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Abstract Thus, visual graphs are, in essence, a visual language for
The formal teatment of visual langgas is often based on graphs. The importance lies in its possiblegdascope:
graph epresentations. Since the matter of disseuis wheneer we hae to deal (formally) with a visual language
visual languges, it would be comnient if the formal —and this is likly to be done on its formal graph represen-
manipulations could be performed in a visual wse tation — we can use visual graphs as a visual language to
introduce visual gaphs to support this goal. In a visual reason about visual languages at a higélle
graph some nodes arshown as epmetric figues, and In the follaving we use as a runningample VEX, a vi-
some edgs ae represented by @pmetric elationships  sual notation for the lambda calculus [4], and consider as
between these figes. V& investigate mappings between formal manipulations semantics definitions and the compu-
visual and abstict graphs and show their application in tation with VEX pictures. W chose VEX because on the
semantics definitions for visual langies and in formal  one hand, it is a peerful (i.e., computationally complete)

manipulations of visual pgrams. and therefore interesting language, and on the other hand, it
is manageable because it is refaly small, i.e., it consists
1. Introduction of only few visual concepts. A further interesting applica-

tion area for visual graphs is tovgivisually enriched se-

Graphs are widely used as a formal representation of vi-mantics definitions for traditionally xeual formalisms.
sual languages with nodes denoting objects and edges dé-his has been demonstrated farifig Machines in [7].
picting relationships between objects. In a sense, graphs are The paper is structured as falls: in the ngt section we
a natural choice because the generalizationxbfiaé lan- describe seeral aspects of the use of graphs to abstractly
guages to visual languages essentially means e fnom represent visual languages. Section 3 presents visual
symbols related only by one relationship (the linear order-graphs as a semi-abstract notation, and in Section 4 we
ing given by sequencing) to multiple relationships which shav how to map between semi-abstract and abstract repre-
are perfectly represented in a graph by labeled edges besentations. Section 5 demonstratew lwsual graphs can
tween nodes representing symbols. be used in semantics definitions, and Section @/sHmaw

Now when an edge represents a simple relationship,the framevork can help with formal manipulations of pic-
such agnsidg this edge can, in some cases, be displayedture graphs. Relatedask is discussed in Section 7, and
by shaving the connected nodes in the represented relaconclusions follav in Section 8.
tionship. This leads to representations that are more closely
related to the original picture, and this can greatly simplify 2. Abstract graph representations
the understanding and the formal manipulation of such
graphs. V& formalize this idea by definingsual gaphs Assuming that a picture is represented by a graph, a vi-
which hare a subset of nodes and edges that are depicted iaual language is simply a set of such grapreswill illus-
a visual vay. We define mappings from visual graphs to trate the folleving definitions with VEX (more details and
their corresponding abstract graphs, which is notvialri  explanations can be found in [8]). In VEX, empty circles
task since visual graphs generallywhuoore relationships ~ represent identifiers, non-empty circles denote abstractions,
than are actually géen in the abstract graph.eifvestigate and an application is depicted byotexternally tangent cir-
conditions that ensure theistence of unambiguous such cles with an arne at the tangent point leading from the
mappings. Once a mapping has been established, we cdinction to the ajument. Each empty circle representing
use visual graphs in formal graph manipulations. This re-the use of an identifier is connected by a straight line to a
sults in transformations that are much clearer and muctso-called root node, which is either internally tangent to an
easier to understand while still based, by virtue of that map-abstraction circle and represents then the parameter of the
ping, on the abstract representation. abstraction or which lies outsideyaather circle and then



represents a freaxiable. Figure 1 shwes on the lefta VEX  abstract syntax graph for the VEX picture on the left.
expression for the lambda terky.((Ax.yx)2). As in the tatual case the choice of abstract syntax for a
visual language is by no means unique. An alteraatb-
stract syntax for VEX can be found in [8].

2.2. Inductive graphs and pattern matching

In order to define, for instance, denotational semantics
for a visual language we need a structuragt of accessing
all the elements of an abstract syntax graph. Thideseaf
by an inductie viev of graphs that alles the structured,
step-by-step graph decomposition: a graph is either empty
or it is constructed by a graghand a n& nodev together
Figure 1: A VEX expression and with edges fronv to its successors mand edges from its
its abstract syntax graph predecessors ig leading tov. In this way graphs can be
built by the constarnEmpty and &pressiondN node-context
g where node-context is a triple pred-spec, node-spec,
2.1. Abstract graph syntax for visual languages succ-spec). Here,node-spec is a node identifier not already
. . . contained ing followed by a label (forxample,a:()) and
Depending on the intended use, visual language repre-pred_SpeC (succ-spec) denotes a list of predecessor (succes-

sentations are free to ignore more or less dgtalls of the Conéor) nodesxtended by labels for the edges that come from
crete appearance. As anaenple, we consider ko to

define semantics of visual programming languages Hence(Iead o) the nodesoF instance, bapply] denotes a list of
. brog g lahguages. a predecessor nodevhere the edge coming frodrhas la-
we can well verk with abstract visual syntax which allovs

us to abstract from mgrdetails and problems that arise in bel apply. Similarly, [par>b, body’b] denotes a single suc-

arsing visual lanauages. In particulae can faget about cessorb that is reached via twdifferently labeled edges.
P 9 guages. In particy o9 We denote concatenation of a single element ok hgith
all structural constraints and simplygeed a visual lan-

i . another list by [x | I]. In the sequel we may omit empty se-
guage as a set of_graphsdtkected labeled m”'“.'gfaph of quences and unit labels, and we abiate a cascade Of-
type (a, B) is a quintupleG = (V, E, 1, v, €) consisting of a

. constructors by a singlg*-constructor If | = [vq, ..., vy,
set of node¥ and a set of edgé&swherel : E -~ VxVisa .
total mapping defining for each edge the nodes it connects,© also abbrdate [abvy, ..., labvy] by [lab»] (the same

The mappings : V - a ande : E - B define the node and foi\r/epr:ebde;}zsso:z)s.(s)lifolrr:.stance, the graph from Figure 1 is
edge labelsvVg andEg denote the set of nodes and edges of g y the #p '

G. The successors of a node are denoteslbgg(v) = {w N* (v, [par>b, body»[w, Z]])

O Vg |CeO Eg: 1(e) = (v, w)}. Lik ewise, predg(v) denotes (w, [par>a, body»[y, X], apply>Z]) (z, [def>c]) (c)

V's predecessors. The set of all graphs of tgp@)(is de- (y, [def>b, apply>x]) (b) (x, [defa]) (a) Empty

noted byl (a, B), and avisual language of type (a, B) is de-

fined as a set of graph& O ' (a, B). We also use an additional edge construddi>w) g

Let us define an abstract syntax for VEXe Weplace ~ Which simply inserts an edge with labeédetween the tw
each line connecting an identifier nodeith its definition ~ nodesv andw (which must be already presenigh
Wby adef_edge (that iS, an edge labeled \Mjﬁﬁ) fromvto It is not dificult to prove that each directed labeled
w, and an eternal adjacencrelationship together with an  multi-graph can be represented by a gragfression [6].
arrow is replaced by ampply-edge leading from thexe ~ Moreover, there are, in general, madifferent graph %
pression circle to be appliedward the agument circle. It ~ Pressions denoting the same graph. In particédareach
remains to represent abstractions. An abstractiorvengi hodev contained ing there is akays an gpression forg
by a non_empty circle where an (empty) circhethat is in- that insertw last. This is important since it meka pwer-
ternally tangent t@ represents’'s parameter and all other ful kind of pattern matching [5] applicable to graphs: a pat-
circlesey, ..., e, (non-transitiely) insidec define the ab-  tern is a graphxpression containingariables. Matching a
straction bodyIn the abstract syntax we represent this in- Pattern litle N (p, v:l, s) g to a graph xpression binds the
formation by apar-edge fromc to x and bybody_edges Components of the node coxitenserted last tp, V, |, sand
(c, &), ..., (c, &,). Node labels are not needed, and thus thethe remaining graph tg. However, in order to mue in a
abstract syntax for VEX is gen by graphs of type controlled vay through the graph, it is necessary to match

(Unit, { def, apply, par, body}) where Unit = {()} (we omit the contet of a specific node. This is possible i already
unit labels “()" in pictures). Figure 1 sivs on the right the ~ bound to the node to be matched. Then the zoofev is
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bound to the remainingaviables. Br instance, ifv is means, thay does not match the first pattern:
bound toy, then matching the patteM(p, v:I, s) g against
the abee graph epression results in the bindings: - leftmost([ v | ], E (wapply>v) g) = leftmosi(l, g)
[wbody], | - (), s — [debb, apply>x], andg — rest-graph leftmost([ v [1], g) =V
Wher_erqst-_graph is a term/gpression denoting withouty Now the semantics of a VEX-graptis finally given by:
and its incident edges.

We can restrict patterns further by adding labels that S g] = SJ[[root(g), 9]
must be present or by replacing listriables by lists of a
specific length. W can also ignore bindings by simply
omitting the corresponding parts of the pattern. Meeeo
a sub-pattertab»s (p»lab) binds tos (p) the list of all suc-
cessors (predecessors) that are connectellviadges to 3. Visual graphs and semi-abstract syntax
the current node. An edge pattern matches the mentioned
edge and the incident nodesit bemaes only the edge. In e ; e
function definitions consisting of eeral cases patterns are Vantage: the notation is not directly related to the original
tried in the order of occurrence. Thus, pattern matching isi@guage, and to understand the meaning of a picture one

deterministic (ecept for the order of nodes in generated list "as 1o perform ta non-trvial (mental) mappings: (1)
bindings). Somexamples follov later translate pictures to abstract syntax and (2) map graphs to

semantic alues. This situation can be imped if the ab-
stract syntax graphs, which are the “glue” for the map-
pings, can be lifted onto a more visualde This is where

With a suitable domait for the lambda-calculus we Visual graphs come into play
can define the semantics of VEX by induely processing In a first step we can immediatelygia visual @ersions
abstract syntax graphs.eWdefine a semantic functic® of semantics by using a straightf@ml visualization for
that tales a graph and a node specifying the decompositiorgraphs. Haever, this does not really mean a big adee.
order We have three cases to consider: first, the semanticsWe can obtain much better results if we display nodes by
of an identifier that is connected bylef-edge to a parame- Symbols used in the original visual language and if edges
ter node carrying a semantialue is just thatalue. Sec-  representing concrete geometric relationships are replaced
ond, the meaning of a nodeconnected by aapply-edge in the picture by displaying the participating nodes (that is,
to nodew is given by applying the semantics\pfwhich is their representing symbols) such thedetly these relation-
expected to be a functioraiue, to the alue denoted by ships do hold. So, in a sense, we go back from abstract syn-
Finally, the semantics of an abstraction is a functialuey ~ tax to concrete syntax,ubonly partially: some abstract
(A denotes the semantic abstraction function) which mapg€lationships or relationshipsiag very comple visual-
ary valued from D to the \alue denoted by the body of the ization rules can (and should) still be depicted as simple
abstraction when the parameter node is labdled the ~ graph edges. Hence we arerking with a special kind of
body contains te or more nodes, thesevieato be chained ~ graphs which we callisual graphs. Strictly speaking, a vi-
by apply-edges, and we ha to tale the semantics of the sual graph is just a graph as defined in Section 2.1 where a
leftmost node since application associates to the left. (ResSubset of node and edge labels, namely the geometric ones,
marks: (1) In VEX, thealuation order can be changed by have a special meaning, that is, feave their avn specific
Writing priority values abee the app”cation arves. \e |g_ visualizations. The use of visual graphs has aspects:
nore this here for buity. (2) The use of the edge pattern in first, layout algorithms can be used to visualize syntax
the second line presasv from being remeed from the graphs. W& shall not consider this here. Second, visual rep-
matched graph. (3) In order to change the label of the paresentations of graphs can be used in formal manipulations,
rameter node tod we hae to decomposefrom the graph ~ and as (tetual) graphs are a model for abstract visual syn-
and reinsert it with the melabel and the old contg that  tax, visual graphs puide a concept ademi-abstract visual

whereroot(g) = v [ Vg : predg(v) = []. For a diferent VEX
semantics based on an altermatabstract syntax, see [8].

The tetual semantics definition has one major disad-

2.3. Denotational semantics

is, with predecessorsand no successors.) syntax.
In the case of VEX wedep the originainside andadja-
S[[v, N* (v, [def>w]) (w:d) g]] =d cent relationships indvor of the more abstraptr-, body-,
S[[ v, E (wapply>w) g] =S[[v, 9] (S[[w, g]) and apply-edges, bt we still usedef-edges to represent
S[[v, N* (v, [par>p | body»b]) (r, p) gl = identifier definition/use relationships more direcn the
Ad.S[[leftmost(b, g), N (r, p:d, [1) 9] other hand, we drop ams and instead useleft-of rela-

tionship to represent an ordering among circles participat-

The functionleftmost traverses the lisb until a nodev is S L
ing in a nested application. Thus, we use graphs of type

found that does not kia an incomingapply-edge, which



({circle}, {def, adjacent, inside, |eft-of}) as a semi-abstract
VEX-syntax. (The decision whether a relationship should

be visualized or stay abstract is guided by the correspond-s[[ :

ing visualization and representation mappings, se&¢ ne
section.) V& assume that trans#i relationships are repre-
sented in graphs in transiily reduced dshion, that is, a
transitive relationshiR between nodeg andw is not rep-
resented by an edge if there is a further ngdich thaR
holds betweenr andu and also betweamandw.

Figure 2 shais the semi-abstract syntax graph and its
visualization for the VEX picture from Figure 1. @/Mis-
play two directed edges/(w) and (v, v) having the same

ing all possible casésthis ap-
: proach unnecessarily compli-
' cates formal definitions and is
prone to errors. Moreer, the
number of needed equations
can grav significantly

A solution is to formally kep definitions on the basis of
abstract graphs,ub to actually use visual graphs in equa-
tions. This becomes possible by defining appropriate map-
pings between abstract and visual graphs. When properly
defined, these mappings alldo use semi-abstract syntax
within equations while interpreting certain geometric rela-

def

label as one undirected edge, and for readability we omit altionships only in specific comnts.
left-of edges between non-adjacent objects, that is, after
transitve reduction we omit thisft-of edges i, a), (o, x),

v, ), (& 2), (x,2), and ¢,
YO

c).)
oF

def

adjacent

Figure 2: Semi-abstract VEX syntax graph

Now it seems that we can immediatelyei visual se-
mantics for VEX using visual instead ofxteal graphs.
However, there remains an important problem: semi-ab-
stract notation displays, in general, more relationships tha
needed or anted. In Figure 2, for instance, the upper pa-
rameter node is certainlyleft-of the laver parameter node

a, but this relationship is not important for the semantics al-

thoughleft-of is a rel@ant relationship with igard to nodes
being part of an application. In othepkds, there are rela-
tionships in a picture that are redet only in specific con-

texts. The problem is that if we use a pattern containing

such implicit relationships in an equation, weedy re-
strict the applicability of that equation, and thi&lespeci-
fication might cause undesired partiality in the definition.

For example, if we try to use a visual graph in the first se-
mantic equation for VEX (the details of the notation are not

important here and will bexplained later), then this equa-
tion defines semantics for only thosariables whose use
appeardeft-of the definition. Although this could princi-
pally be remedied by supplying additional equations&eo

4. Graph visualization and representation

Mappings between abstract and visual graphs can be
conveniently expressed by graph weite systems. (Since
typically several relationships are mapped to one abstract
graph edge, such mappings cannot be directrgrgby
graph homomorphisms.) In the follong we alvays denote
by I'(a’, B) an abstract graph type and bfa, ) the cor-
responding visual graph type. Thus, in the case of VEX we
have o’ = Unit, a = {circle}, ' = { def, apply, par, body},
and = {def, adjacent, inside, |eft-of}.

4.1. Typed graph rewriting

The idea is to define the visualization of abstract graphs
¢ (o', B) - ' (a, B) and, in particularthe representa-
tion of visual graphg* :I'(a, B) - I'(a’, B) in several
steps: first, we define rule systemsl (a, B) - '(a’, B)
and @:'(a’, B) - (a,P) for transforming subgraphs,
then we define inducedwete relationships, and we finally
restrict to revrite relationships that are functions.

We only need a restricted form of graptvréing where

single rarite rule is gven by a pair of graph$ (R) that

ave the same node set. Then, informadlyravrite step
finds an occurrence &fin a graphG, remaes the edges of
L in G, adds the edges &to G, and relabels the nodes in
G by the node labels &®. For example, the representation
of visual VEX graphs by abstract syntax graphs is defined

by the follaving rule systenpyex = {p1, P2, P3, Pa}:

v v
ins ar
py = inside _, Kf’
adjacent
J Ow

1. We could add tw more equation displaying the nodedirectly
under respectiely, to the right of the node containimg We could also
simply use one picture in which theft-of relationship does not hold. But
having to be avare of relationships that must beoaled complicates the
definition process considerably




\ \
P2= insde — thdy
W w

adjacent
apply

VT ot W : W
p4:v©|eft-of QW - P o

The last rule is for clearing ufeft-of relationships between
nodes that are not adjacenvé&o be simply remad from
the graph. The ale notation is already an abtiation.
Formally, we hae to define, sap;, as!

(VL EL 1, v €D, (VR ER LR VR €R)) With
VL=Vr={v.w}, E ={ey, &, e}, Er={ey}
(L(ep =1R(Eg) = (v W), 1.(&2) =1(€3) = (W, V)
Vi (V) = v (W) =circle, vg(v) = Vgr(w) = ()
gL (e) =€ (&) = adjacent, g (e3) =inside,
€r(€s) = par

P3=

Next we will define hav a graph rerite systems can be ap-
plied. Letr ={r4, ...,r,} be a ravrite system and, = (L, R)

O r an arbitrary single werite rule. Anrj-match for a graph
Gis a mappingt : L —» G such that:

(1) OvOVi:vgR(v) = v (v) Ovg(uM) O rng(vg)
(2 OeDE :eg(u(e) =&.(e) Uig(u(e) = u(L(€)
(3) pisinjectve

Note: the second condition of (1) alls nodes that are al-
ready relabeled to be matchedaang This enables the re-
writing of edges incident to one node infeient steps by
different rules. In (2) we use the ention thatu(v, w) =

(U(V), u(w)). Thus, the second condition requires that if

p(e) =€ and if i (e) = (v, w) andig(€) = (V, W), then it
must hold thap(v) =V and p(w) =w'.

Given anr;-matchy, we sayG rewrites by r; in one step
into G’ =(V, E, ', v, €), denoted byG [ r, G (or just
G O, G if the rule applied is not of interest), where:

(a) V' = VG andE = EG - “(EL) O ER
(D) " =16\ u(E) U petg
© Vv =vg\pv) O vRop'l ande’ =g\ p(E) O &g

Remarks:

(@) Nodes are not changed, those edge§& iare re-
moved that match edges in and edges frorR are added
(note thatu(X) = {p(x) | x O X}).

1. Note that bootstrapping the formalism yields visuatite systems,

and we can specifyor example,p,, by: @V - Voﬂ»ow

(b) Undefine incidences for deleted edges, and add inci-
dences forR-edges. Note that\ X ={(x,y) Of|x O X}.
Thus, sincei(E, ) denotes the set of edges fréhmatching
L, 1 \ H(E}) restrictsG’s incidence mapping to those edges
that hae not been matched. Morew, we hae gof =
{(x,0) | &y Of} This means thajlelg adds inci-
dences for the edges Rfusing, havever, the node identifi-
ers ofG.

(c) Undefine labels fok-nodes and.-edges, and rede-
fine labels as gen byR. vg must be composed Wil}h]'l
since it is defined oW, whereas’’ must be defined oW’
=Vg. On the other handg is directly added t&g, soeg
need not be adjusted.

Now we say thaG rewritesto G’, denoted byG U § G’,
if there are graph&y, ..., G, (n > 0), such thaG =Gy I,
GoO,...0,G,=G.

Note that the nerite relationships] ; andU , are de-
fined onl(ada’, BOR’). The same holds for the respeeti
closuresl] § and 0 5. Since we are interested in the-e
treme \alues of rarite chains, that is,of )-graphs and
(a’, B)-graphs, we also define: @ is represented by G/,
denoted byGU S G, if GU§ G, GUT(a, B), andG’ [
I(a’, B), and (ii)) G’ is visualized by G, denoted by
GUuGifG 0, GG O (a, B),andGOT(a, B).

Let us consider as axample ap;-match for the graph
from Figure 2. There we kia omitted edge identifiers, so
let us assume we Ya{e,, &, e U Eg withig(ey) = (v, b),
1g(ey) =1g(e) = (b, v), andeg(e,) = g(e,) = adjacent and
£s(ey) =inside. Actually, there are te possibilities to gie
a match. Br the outer abstraction, we get farp(v) =v,
H(W) = b, p(ey) = e, M(&p) = &y, H(e3) = €. Itis easy to see
thatp satisfies the conditions (1) to (3). M& rewrites by
p1inone step t&' = (V', E, ', V', €) with:

V'=Vg B =Eg-{€ & et 0 {e}
U =16\ {€ &, e O {(es (v, b))}

V' =vg \{v, b} O {(v, 0), (b, O)}

& =eg\{€ &, et U{(e pan)}

Again it is easy to check that this graph results ft®imy
replacing thenside andadjacent edges betweenandb by
apar-edge and that it conforms to the conditioasté (C).
We can she thatG rewrites to the abstract graph from Fig-
ure 1 by g¥ing a concrete sequence oivrie rules which
are identified simply by their rule numbers Qbyve mean
rule i appliedk times): £2%348. Of course, this is not the
only possible sequence, vaever, the order of applying
rules is not completely free. &\address this issuexte

4.2. Properties of typed graph rewriting

Of particular interest are representation relationships
0 g which are right-unialent (or functional) since the
map visual graphs uniquely to abstract syntax graphg. The



can thus be used to lift graph equations onto the visual

level. If O § is functional, we denote the function also by
p*, and we also say that theagte systenp is eventually
confluent or just,e-confluent

We can then use visual graphs, faample, in seman-
tics definitions by writing equations, such as

e (G)] =e

which means that the visual grapgh is immediately
mapped to its abstract egalentG’, and S actually works
on the abstract grapgh’. The rawrite systenp allows us to

dom(ps) = ({circle}, { left-of, adjacen})

rng(pg) = (Unit, {apply})

dom(p,) = ({circle}, { left-of})

mg(p,) = Unit, 0)

dom(pyex) = ({circle}, {inside adjacent left-of})
rng(pvex) = (Unit, {par, body apply})

A major source for non-determinism is the competition of
different rules for edges of the same label: a pair of rules
(ri, rj) is conflictingif T(don(r;)) n my(don(ry)) # 0. For
example, P4, po) and p4, p3) of pyex are conflicting since
the intersection of edge labels contdimside respectiely,

use pictures (that is, visual graphs) in the definition, and theygiacent (In terms of general veiting systems, @y, ps) i

fact thatp is e-confluent guarantees that this use of visual-
ization does not introduce impreciseness by partiaity-
biguity, etc.

Now why doesq][ p*(G) ]| work whereas[ G]| fails in
general? It is becaug¥ is defined to le@e certain irrele-
vant relationships (which are implicit in the visualization)
unconsidered. In the VEX semantics, faample, this is
the case for thkeft-of relationships of non-adjacent circles.

E-confluence is a weaknotion than confluence since it
requires confluence only on “finalalues. In ap case, be-
fore we can use visual graphs, werddo be sure that the
associated representation relationship is functional. The re
stricted form of revrite systems considered has some prop-

a critical pair which destrgs confluence in general [13].)
Introducing an order among thewrite rules is in may
cases stiicient to recoer determinism. @ find a reason-
able ordering we refine the notion of conflicting rules: we
say that; impedes; (denoted by; [ 1)) if

0G,G, Gy (1)GO, G O0G: G O;G [

(G0, G, 00G: G0 G

This means that application of prevents G from being
completely revritten to an abstract graph whereas this
would be possible by applyinginstead.

Impediment dects confluence, ut not e-confluence,

erties that can help to simplify e-confluence proofs: mostOVever, the functionp* might become less defined since
importantly since no nodes can be deleted or generated, w§°Me Visual graphs cannot be completelyriteen ary-

can simply focus on the replacement of edges.
We define thelomainandrange of a ravrite rule as the

set of node and edge labels of its left/right graph compo-

nent, that is, for a verite ruler; = (L, R) we letdon{r;) =
(dom(v), dom(g))) andrng(r;) = (rng(vg), Myg(er)), and
the domairrange of a ravrite system is defined as the
union of domains/ranges of all rules, that is:

dorn(r) = Oy, My(dor(r)), O Tp(dor(r)))
ig(r) = Or, i T(Mg(n)), O, o TR(ig(r)))

HereTy selects théh component from a tuple.

Next we define a notion of monotonicité rewrite sys-
temr is monotoneif Ty(dom(r)) n Ty(rng(r)) = O and if
T(dom(r)) n T(rng(r)) = 0. This means, edges that are
added by a monotonewste system cannot be renet,

more. If there are noyclic impedesdependencies among
rules, we can alays apply impeded rules before their im-
peding ones (that is, order the rule system topologically
w.r.t. 0). This means:

Proposition 1. If the transitive closue of(, is irreflexive
the domain op* is not afected by conflicting rules.

For instance, inpyex we hae p, 0 p; and p,s O pa.
(Sinceleft-of andinside exclude each othethere is ndl
relationship between angsy andp;.) Thus,O is agclic,
and the gien numbering gies already a topological sort of
the rules. Note that using awnéte system by trying the
rules in such an order mek the revriting process deter-
ministic (up to the choice of matches).

5. Visual semantics

and nodes are relabeled at most once. A direct consequence

of this is:
Theorem 1. Monotone ewrite systems a&rterminating

For instancepy gy is monotone and terminating since
we have:

dom(p4) = ({circle}, { inside adjacen})
rng(py) = (Unit, {par})

dom(p,) = ({circle}, { insidg)

rng(po) = (Unit, {body})

To use visual graphs in semantics definitions we ha
fix visual notations for patterns, etceWise the follwing
cornventions: node identifiers are placedin® nodes, re-
spectvely, next to the figures representing nodes, and (non-
geometric) labels are dwa inside nodes (figures).

In addition to objects of node corts we need a visual
representation of the “rest-graph” allmg to generate a
corresponding binding to be used in graghressions on
right hand sides. Wuse a dotted frame around the visual



graph and annotate it at themer right corner with the

graph ariable. V¢ place aik at the upper left corner to de-

g1 = N* (w, [para, bodwly, x], apply2])
(z [debc]) (c) (v, [applyX]) (x, [deba]) (@) Empty

note an edge pattern. Otherwise, a node pattern is assumed. g, = N* (w, [para, bodwly, X]]) (z [debc]) (c)

We also need a notation to distinguish between match-

ing single nodeddb»v) and a list of nodedab»v) with re-
gard to a specific relationship. By deft we consider

(y, [debb, applyX]) (b:d) (x, [deba]) (a) Empty
g3 = N* (z [debc]) ()
(v, [debb, applyX]) (b:d) (X) Empty

symbols in patterns to represent single nodes. In contrast, g, =N* (y, [debb]) (b:d)

nodes annotated by an ellipsis “...” are interpreted as list

variables.

Finally, we must be able to specify the depth and order

of cascading patterns: by deft, an &ternally bound &ri-

(z, [debc]) (c) (x, [deBa]) (a:d’) Empty
= N* (x, [defa]) (a:d’)
(y, [debb]) (b:d) (z, [debc]) (c) Empty

able, say, is used to denote a simple node (or edge) patterdNOW we can formally deve:

N(...,v, ...)g. By adding a list of nodes, ..., v, to the up-
per right corner a cascading node pattéif.., v, ...) (...,
vy, ...) . (o) Vi, ...) O is denoted. Of coursey, ..., vy
must be present in the pattern afd must be in relation-
ship toy; in order to be properly bound. Nave can gie a

S[[ v, N* (v, [panb, body[w, Z]]) ([y>defl, b) g;] =
Ad.S[[w, N ([y>def, b:d, []) 9,1 =

Ad.S[[w, E (wapply2) g,] =

Ad(S[[w, g2 (Sl z g21) =

Ad.(S[[w,

visual semantics for VEX: N* (w, [para, bodyl[y, x]]) ([xdef, a) g3] 0) =

....... AA(AD STy, N (bodel, ad, [I) ga] O) =

o R

: L AL (SITY: aa] (S[[% 0a]) 0) =
Sliv., gef - 1=d A (dd) D) = Add O

g

The transformation is ditult to follow, in particular the
need for inventing graph xpressions for intermediate
graphs maés the whole deration rather irksome.

In contrast, the same degition can be performed much
easier by using visual graphs:

| b
b )T =Ad.S[[leftmos(b,g),: [def:
weaft 1 r 1

This definition difers just in the visual presentation from
that of Section 2.3 and is much closer to the original visual
language than thextual graph notation. This definition is
more readable and easier to understand sineefjiksome

of the original visual relationships instead of mapping e
erything to an abstract graph representation.

6. Picture Transformations

It is not only the better readability of definitions that is
gained by emplging visual graphs. Maybeven more im-
portant are applications that repeatedlyehto use graph
transformations: these arery errorprone and alsoxe
tremely dificult to follow.

Assume, for gkample, that we ant to formally desie
the meaning of the VEX picture from Figure 1. Let us first
consider hw this works when using te¢ual, abstract syn-
tax graphs. W use the follwing intermediate graphs:

Ad.(S[[w,

1. This is inherent in the concept of aetpatterns since tiiehave to
perform non-twial computations on matched data typéues [5].



@7@ are considered as global, impevatiariables (thg are not
def\y parameters of grammar rules). In contrast, the appéeati

, @ data type-lile approach proposed in [6, 8] and in this paper
Ad.(Ad"SIy, defl  Idef 10 is more \ersatile: we can easily deal with nested graphs (an
.. example is gren in [8]), and we can also emplmultiple

graphs (see theufing machine xample in [7]).
, @ @) _
AN (ST[ y,%%fﬂ (SIx % oo 0=
O yO O

Ad.(AD".(dd") D) =Ad.d O

8. Conclusions

We have introduced visual graphs as a format wisual
representation for visual languages. By defining special-
ized visual ravrite systems the use of visual graphs in for-
mal definitions becomes possible.ogEther with a
structured processing of graphs that ferefd by the under-

7. Related work lying inductive graph model we are able to formallpnk

with visual languages in an intwig and easily understand-

The idea of visual graphs is not entirelywmélarel’s hi-

able way. This should makvisual language formalisms ac-

graphs [10] are a specific kind of visual graphs. Higraphscessible to a broader audience.

are essentially a visual language for application modeling,
however, they have a fixed semantics definition which lim-
its their use as a general visual language representation.
Visual manipulation of visual languages has nesmki  [1]
much attention [2, 3, 4, 9, 11, 12]. All these approaches do
work on concrete pictures and not on abstract graph repre-

sentations. The purely visual treatment éyvattractie, (2]
but, for xample, semantics are sometimediclift to de-
fine and, in particuladifficult to apply and to deal with in  [3]

proofs. It should also be noted that semantics definitions
must alays be changed when the syntax of the language
changes. (4]
The distinction between concrete and abstract visual
syntax has also been proposed in [1, 14]. Since that apl]
proach is mainly concerned with the implementation of vi-
sual languages, a one-to-one correspondence betwedf]
concrete and abstract syntax is required, and thus abstract
syntax is intrinsically coupledevy closely to concrete syn-  [7]
tax. This restricts the abstractions that can be aetiiby
choosing abstract syntax and yeets in some cases se- [8]
mantics definitions altogethefhe approach of semi-ab-

stract syntax is more ftible: we can decide mo far  [9]
concrete syntax is prese and where we recourse to ab-
stract graph edges when it is more\arient. (10]

The inductve view of graphs seems to be closely related
to the well-established grammatical approaches to visuallll
languages. Graph grammars, faample, ofer also an in-
ductive view of graphs, bt they have not yet been used for
the specification of visual language semantics, rathgr the
have been empleed to describe translations. One reason is [13
certainly that graph grammarsvieaa non-twial semantics
themseles (caused by complembeddings and non-de-
terminism), and it is thus di€ult to describe semantics on
the basis of this formalism. Anotherfittilty is that graphs

(12]

(14]
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