 5.4), we also cannot commute filter and ungroup operations.

6.5. Advanced Transformations

In this subsection we move from the simple combining and rearranging of opera-
tions to more subtle and complex transformations. Like the fusion operations, the laws
presented below pose interesting trade-offs for explainability.

The first transformation we will consider involves a process called filter lifting and
is demonstrated by an alternative explanation for the three-coins problem shown in
Figure 7. The basic idea is that if all of the descendants of some block in a distribution
D; (anywhere in a distribution graph) are eliminated by a downstream filter, then we
can introduce a new filter immediately below D; that filters that block out. In the
three-coins example, by referring to the original explanation in Figure 1, we can see
that all of the descendants of the 7T block in the D, distribution are eliminated by
the filter two steps below. In the transformed explanation in Figure 7, we introduce a
new filter immediately after this value is generated, filtering it and its descendants out
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GENERATE /\‘ Two coin flips

H HT TH TT
25% 25% 25% 25%
FILTER \ \ \ _L Disregard cases that
cannot have two heads
HH HT TH

GENERATE )\ A ')\ Third coin flip

HHH | HHT | HTH | HTT | THH | THT

16.7% 16.7% 16.7% 16.7% 16.7% 16.7%

-]- -L Consider only cases where
FILTER
x \ \ \ two heads have been flipped

HHH|HHT [HTH [THH

25% 25% 25% 25%

Group by whether or
GROUP
v \ l / not tails has been flipped

HHH|[HHT HTH THH

25% 75%

Figure 7: Example of filter lifting.

two steps early (note that we have also fused the first two generators). We capture this
transformation in the following theorem.

Theorem 7. Filter Lifting
Given preceding distribution D, if Vy descended from x € dom([Ae](D)), —p(y), then
Aer...»?p > Aed Iz x £ z>...>2?p

Filter lifting increases the vertical complexity of a distribution graph by one, but of-
fers the potential to significantly reduce the horizontal complexity. That filter lifting
always decreases horizontal complexity by some amount is easy to see—the number
of edges at any step in a story is a function of the size of one of its adjacent distri-
butions, and every distribution between Ae and ?p will be strictly smaller after filter
lifting. Exactly how much the horizontal complexity decreases depends on how many
steps are between the generator and the filter and how many new values are generated
from the eliminated value x. For the three-coins example, filter lifting reduces the hor-
izontal complexity of the relevant subgraph of the explanation from (8 4 8)/2 = 8 to
(44 6+6)/3 = 5%. This reduction in horizontal complexity reflects the observation,
encoded in the transformed explanation, that values that will eventually be eliminated
are in some sense irrelevant. By introducing an additional step to eliminate these values
immediately after they arise, we can invest a little explanatory effort early to avoid the
effort of considering their descendants over and over, at each step.
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components
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25% 75%

Figure 8: Example of group bracketing.

Note that we can also preemptively eliminate several such irrelevant values from a
single distribution with just one filter by alternating applications of Theorem 7 (filter
lifting) and Theorem 3 (filter fusion).

The next two transformations we present can be used to emphasize a particular step
in an explanation’s story, drawing attention to it and making its effects more explicit.
We do this by introducing a group-ungroup pair around the step we wish to emphasize,
using a process called group bracketing.

First we consider the bracketing of a filter operation. This is demonstrated in Fig-
ure 8, where we have bracketed the filter step in the three coins explanation from Fig-
ure 1. When bracketing a filter, the predicate of the filter is used as the grouping func-
tion, producing a distribution divided into two groups—those that will pass the filter
and those that will fail. The filter step is then greatly simplified, eliminating one group
and passing the other on as the subsequent distribution, which is then ungrouped.

Group bracketing of a filter operation is captured formally in the following theo-
rem. Note that we cannot bracket a filter if we are already in the context of a group
operation since groups cannot be nested. Also, recall from Section 5.4 that filters on
grouped distributions are defined in terms of the grouping value rather than the under-
lying elements, so we change the filter predicate from p to Az.r = true (equivalently,
the identity function) since each group will be represented by the result of p applied to
each of its contained elements.
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Theorem 8. Group Bracketing of a Filter
If not already in the context of a group operation, then

2p ~ Y p> 2>\

Group bracketing increases the vertical complexity of a story by two, adding a group
and ungroup operation. It also decreases the horizontal complexity. If D and D’ repre-
sent their common limits, with |D| > |D/|, the horizontal complexity of the unbracketed
filter is |D|; for the bracketed version, there are |D| edges for the group step, 2 edges
for the filter step, and |D’| edges for the ungroup step, for a horizontal complexity of
(|D] + 2+ |D'|)/3, which is clearly less than |D|.> The qualitative trade-off is that we
accentuate and simplify the filter step at the cost of the additional complexity intro-
duced by the new group and ungroup steps. Through bracketing, a user can see all of
the values that either pass or fail a filter, together and at a glance, rather than having to
scan the outgoing edges of all values in the unbracketed filter step.

Similarly, we can also bracket a map operation in a group-ungroup pair. In this
case, we use the mapped function first as a grouping function (assuming the function
maps to a type that can be checked for equality), then apply the map, then ungroup.

Theorem 9. Group Bracketing of a Map
Given f: A — B, if B can be checked for equality, and if not already in the context of a
group operation, then

e XfREfEA

This operation offers little benefit if f is one-to-one, increasing the vertical complexity
by two without changing the horizontal complexity. However, if f maps several values
in D to the same value in D', the benefit is similar to bracketing filters. The horizontal
complexity will be decreased, and values in D that map to the same value in D’ will be
put in the same group, making it easier to see which values in D will be merged in D'.

6.6. Transforming Branched Plots

Throughout this section we have considered only the transformation of sequential
plots. Since transformations are local, these trivially apply also to branched plots as
long as the transformed subplot is entirely before the branch point or contained within a
particular branch. This view is overly strict, however, ruling out many seemingly valid
transformations that span branch points. For example, the subplot *f] > (*f; : *f3) is
clearly equivalent (in a limit preserving sense) to the subplot *(f 0 f1) : (*f30 f1). In
the second we have fused *f; with *f, in the left branch and * f; with *f3 in the right
branch. We can’t do this by applying Theorem 2 directly, however, because neither
pair of map operations are in direct sequence—the branch point gets in the way.

Rather than extend each transformation law to account for branching, we instead in-
troduce a new law that can be composed with existing laws like map fusion to achieve
the desired effect. We call the new transformation branch unzipping, since it visu-
ally resembles the unzipping of a zipper, and in Figure 9 we demonstrate its use as a

3 Actually there are two degenerate cases where this is not true. If [D| = |D'| = 2 or if [D| = |D'| = 1, then
group bracketing preserves or increases the horizontal complexity, respectively.
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Figure 9: Example of unzipping a branching story to enable operation fusion.

preparatory step for fusing the maps in the above example. In this figure we show an
abstracted view of three stories, with the relevant steps annotated by their operations,
and the distributions in the relevant subgraphs colored a lighter gray (the darker distri-
butions are provided to give a sense of context). The leftmost story corresponds to the
story generated by our initial subplot, *f] > (*f, : *f3). In the second story we unzip
one level of the story, pushing *f; out of the trunk and duplicating it in each branch.
Finally, in the third story, we have applied map fusion twice, once to each branch,
corresponding to our final subplot *(f 0 f1) : (*f30 f1).

The dual of branch unzipping is branch zipping, which allows us to lift a duplicated
operation at the top of each branch into the trunk of an explanation. We capture both
of these transformations in the following theorem.

Theorem 10. Branch Unzipping/Zipping
o> (Pt Pg) e~ o> P o> Py

Recall from Section 4.4 that the limits of a distribution subgraph G containing branches
are a pair of the initial distribution in G and a sequence of the final distribution in each
branch. That branch (un)zipping preserves the limits of the generated subgraph follows
directly from an application of the story semantics of plots (also Section 4.4) to the LHS
and RHS of above the law.

To analyze the complexity impact of these transformations, we must extend our
definitions of vertical and horizontal complexity to branched stories. Branching rep-
resents complexity mostly on the horizontal axis. Therefore, we consider the vertical
complexity of a branched story to be simply the average of the number of steps along
each path in the story, while for horizontal complexity we sum the edges across all
steps, in all branches, and divide by the (averaged) vertical complexity.

Using these definitions, we see that neither transformation has any effect on the
vertical complexity of a story. Meanwhile, zipping decreases horizontal complexity
proportional to the number of edges generated by o, while unzipping increases hori-
zontal complexity by the same amount. As the example above demonstrates, however,
the complexity introduced by unzipping may be temporary when used as a preparatory
step for other transformations.

Finally, note that although we applied map fusion to both branches after unzipping
the above example, there is no requirement that we do so. For example, we can unzip
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Figure 10: Monty Hall Problem explained with a different representative example.

the subplot * i > (* f5  03) (where 03 is presumably not a map) to (* f1>*f>) : (*f1>03),
then apply map fusion only to the left branch to produce *(f20 fi) : (*f1 >03). In this
case we have decreased vertical complexity by only half a step, instead of the full step
decrease in the original example, while also increasing horizontal complexity.

6.7. Changing the Representative Example Selection

The final law we consider follows from the discussion in Section 5.6. Recall that the
operation !x indicates that x is a representative example of the preceding distribution
D, and that we can therefore replace D with the distribution (x'°°). A representative
value x is one that is both isomorphic to, and equally probable as, every other value
y in D. This operation is used as the first step of the Monty Hall Problem shown in
Figure 2, in which we choose the case where the prize is hidden behind the left door as
a representative example.

Since x is isomorphic to all such values y, we can freely replace ! x with !'y without
changing the meaning of the explanation. For example, in the Monty Hall Problem we
can equally well choose the case where the prize is behind the center door or the right
door. Figure 10 shows an alternative explanation of the Monty Hall Problem in which
we have chosen a different representative example. This transformation is captured
generally in the following law.
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Theorem 11. Select Representative Example
Given x € dom(Dy) and y € dom(Dy), then
Ix e ly

Since all values must be isomorphic as a precondition to the use of the representative
example operation, the limits are trivially preserved by this transformation up to a
similar isomorphism in the result distribution.

While changing the representative example has no effect on the complexity of the
story, it is an important transformation for supporting the understanding of explana-
tions that use this rather subtle operation. It enables explanation readers to confirm for
themselves that the particular representative example chosen does not determine the
solution, and to see how different examples produce slightly different distributions but
an overall similar structure.

Effective explanations must necessarily be given from a particular perspective, us-
ing particular examples, and telling a particular story. When constructing a static ex-
planation, the explanation creator must fix these aspects once and for all. A personal
explainer can be more flexible, changing their explanation during creation, as needed
by a particular explanation consumer. The transformation laws provided in this section
help Probula span this gap, enabling an initially fixed static explanation to be automat-
ically adapted to tell new stories about the same problem, with different examples and
from different perspectives.

7. Related Work

Much of the most pertinent related work has been discussed already in Section 2
on the explanation-oriented programming paradigm, and Section 3 on the story-telling
model of explanation. In this section we recall this discussion, filling in the gaps, and
discuss several other areas of related work as well.

The story-telling model of explanation follows in the tradition of more general
ideas from the philosophy of science that emphasize the importance of causality in
explanations [7, 35, 19]. The philosophical study of causation is in turn a large area
of research, which we have discussed briefly in Section 3, and at greater length in our
previous work [12, 14]. Of particular interest are the various visual notations that have
been used in this research for representing graphs of causally related events [16, 27,
37]. These causal graph notations are usually used as informal diagramming tools, to
explain causal situations and support discussion, but are rarely defined as formal visual
languages. Probula differs from these languages in two important ways. First, it is
mainly linear, a design decision that we discussed in Section 3. Second, it is typed
and much more structured. Nodes in causal graphs sometimes represent events and
sometimes states, and this ambiguity often leads to misunderstandings and obscures
subtle distinctions in relationships between nodes [18]. In contrast, points in a Probula
story are always distributions of typed values, and relationships are described in terms
of a small set of well-defined operations with explicit type constraints. This makes the
meaning of each point and each step in the story much clearer than in less structured
representations.

34



Throughout the paper we have given different explanations in Probula of the Monty
Hall problem and the three coins problem. The fallacies induced by these two problems
are part of a large class of fallacies that arise from a misunderstanding of statistical in-
dependence and conditional probability. The gambler’s fallacy and the hot hand fallacy
are two contradictory fallacies related to independence [2]. Given a sequence of heads
results when flipping a fair coin, the gambler’s fallacy expects a higher probability of
the next flip being tails, while the hot hand fallacy expects the opposite. The inverse
fallacy is the false assumption that P(A|B) is approximately equal to P(B|A) [34]. Re-
latedly, the base-rate fallacy is the failure to consider the underlying probability of an
event when given some conditional evidence [3]. For example, consider a population
in which 1 in 10 people have a virus, and a test for that virus that is accurate 90% of
the time. If a random person tests positive for the virus, the fallacy is that they are
90% likely to have the virus. This fails to take into account the lower probability of
having the virus in the first place, and thus that there will be more false positives than
false negatives. In fact, the odds of the person having the virus, given that they tested
positive, is 50%. These fallacies are widespread not only among laypeople, but among
professions where an expert understanding of conditional probability is critical, such
as clinicians [8]. Probula explanations can help to debunk these fallacies by provid-
ing explanations that show how the correct (though perhaps counterintuitive) answer is
derived.

In Section 2 we discussed our previous work on computing with probability distri-
butions [10] and supporting and explaining probabilistic reasoning [12, 13]. Although
there are other languages that support computation with probabilistic values, such as
IBAL [29] and the OCaml DSEL designed by Kiselyov and Shan [23], there does not
seem to be any other work on explaining these computations. Domain-specific explana-
tion support is not completely new, however, and can be found in the field of algorithm
animation [22], where many ideas and approaches have been developed to illustrate the
working of algorithms through custom-made or (semi-)automatically generated anima-
tions [21]. The work of Blumenkrants et al. is particularly relevant, where the use of
the story-telling metaphor was demonstrated to increase the explanatory power of their
algorithm animations [4].

Code debuggers represent a class of widely used explanation systems. Very gener-
ally, the goal while debugging is to obtain an explanation of some program behavior,
usually as part of an effort to fix a bug. While debuggers help users find this informa-
tion in the code (often after much time and effort), most operate at such a low level that
the output and effects they produce could scarcely be considered an explanation. The
WHYLINE system [25] inverts the debugging process, allowing users to ask questions
about program behavior and responding by pointing to parts of the code responsible
for the outcomes. Although this system improves the process significantly, it can still
only point to places in the program, limiting its explanatory power. We have extended
the basic idea of the WHYLINE to the domain of spreadsheets by allowing users to
express expectations about the outcomes of cells, then generating change suggestions
that would produce the desired results [1]. From a philosophical perspective, the gen-
erated change suggestions represent counterfactual statements about the state of the
spreadsheet [27]. Counterfactual reasoning as a basis for explanation is closely related
to the story-telling metaphor [12].
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Probula, and the story-telling model in general, are also related to the idea of
dataflow languages, in which data is incrementally modified by passing through a
directed graph of operations [20]. Our language could be viewed as a dataflow lan-
guage with the single, parametrically-polymorphic data type of probability distribu-
tions (plain or grouped), with the operations described in Section 5 and an additional
operation to support branching.

Finally, the idea of elevating explainability as a design criterion for languages was
first proposed in [11] where we have presented a visual language for expressing strate-
gies in game theory. The guiding principle of the design of this language was the
concept of traceabilty. This is the idea that language designers should consider not
only how to represent programs, but also how to represent the execution of programs
(program traces), and how to relate programs to their traces in order to support program
understanding. This idea developed into the notion of explanation-oriented program-
ming as described in this paper, and Probula reflects these original design ideas well.
Probula’s visual notation is an integrated representation of the execution of a Probula
program, as the distributions that it generates, combined with a representation of the
operations that produce that execution.

8. Conclusions and Future Work

We have presented Probula, a domain-specific, visual language for explaining
probabilistic reasoning problems. This language continues our research in the new
paradigm of explanation-oriented programming, where the focus of programming is
not on the computation of results, but on explaining how and why those results were
computed. We believe that this shift of focus reveals a new, fruitful, and under-explored
area for language design. Domain-specific and visual languages are especially well-
suited for explanation orientation for several reasons.

Domain-specific languages allow us to express explanations in terms and structures
appropriate to the domain; for example, in Probula, we use probabilistic distributions as
a basic construct in explanations of probabilistic reasoning problems. This makes ex-
planations in the language more understandable by making them more concrete and by
taking advantage of users’ existing domain knowledge. It also makes the explanations
more useful and externally applicable since they can be used not only to understand the
specific problems presented, but as tools to better understand the domain itself. This is
one of the primary design goals of Probula.

Visual languages are a powerful medium for explanation since we have many more
potential dimensions for encoding information than is available in textual languages
(position, color, length, shape, etc.). This not only gives us more flexibility and expres-
siveness in the design of explanations, but also makes it easier to directly reuse existing
notations from the domain, when applicable. Furthermore, it gives us access to a rich
language of visual metaphors and symbols. We have presented a few such examples in
Probula, such as the use of spatial partitioning to encode probability, and connection to
represent the flow of data.

A significant contribution of this work is the formulation of laws which can be used
to transform an explanation into many equivalent explanations of the same problem. In
this way we can combine the accessibility benefits typical of static explanations with
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the adaptability benefits of personal explanations. Through the composition of expla-
nation transformations, we can derive from a single explanation a large, explorable
space of related explanations.

In order to fully realize the adaptability benefits of personal explanations, however,
we must also consider how users interact with this explanation space. This is an im-
portant topic for future work. In the most straightforward view, users might directly
manipulate an explanation within some tool, in order to generate related alternatives—
manually fusing generators, for example, or changing the representative example se-
lection. In the context of personal explanations, direct manipulation corresponds to
responding to a user’s question. But personal explainers also adapt automatically to
a user’s needs, when they sense that the listener is confused, for example. Therefore,
we might also consider developing heuristics to determine when a particular transfor-
mation will be most useful for a particular user, which the tool can suggest or apply
automatically.
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