
– 1 –

Abstract
The formal treatment of visual languages is often based on
graph representations. Since the matter of discourse is
visual languages, it would be convenient if the formal
manipulations could be performed in a visual way. We
introduce visual graphs to support this goal. In a visual
graph some nodes are shown as geometric figures, and
some edges are represented by geometric relationships
between these figures. We investigate mappings between
visual and abstract graphs and show their application in
semantics definitions for visual languages and in formal
manipulations of visual programs.

1. Introduction

Graphs are widely used as a formal representation of vi-
sual languages with nodes denoting objects and edges de-
picting relationships between objects. In a sense, graphs are
a natural choice because the generalization of textual lan-
guages to visual languages essentially means to move from
symbols related only by one relationship (the linear order-
ing given by sequencing) to multiple relationships which
are perfectly represented in a graph by labeled edges be-
tween nodes representing symbols.

Now when an edge represents a simple relationship,
such asinside, this edge can, in some cases, be displayed
by showing the connected nodes in the represented rela-
tionship. This leads to representations that are more closely
related to the original picture, and this can greatly simplify
the understanding and the formal manipulation of such
graphs. We formalize this idea by definingvisual graphs
which have a subset of nodes and edges that are depicted in
a visual way. We define mappings from visual graphs to
their corresponding abstract graphs, which is not a trivial
task since visual graphs generally show more relationships
than are actually given in the abstract graph. We investigate
conditions that ensure the existence of unambiguous such
mappings. Once a mapping has been established, we can
use visual graphs in formal graph manipulations. This re-
sults in transformations that are much clearer and much
easier to understand while still based, by virtue of that map-
ping, on the abstract representation.

Thus, visual graphs are, in essence, a visual language for
graphs. The importance lies in its possible large scope:
whenever we have to deal (formally) with a visual language
– and this is likely to be done on its formal graph represen-
tation – we can use visual graphs as a visual language to
reason about visual languages at a high level.

In the following we use as a running example VEX, a vi-
sual notation for the lambda calculus [4], and consider as
formal manipulations semantics definitions and the compu-
tation with VEX pictures. We chose VEX because on the
one hand, it is a powerful (i.e., computationally complete)
and therefore interesting language, and on the other hand, it
is manageable because it is relatively small, i.e., it consists
of only few visual concepts. A further interesting applica-
tion area for visual graphs is to give visually enriched se-
mantics definitions for traditionally textual formalisms.
This has been demonstrated for Turing Machines in [7].

The paper is structured as follows: in the next section we
describe several aspects of the use of graphs to abstractly
represent visual languages. Section 3 presents visual
graphs as a semi-abstract notation, and in Section 4 we
show how to map between semi-abstract and abstract repre-
sentations. Section 5 demonstrates how visual graphs can
be used in semantics definitions, and Section 6 shows how
the framework can help with formal manipulations of pic-
ture graphs. Related work is discussed in Section 7, and
conclusions follow in Section 8.

2. Abstract graph representations

Assuming that a picture is represented by a graph, a vi-
sual language is simply a set of such graphs. We will illus-
trate the following definitions with VEX (more details and
explanations can be found in [8]). In VEX, empty circles
represent identifiers, non-empty circles denote abstractions,
and an application is depicted by two externally tangent cir-
cles with an arrow at the tangent point leading from the
function to the argument. Each empty circle representing
the use of an identifier is connected by a straight line to a
so-called root node, which is either internally tangent to an
abstraction circle and represents then the parameter of the
abstraction or which lies outside any other circle and then

Visual Graphs

Martin Erwig
FernUniversität Hagen, Praktische Informatik IV

58084 Hagen, Germany
erwig@fernuni-hagen.de

– 2 –

represents a free variable. Figure 1 shows on the left a VEX
expression for the lambda termλy.((λx.yx)z).

2.1. Abstract graph syntax for visual languages

Depending on the intended use, visual language repre-
sentations are free to ignore more or less details of the con-
crete appearance. As an example, we consider how to
define semantics of visual programming languages. Hence,
we can well work with abstract visual syntax which allows
us to abstract from many details and problems that arise in
parsing visual languages. In particular, we can forget about
all structural constraints and simply regard a visual lan-
guage as a set of graphs. Adirected labeled multi-graph of
type (α, β) is a quintupleG = (V, E, ι, ν, ε) consisting of a
set of nodesV and a set of edgesE whereι : E → V × V is a
total mapping defining for each edge the nodes it connects.
The mappingsν : V → α andε : E → β define the node and
edge labels.VG andEG denote the set of nodes and edges of
G. The successors of a node are denoted bysuccG(v) = {w
∈ VG | ∃e ∈ EG: ι(e) = (v, w)}. Lik ewise,predG(v) denotes
v’s predecessors. The set of all graphs of type (α, β) is de-
noted byΓ(α, β), and avisual language of type (α, β) is de-
fined as a set of graphsVL ⊆ Γ(α, β).

Let us define an abstract syntax for VEX. We replace
each line connecting an identifier nodev with its definition
w by adef-edge (that is, an edge labeled withdef) from v to
w, and an external adjacency relationship together with an
arrow is replaced by anapply-edge leading from the ex-
pression circle to be applied toward the argument circle. It
remains to represent abstractions. An abstraction is given
by a non-empty circlec where an (empty) circlex that is in-
ternally tangent toc representsc’s parameter and all other
circles e1, …, en (non-transitively) insidec define the ab-
straction body. In the abstract syntax we represent this in-
formation by apar-edge fromc to x and bybody-edges
(c, e1), …, (c, en). Node labels are not needed, and thus the
abstract syntax for VEX is given by graphs of type
(Unit, { def, apply, par, body}) where Unit = {()} (we omit
unit labels “()” in pictures). Figure 1 shows on the right the

abstract syntax graph for the VEX picture on the left.
As in the textual case the choice of abstract syntax for a

visual language is by no means unique. An alternative ab-
stract syntax for VEX can be found in [8].

2.2. Inductive graphs and pattern matching

In order to define, for instance, denotational semantics
for a visual language we need a structured way of accessing
all the elements of an abstract syntax graph. This is offered
by an inductive view of graphs that allows the structured,
step-by-step graph decomposition: a graph is either empty,
or it is constructed by a graphg and a new nodev together
with edges fromv to its successors ing and edges from its
predecessors ing leading tov. In this way graphs can be
built by the constantEmpty and expressionsN node-context
g where node-context is a triple (pred-spec, node-spec,
succ-spec). Here,node-spec is a node identifier not already
contained ing followed by a label (for example,a:()) and
pred-spec (succ-spec) denotes a list of predecessor (succes-
sor) nodes extended by labels for the edges that come from
(lead to) the nodes. For instance, [d›apply] denotes a list of
a predecessor noded where the edge coming fromd has la-
bel apply. Similarly, [par›b, body›b] denotes a single suc-
cessorb that is reached via two differently labeled edges.
We denote concatenation of a single element or listx with
another listl by [x | l]. In the sequel we may omit empty se-
quences and unit labels, and we abbreviate a cascade ofN-
constructors by a singleN*-constructor. If l = [v1, …, vn],
we also abbreviate [lab›v1, …, lab›vn] by [lab»l] (the same
for predecessors). For instance, the graph from Figure 1 is
given by the expression:

N* (v, [par›b, body»[w, z]])
(w, [par›a, body»[y, x], apply›z]) (z, [def›c]) (c)
(y, [def›b, apply›x]) (b) (x, [def›a]) (a) Empty

We also use an additional edge constructor E (v›l›w) g
which simply inserts an edge with labell between the two
nodesv andw (which must be already present ing).

It is not difficult to prove that each directed labeled
multi-graph can be represented by a graph expression [6].
Moreover, there are, in general, many different graph ex-
pressions denoting the same graph. In particular, for each
nodev contained ing there is always an expression forg
that insertsv last. This is important since it makes a power-
ful kind of pattern matching [5] applicable to graphs: a pat-
tern is a graph expression containing variables. Matching a
pattern like N (p, v:l, s) g to a graph expression binds the
components of the node context inserted last top, v, l, s and
the remaining graph tog. However, in order to move in a
controlled way through the graph, it is necessary to match
the context of a specific node. This is possible ifv is already
bound to the node to be matched. Then the context of v is

Figure 1: A VEX expression and
its abstract syntax graph

par

def

apply
def

apply

def

body

par

body

body
body

v

w

y x

a

b

c

z

– 3 –

bound to the remaining variables. For instance, ifv is
bound toy, then matching the patternN (p, v:l, s) g against
the above graph expression results in the bindings:p →
[w›body], l → (), s → [def›b, apply›x], andg → rest-graph
whererest-graph is a term/expression denotingg withouty
and its incident edges.

We can restrict patterns further by adding labels that
must be present or by replacing list variables by lists of a
specific length. We can also ignore bindings by simply
omitting the corresponding parts of the pattern. Moreover,
a sub-patternlab»s (p»lab) binds tos (p) the list of all suc-
cessors (predecessors) that are connected vialab-edges to
the current node. An edge pattern matches the mentioned
edge and the incident nodes, but removes only the edge. In
function definitions consisting of several cases patterns are
tried in the order of occurrence. Thus, pattern matching is
deterministic (except for the order of nodes in generated list
bindings). Some examples follow later.

2.3. Denotational semantics

With a suitable domainD for the lambda-calculus we
can define the semantics of VEX by inductively processing
abstract syntax graphs. We define a semantic functionS’
that takes a graph and a node specifying the decomposition
order. We have three cases to consider: first, the semantics
of an identifier that is connected by adef-edge to a parame-
ter node carrying a semantic value is just that value. Sec-
ond, the meaning of a nodev connected by anapply-edge
to nodew is given by applying the semantics ofv, which is
expected to be a function value, to the value denoted byw.
Finally, the semantics of an abstraction is a function value
(Λ denotes the semantic abstraction function) which maps
any valued from D to the value denoted by the body of the
abstraction when the parameter node is labeledd. If the
body contains two or more nodes, these have to be chained
by apply-edges, and we have to take the semantics of the
leftmost node since application associates to the left. (Re-
marks: (1) In VEX, the evaluation order can be changed by
writing priority values above the application arrows. We ig-
nore this here for brevity. (2) The use of the edge pattern in
the second line preservesv from being removed from the
matched graph. (3) In order to change the label of the pa-
rameter nodep to d we have to decomposep from the graph
and reinsert it with the new label and the old context, that
is, with predecessorsr and no successors.)

S’[[v, N* (v, [def›w]) (w:d) g]] = d
S’[[v, E (v›apply›w) g]] = S’[[v, g]] (S’[[w, g]])
S’[[v, N* (v, [par›p | body»b]) (r, p) g]] =

Λd.S’[[leftmost(b, g), N (r, p:d, []) g]]

The functionleftmost traverses the listb until a nodev is
found that does not have an incomingapply-edge, which

means, thatv does not match the first pattern:

leftmost([v | l], E (u›apply›v) g) = leftmost(l, g)
leftmost([v | l], g) = v

Now the semantics of a VEX-graphg is finally given by:

S[[g]] = S’[[root(g), g]]

whereroot(g) = v ∈ Vg : predg(v) = []. For a different VEX
semantics based on an alternative abstract syntax, see [8].

3. Visual graphs and semi-abstract syntax

The textual semantics definition has one major disad-
vantage: the notation is not directly related to the original
language, and to understand the meaning of a picture one
has to perform two non-trivial (mental) mappings: (1)
translate pictures to abstract syntax and (2) map graphs to
semantic values. This situation can be improved if the ab-
stract syntax graphs, which are the “glue” for the two map-
pings, can be lifted onto a more visual level. This is where
visual graphs come into play.

In a first step we can immediately give a visual versions
of semantics by using a straightforward visualization for
graphs. However, this does not really mean a big advance.
We can obtain much better results if we display nodes by
symbols used in the original visual language and if edges
representing concrete geometric relationships are replaced
in the picture by displaying the participating nodes (that is,
their representing symbols) such that exactly these relation-
ships do hold. So, in a sense, we go back from abstract syn-
tax to concrete syntax, but only partially: some abstract
relationships or relationships having very complex visual-
ization rules can (and should) still be depicted as simple
graph edges. Hence we are working with a special kind of
graphs which we callvisual graphs. Strictly speaking, a vi-
sual graph is just a graph as defined in Section 2.1 where a
subset of node and edge labels, namely the geometric ones,
have a special meaning, that is, they have their own specific
visualizations. The use of visual graphs has two aspects:
first, layout algorithms can be used to visualize syntax
graphs. We shall not consider this here. Second, visual rep-
resentations of graphs can be used in formal manipulations,
and as (textual) graphs are a model for abstract visual syn-
tax, visual graphs provide a concept ofsemi-abstract visual
syntax.

In the case of VEX we keep the originalinside andadja-
cent relationships in favor of the more abstractpar-, body-,
and apply-edges, but we still usedef-edges to represent
identifier definition/use relationships more directly. On the
other hand, we drop arrows and instead use aleft-of rela-
tionship to represent an ordering among circles participat-
ing in a nested application. Thus, we use graphs of type

– 4 –

({ circle}, { def, adjacent, inside, left-of}) as a semi-abstract
VEX-syntax. (The decision whether a relationship should
be visualized or stay abstract is guided by the correspond-
ing visualization and representation mappings, see next
section.) We assume that transitive relationships are repre-
sented in graphs in transitively reduced fashion, that is, a
transitive relationshipR between nodesv andw is not rep-
resented by an edge if there is a further nodeu, such thatR
holds betweenv andu and also betweenu andw.

Figure 2 shows the semi-abstract syntax graph and its
visualization for the VEX picture from Figure 1. (We dis-
play two directed edges (v, w) and (w, v) having the same
label as one undirected edge, and for readability we omit all
left-of edges between non-adjacent objects, that is, after
transitive reduction we omit theleft-of edges (b, a), (b, x),
(y, a), (a, z), (x, z), and (z, c).)

Now it seems that we can immediately give a visual se-
mantics for VEX using visual instead of textual graphs.
However, there remains an important problem: semi-ab-
stract notation displays, in general, more relationships than
needed or wanted. In Figure 2, for instance, the upper pa-
rameter nodeb is certainlyleft-of the lower parameter node
a, but this relationship is not important for the semantics al-
thoughleft-of is a relevant relationship with regard to nodes
being part of an application. In other words, there are rela-
tionships in a picture that are relevant only in specific con-
texts. The problem is that if we use a pattern containing
such implicit relationships in an equation, we overly re-
strict the applicability of that equation, and this over-speci-
fication might cause undesired partiality in the definition.
For example, if we try to use a visual graph in the first se-
mantic equation for VEX (the details of the notation are not
important here and will be explained later), then this equa-
tion defines semantics for only those variables whose use
appearsleft-of the definition. Although this could princi-
pally be remedied by supplying additional equations cover-

ing all possible cases,1 this ap-
proach unnecessarily compli-
cates formal definitions and is
prone to errors. Moreover, the
number of needed equations
can grow significantly.

A solution is to formally keep definitions on the basis of
abstract graphs, but to actually use visual graphs in equa-
tions. This becomes possible by defining appropriate map-
pings between abstract and visual graphs. When properly
defined, these mappings allow to use semi-abstract syntax
within equations while interpreting certain geometric rela-
tionships only in specific contexts.

4. Graph visualization and representation

Mappings between abstract and visual graphs can be
conveniently expressed by graph rewrite systems. (Since
typically several relationships are mapped to one abstract
graph edge, such mappings cannot be directly given by
graph homomorphisms.) In the following we always denote
by Γ(α’, β’) an abstract graph type and byΓ(α, β) the cor-
responding visual graph type. Thus, in the case of VEX we
have α’ = Unit, α = {circle}, β’ = { def, apply, par, body},
andβ = {def, adjacent, inside, left-of}.

4.1. Typed graph rewriting

The idea is to define the visualization of abstract graphs
φ* : Γ(α’, β’) → Γ(α, β) and, in particular, the representa-
tion of visual graphsρ* : Γ(α, β) → Γ(α’, β’) in several
steps: first, we define rule systemsρ : Γ(α, β) → Γ(α’, β’)
and φ : Γ(α’, β’) → Γ(α, β) for transforming subgraphs,
then we define induced rewrite relationships, and we finally
restrict to rewrite relationships that are functions.

We only need a restricted form of graph rewriting where
a single rewrite rule is given by a pair of graphs (L, R) that
have the same node set. Then, informally, a rewrite step
finds an occurrence ofL in a graphG, removes the edges of
L in G, adds the edges ofR to G, and relabels the nodes in
G by the node labels ofR. For example, the representation
of visual VEX graphs by abstract syntax graphs is defined
by the following rule systemρVEX = {ρ1, ρ2, ρ3, ρ4}:

ρ1 = →

1. We could add two more equation displaying the nodev directly
under, respectively, to the right of the node containingd. We could also
simply use one picture in which theleft-of relationship does not hold. But
having to be aware of relationships that must be avoided complicates the
definition process considerably.

Figure 2: Semi-abstract VEX syntax graph

def
def

def

def

def

left-of

def

inside

inside

inside

inside

v

w

y x

a

b

c

z

adjacent

adjacent

inside adjacent

left-of

inside

adjacent

S’[[v,]] = ddef

d

v g

inside

v

w
adjacent

par

v

w

– 5 –

ρ2 = →

ρ3 = →

ρ4 = →

The last rule is for clearing up:left-of relationships between
nodes that are not adjacent have to be simply removed from
the graph. The above notation is already an abbreviation.
Formally, we have to define, sayρ1, as:1

((VL, EL, ιL, νL, εL), (VR, ER, ιR, νR, εR)) with
VL = VR = {v, w}, EL = {e1, e2, e3}, ER = {e4}
ιL(e1) = ιR(e4) = (v, w), ιL(e2) = ιL(e3) = (w, v)
νL(v) = νL(w) = circle, νR(v) = νR(w) = ()
εL(e1) = εL(e2) = adjacent, εL(e3) = inside,
εR(e4) = par

Next we will define how a graph rewrite systems can be ap-
plied. Letr = {r1, …, rk} be a rewrite system andri = (L, R)
∈ r an arbitrary single rewrite rule. Anri-match for a graph
G is a mappingµ : L → G such that:

(1) ∀ v ∈ VL: νG(µ(v)) = νL(v) ∨ νG(µ(v)) ∈ rng(νR)
(2) ∀ e ∈ EL: εG(µ(e)) = εL(e) ∧ ιG(µ(e)) = µ(ιL(e))
(3) µ is injective

Note: the second condition of (1) allows nodes that are al-
ready relabeled to be matched again. This enables the re-
writing of edges incident to one node in different steps by
different rules. In (2) we use the convention thatµ(v, w) =
(µ(v), µ(w)). Thus, the second condition requires that if
µ(e) = e’ and if ιL(e) = (v, w) andιG(e’) = (v’, w’), then it
must hold thatµ(v) = v’ andµ(w) = w’.

Given anri-matchµ, we sayG rewrites by ri in one step
into G’ = (V’, E’, ι’, ν’, ε’), denoted byG ⇒ri

G’ (or just
G ⇒r G’ if the rule applied is not of interest), where:

(a) V’ = VG andE’ = EG - µ(EL) ∪ ER
(b) ι’ = ιG \ µ(EL) ∪ µ°ιR
(c) ν’ = νG \ µ(VL) ∪ νR°µ-1 andε’ = εG \ µ(EL) ∪ εR

Remarks:
(a) Nodes are not changed, those edges inG are re-

moved that match edges inL, and edges fromR are added
(note thatµ(X) = {µ(x) | x ∈ X}).

1. Note that bootstrapping the formalism yields visual rewrite systems,

and we can specify, for example,ρ1, by: →

(b) Undefine incidences for deleted edges, and add inci-
dences forR-edges. Note thatf \ X = {(x, y) ∈ f | x ∉ X}.
Thus, sinceµ(EL) denotes the set of edges fromG matching
L, ιG \ µ(EL) restrictsG’s incidence mapping to those edges
that have not been matched. Moreover, we have g°f =
{(x, g(y)) | (x, y) ∈ f }. This means thatµ°ιR adds inci-
dences for the edges ofR using, however, the node identifi-
ers ofG.

(c) Undefine labels forL-nodes andL-edges, and rede-
fine labels as given byR. νR must be composed withµ-1

since it is defined onVR, whereasν’ must be defined onV’
= VG. On the other hand,ER is directly added toEG, soεR
need not be adjusted.

Now we say thatG rewrites to G’, denoted byG ⇒r* G’,
if there are graphsG0, …, Gn (n > 0), such thatG = G0 ⇒r
G0 ⇒r … ⇒r Gn = G’.

Note that the rewrite relationships⇒ρ and⇒φ are de-
fined onΓ(α∪α’, β∪β’). The same holds for the respective
closures⇒ρ* and ⇒φ* . Since we are interested in the ex-
treme values of rewrite chains, that is, (α, β)-graphs and
(α’, β’)-graphs, we also define: (i)G is represented by G’,
denoted byG ⇒ρ• G’, if G ⇒ρ* G’, G ∈ Γ(α, β), andG’ ∈
Γ(α’, β’), and (ii) G’ is visualized by G, denoted by
G’ ⇒φ• G, if G’ ⇒φ* G, G’ ∈ Γ(α’, β’), andG ∈ Γ(α, β).

Let us consider as an example aρ1-match for the graph
from Figure 2. There we have omitted edge identifiers, so
let us assume we have {ea, eb, ec} ⊂ EG with ιG(ea) = (v, b),
ιG(eb) = ιG(ec) = (b, v), andεG(ea) = εG(eb) = adjacent and
εG(ec) = inside. Actually, there are two possibilities to give
a match. For the outer abstraction, we get forµ: µ(v) = v,
µ(w) = b, µ(e1) = ea, µ(e2) = eb, µ(e3) = ec. It is easy to see
thatµ satisfies the conditions (1) to (3). Now G rewrites by
ρ1 in one step toG’ = (V’, E’, ι’, ν’, ε’) with:

V’ = VG , E’ = EG - {ea, eb, ec} ∪ { e4}
ι’ = ιG \ {ea, eb, ec} ∪ {(e4, (v, b))}
ν’ = νG \ { v, b} ∪ {(v, ()), (b, ())}
ε’ = εG \ {ea, eb, ec} ∪ {(e4, par)}

Again it is easy to check that this graph results fromG by
replacing theinside andadjacent edges betweenv andb by
a par-edge and that it conforms to the conditions (a) to (c).
We can show thatG rewrites to the abstract graph from Fig-
ure 1 by giving a concrete sequence of rewrite rules which
are identified simply by their rule numbers (byik we mean
rule i appliedk times): 1224346. Of course, this is not the
only possible sequence, however, the order of applying
rules is not completely free. We address this issue next.

4.2. Properties of typed graph rewriting

Of particular interest are representation relationships
⇒ρ• which are right-univalent (or, functional) since they
map visual graphs uniquely to abstract syntax graphs. They

inside

v

w

v

w

body

left-of
v w

adjacent

v w

apply

left-ofv w v w

v
w

parv w

– 6 –

can thus be used to lift graph equations onto the visual
level. If ⇒ρ• is functional, we denote the function also by
ρ*, and we also say that the rewrite systemρ is eventually
confluent, or just,e-confluent.

We can then use visual graphs, for example, in seman-
tics definitions by writing equations, such as

S[[ρ*(G)]] = e

which means that the visual graphG is immediately
mapped to its abstract equivalentG’, andS actually works
on the abstract graphG’. The rewrite systemρ allows us to
use pictures (that is, visual graphs) in the definition, and the
fact thatρ is e-confluent guarantees that this use of visual-
ization does not introduce impreciseness by partiality, am-
biguity, etc.

Now why doesS[[ρ*(G)]] work whereasS[[G]] fails in
general? It is becauseρ* is defined to leave certain irrele-
vant relationships (which are implicit in the visualization)
unconsidered. In the VEX semantics, for example, this is
the case for theleft-of relationships of non-adjacent circles.

E-confluence is a weaker notion than confluence since it
requires confluence only on “final” values. In any case, be-
fore we can use visual graphs, we have to be sure that the
associated representation relationship is functional. The re-
stricted form of rewrite systems considered has some prop-
erties that can help to simplify e-confluence proofs: most
importantly, since no nodes can be deleted or generated, we
can simply focus on the replacement of edges.

We define thedomain andrange of a rewrite rule as the
set of node and edge labels of its left/right graph compo-
nent, that is, for a rewrite rule r i = (L, R) we letdom(r i) =
(dom(νL), dom(εL)) and rng(r i) = (rng(νR), rng(εR)), and
the domain/range of a rewrite system is defined as the
union of domains/ranges of all rules, that is:

dom(r) = (∪ri∈r π1(dom(r)), ∪ri∈r π2(dom(r)))
rng(r) = (∪ri∈r π1(rng(r)), ∪ri∈r π2(rng(r)))

Hereπi selects theith component from a tuple.
Next we define a notion of monotonicity. A rewrite sys-

tem r is monotone if π1(dom(r)) ∩ π1(rng(r)) = ∅ and if
π2(dom(r)) ∩ π2(rng(r)) = ∅. This means, edges that are
added by a monotone rewrite system cannot be removed,
and nodes are relabeled at most once. A direct consequence
of this is:

Theorem 1. Monotone rewrite systems are terminating.

For instance,ρVEX is monotone and terminating since
we have:

dom(ρ1) = ({circle}, { inside, adjacent})
rng(ρ1) = (Unit, {par})
dom(ρ2) = ({circle}, { inside})
rng(ρ2) = (Unit, {body})

dom(ρ3) = ({circle}, { left-of, adjacent})
rng(ρ3) = (Unit, {apply})
dom(ρ4) = ({circle}, { left-of})
rng(ρ4) = (Unit, ∅)
dom(ρVEX) = ({circle}, { inside, adjacent, left-of})
rng(ρVEX) = (Unit, {par, body, apply})

A major source for non-determinism is the competition of
different rules for edges of the same label: a pair of rules
(r i, r j) is conflicting if π2(dom(r i)) ∩ π2(dom(r j)) ≠ ∅. For
example, (ρ1, ρ2) and (ρ1, ρ3) of ρVEX are conflicting since
the intersection of edge labels containsinside, respectively,
adjacent. (In terms of general rewriting systems, (ρ1, ρ2) is
a critical pair, which destroys confluence in general [13].)
Introducing an order among the rewrite rules is in many
cases sufficient to recover determinism. To find a reason-
able ordering we refine the notion of conflicting rules: we
say thatr i impedesr j (denoted byr i ∠ r j) if

∃ G, G1, G2: (1) G ⇒r i
G1 ∧ ∃| G’: G1 ⇒ρ• G’ ∧

(2) G ⇒r j
G2 ∧ ∃ G’: G2 ⇒ρ• G’

This means that application ofr i preventsG from being
completely rewritten to an abstract graph whereas this
would be possible by applyingr j instead.

Impediment affects confluence, but not e-confluence,
however, the functionρ* might become less defined since
some visual graphs cannot be completely rewritten any-
more. If there are no cyclic impedes dependencies among
rules, we can always apply impeded rules before their im-
peding ones (that is, order the rule system topologically
w.r.t. ∠). This means:

Proposition 1. If the transitive closure of∠ρ is irreflexive,
the domain ofρ* is not affected by conflicting rules.

For instance, inρVEX we have ρ2 ∠ ρ1 and ρ4 ∠ ρ3.
(Sinceleft-of and inside exclude each other, there is no∠
relationship between andρ3 andρ1.) Thus,∠ is acyclic,
and the given numbering gives already a topological sort of
the rules. Note that using a rewrite system by trying the
rules in such an order makes the rewriting process deter-
ministic (up to the choice of matches).

5. Visual semantics

To use visual graphs in semantics definitions we have to
fix visual notations for patterns, etc. We use the following
conventions: node identifiers are placed next to nodes, re-
spectively, next to the figures representing nodes, and (non-
geometric) labels are drawn inside nodes (figures).

In addition to objects of node contexts we need a visual
representation of the “rest-graph” allowing to generate a
corresponding binding to be used in graph expressions on
right hand sides. We use a dotted frame around the visual

– 7 –

graph and annotate it at the lower right corner with the
graph variable. We place anE at the upper left corner to de-
note an edge pattern. Otherwise, a node pattern is assumed.

We also need a notation to distinguish between match-
ing single nodes (lab›v) and a list of nodes (lab»v) with re-
gard to a specific relationship. By default we consider
symbols in patterns to represent single nodes. In contrast,
nodes annotated by an ellipsis “…” are interpreted as list
variables.

Finally, we must be able to specify the depth and order
of cascading patterns: by default, an externally bound vari-
able, sayv, is used to denote a simple node (or edge) pattern
N (…, v, …) g. By adding a list of nodesv1, …,vn to the up-
per right corner a cascading node patternN (…, v, …) (…,
v1, …) … (…, vn, …) g is denoted. Of course,v1, …, vn
must be present in the pattern andvi+1 must be in relation-
ship tovi in order to be properly bound. Now we can give a
visual semantics for VEX:

S’[[v,]] = d

S’[[v,]] = S’[[v, g]] (S’[[w, g]])

S’[[v, = Λd.S’[[leftmost(b,g),

This definition differs just in the visual presentation from
that of Section 2.3 and is much closer to the original visual
language than the textual graph notation. This definition is
more readable and easier to understand since it keeps some
of the original visual relationships instead of mapping ev-
erything to an abstract graph representation.

6. Picture Transformations

It is not only the better readability of definitions that is
gained by employing visual graphs. Maybe even more im-
portant are applications that repeatedly have to use graph
transformations: these are very error-prone and also ex-
tremely difficult to follow.

Assume, for example, that we want to formally derive
the meaning of the VEX picture from Figure 1. Let us first
consider how this works when using textual, abstract syn-
tax graphs. We use the following intermediate graphs:

g1 = N* (w, [par›a, body»[y, x], apply›z])
(z, [def›c]) (c) (y, [apply›x]) (x, [def›a]) (a) Empty

g2 = N* (w, [par›a, body»[y, x]]) (z, [def›c]) (c)
(y, [def›b, apply›x]) (b:d) (x, [def›a]) (a) Empty

g3 = N* (z, [def›c]) (c)
(y, [def›b, apply›x]) (b:d) (x) Empty

g4 = N* (y, [def›b]) (b:d)
(z, [def›c]) (c) (x, [def›a]) (a:d’) Empty

= N* (x, [def›a]) (a:d’)
(y, [def›b]) (b:d) (z, [def›c]) (c) Empty

Now we can formally derive:

S’[[v, N* (v, [par›b, body»[w, z]]) ([y›def], b) g1]] =
Λd.S’[[w, N ([y›def], b:d, []) g1]] =
Λd.S’[[w, E (w›apply›z) g2]] =
Λd.(S’[[w, g2]] (S’[[z, g2]])) =
Λd.(S’[[w,

N* (w, [par›a, body»[y, x]]) ([x›def], a) g3]] ⊥) =
Λd.(Λd’.S’[[y, N ([x›def], a:d’ , []) g3]] ⊥) =
Λd.(Λd’.S’[[y, E (y›apply›x) g4]] ⊥) =
Λd.(Λd’.(S’[[y, g4]] (S’[[x, g4]])) ⊥) =
Λd.(Λd’.(d d’) ⊥) = Λd.d ⊥

The transformation is difficult to follow, in particular, the
need1 for inventing graph expressions for intermediate
graphs makes the whole derivation rather irksome.

In contrast, the same derivation can be performed much
easier by using visual graphs:

S’[[v,]] =

Λd.S’[[w,]] =

Λd.(S’[[w,]] (S’[[z,]]))=

1. This is inherent in the concept of active patterns since they have to
perform non-trivial computations on matched data type values [5].

def

d

v g

v

g

w
E

def

v

g

r
…

b
…

p

p

]]

g

def
r
…

pd

]]

def
def

def

v

def def

def

w

d

z

def def

def

w

d

z def def

def

w

d

z

– 8 –

Λd.(Λd’.S’[[y,]] ⊥) =

Λd.(Λd’.(S’[[y,]] (S’[[x,]])) ⊥)=

Λd.(Λd’.(d d’) ⊥) = Λd.d ⊥

7. Related work

The idea of visual graphs is not entirely new: Harel’s hi-
graphs [10] are a specific kind of visual graphs. Higraphs
are essentially a visual language for application modeling,
however, they have a fixed semantics definition which lim-
its their use as a general visual language representation.

Visual manipulation of visual languages has received
much attention [2, 3, 4, 9, 11, 12]. All these approaches do
work on concrete pictures and not on abstract graph repre-
sentations. The purely visual treatment is very attractive,
but, for example, semantics are sometimes difficult to de-
fine and, in particular, difficult to apply and to deal with in
proofs. It should also be noted that semantics definitions
must always be changed when the syntax of the language
changes.

The distinction between concrete and abstract visual
syntax has also been proposed in [1, 14]. Since that ap-
proach is mainly concerned with the implementation of vi-
sual languages, a one-to-one correspondence between
concrete and abstract syntax is required, and thus abstract
syntax is intrinsically coupled very closely to concrete syn-
tax. This restricts the abstractions that can be achieved by
choosing abstract syntax and prevents in some cases se-
mantics definitions altogether. The approach of semi-ab-
stract syntax is more flexible: we can decide how far
concrete syntax is preserved and where we recourse to ab-
stract graph edges when it is more convenient.

The inductive view of graphs seems to be closely related
to the well-established grammatical approaches to visual
languages. Graph grammars, for example, offer also an in-
ductive view of graphs, but they have not yet been used for
the specification of visual language semantics, rather they
have been employed to describe translations. One reason is
certainly that graph grammars have a non-trivial semantics
themselves (caused by complex embeddings and non-de-
terminism), and it is thus difficult to describe semantics on
the basis of this formalism. Another difficulty is that graphs

are considered as global, imperative variables (they are not
parameters of grammar rules). In contrast, the applicative,
data type-like approach proposed in [6, 8] and in this paper
is more versatile: we can easily deal with nested graphs (an
example is given in [8]), and we can also employ multiple
graphs (see the Turing machine example in [7]).

8. Conclusions

We have introduced visual graphs as a formal but visual
representation for visual languages. By defining special-
ized visual rewrite systems the use of visual graphs in for-
mal definitions becomes possible. Together with a
structured processing of graphs that is offered by the under-
lying inductive graph model we are able to formally work
with visual languages in an intuitive and easily understand-
able way. This should make visual language formalisms ac-
cessible to a broader audience.

9. References

[1] Andries, M., Engels, G. & Rekers, J.: How to Represent a
Visual Program?,Int. Workshop on Theory of Visual Lan-
guages, 1996.

[2] Bell, B. & Lewis, C.: ChemTrains: A Language for Creating
Behaving Pictures,VL’93, 188-195.

[3] Citrin, W., Doherty, M. & Zorn, B.: Formal Semantics of
Control in a Completely Visual Programming Language,
VL’94, 294-301.

[4] Citrin, W., Hall, R. & Zorn, B.: Programming with Visual
Expressions,VL’95, 208-215.

[5] Erwig, M.: Active Patterns, 8th Int. Workshop on Implemen-
tation of Functional Languages, 1996, LNCS 1268, 21-40.

[6] Erwig, M.: Functional Programming with Graphs, 2nd Int.
Conf. on Functional Programming, 1997, 52-65.

[7] Erwig, M.: Visual Semantics – Or: What You See is What
You Compute, VL’98, 96-97.

[8] Erwig, M.: Abstract Syntax and Semantics of Visual Lan-
guages, JVLC 9, 1998, 461-483.

[9] Furnas,G.W.: New Graphical Reasoning Models for Under-
standing Graphical Interfaces,CHI’91, 71-78.

[10] Harel, D.: On Visual Formalisms,CACM, Vol. 31, No. 5,
1988, 514-530.

[11] Kahn, K.M. & Saraswat, V.A.: Complete Visualizations of
Cuncurrent Programs and Their Executions,VL’90, 7-15.

[12] McIntyre, D.W. & Glinert, E.: Visual Tools for Generating
Iconic Programming Environments,VL’92, 162-168.

[13] Plump, D.: Hypergraph Rewriting: Critical Pairs and Unde-
cidability of Confluence, in M.R. Sleep, M.J. Plasmeijer &
M.C.J.D. van Eekelen (eds.):Term Graph Rewriting – The-
ory and Practice, John Wiley & Sons, 1993, 203-213.

[14] Rekers, J. & Schürr, A.: A Graph Grammar Approach to
Graphical Parsing,VL’95, 195-202.

def def

def

y

d
z

d’

x

def def

y

d d’

x

def z

def def

y

d d’

x

def z

