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Abstract

We describe a type-inference algorithm that is based on labeling nodes with type information

in a graph that represents type constraints. This algorithm produces the same results as the

famous algorithm of Milner, but is much simpler to use, which is of importance especially for

teaching type systems and type inference.

The proposed algorithm employs a more concise notation and yields inferences that are

shorter than applications of the traditional algorithm. Simplifications result, in particular, from

three facts: (1) We do not have to maintain an explicit type environment throughout the algo-

rithm because the type environment is represented implicitly through node labels. (2) The use of

unification is simplified through label propagation along graph edges. (3) The typing decisions

in our algorithm are dependency-driven (and not syntax-directed), which reduces notational

overhead and bookkeeping.

Keywords: Type inference algorithm, lambda calculus, polymorphic type system, graph

1 Introduction

Type inference is an essential part of statically typed functional programming languages, such as

Haskell or ML. The process of type inference is not just a “problem” of the compiler in the sense that

once an algorithm is found and implemented the “problem” can be regarded as being solved. Knowl-

edge about how type inference works is an important skill that is required to use a strongly typed

language effectively. For example, it is almost impossible to understand type error messages—an

important guidance in writing correct programs—without knowing about type inference. Similarly,

the annotation of functions with polymorphic types can be performed successfully only with a cer-

tain understanding of a language’s type system, which defines how types are related to syntactic

constructs of the language.

The Hindley/Milner type system [15] and the type-inference algorithm W is the basis for most

statically typed functional languages. Although the algorithm is not very complex and is fairly

easy to implement, it is difficult to apply “by hand”, which is needed sometimes to understand the

reasoning of the type checker or to just think about complex type situations.
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Consider as an example the inference of the type for the function composition combinator

λf.λg.λx.f (g x). The application of the algorithm to this example is quite tedious; see the Ap-

pendix. It is the heavy use of unification together with the need to maintain type assumptions under

substitutions that makes the algorithm difficult to apply by hand. These difficulties are aggravated

by the recursive nature of the algorithm, which forces one to frequently invent and rename variables,

keep track of local bindings, etc. The complexity of demonstrating how the algorithm works for

examples is probably also the reason why type inference is mostly explained in different ways, see

for example, [20, 16], which presents an unfortunate situation from a teaching point of view.

In this paper we propose an alternative algorithm G that is based on labeling nodes in a graph.

This algorithm produces the same results as W, but it is much simpler to use. In particular, no type

environment is required, and unification is performed mostly implicitly through a graph labeling

technique that simulates the flow of types through the graph. More specifically, the presented

algorithm is based on the representation of lambda expressions by graphs that specify their types.

Nodes in these type graphs are labeled with type expressions, and edges represent constraints

between types. These constraints are solved by letting types flow along these edges and sometimes

also by restructuring graphs. The type-inference process consists of two steps. First, we have to

create a so-called type-flow graph that serves as a specification of the type to be inferred. Then in a

second step we perform operations on this graph that leaves as a result the inferred type as a node

label (or reveals a type error).

Let us consider as an example the composition combinator. The type of a lambda abstraction

is a function type. In this example it is a function type of three parameters. We create a node

that is labeled with such a function type, however we leave the parameter types and the result type

unspecified, which is represented by using unlabeled nodes in the type expression.

• → • → • → •

Figure 1: Node labeled with type expression.

Figure 1 shows a graph that consists of five nodes, four of which are unlabeled (represented by •)

and one of which is labeled with the type expression • → • → • → •. Note that in this representation

type expressions can contain nodes. In general, unlabeled nodes are visually represented by •, but

to emphasize their relationships to the variables from the function definition, we may also use the

variable names of the parameters instead.

The result type of the function is determined by the result type of the body of the lambda

abstraction, f (g x), which is represented in the graph by a directed edge from the result node of

the application to the result node of the function type. In each type-flow graph we designate a

node that is going to be labeled by the result type, and we call that node the result node. In our

example, the result node is the node labeled with the function type.

The type of an application is given by the result type of the function being applied, which must

be, of course, a function type. In addition, the parameter type of the function must agree with
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the type of the argument. These requirements can be represented in a graph by creating a node

labeled with a function type, adding an edge between this node with the node that represents the

function in the graph, and connecting the node representing the type of the argument with the

parameter type of the function type. In our example we therefore create two nodes labeled • → •

for the applications of g to x and f to g x. These nodes are connected to f and g representing the

fact that f and g must be function types (since they are applied). Moreover, the argument type

of g’s function type is connected to x, and g’s result type is connected to the argument type of f ’s

function type. Finally, the result type of f ’s function type, which represents the result type of the

function body, is connected to the result node of the composition combinator.1

As a result we obtain the type-flow graph shown in Figure 2. In the following we refer to the

unnamed, unlabeled nodes in the graph from top to bottom, left to right by r, f1, f2, g1, and g2,

respectively.

f → g → x → •

• → • • → •

Figure 2: Type-flow graph for the composition combinator.

To infer the type for this type-flow graph we start by labeling all nodes that do not depend on

other nodes by fresh type variables. For example, unlabeled nodes that do not have predecessors

in the graph are independent. In the above graph, we find that the node f2 has this property, so

we can label the node with a. (Note that an undirected edge corresponds to two directed edges in

either direction so that any node that is attached to an undirected edge always has a predecessor.)

Moreover, all unlabeled nodes that are transitively connected through undirected edges to other

unlabeled nodes such that no node in such a group has other labeled predecessors are also considered

independent and can be labeled by a fresh type variable. We can assign one and the same fresh

type variable to all nodes in such a group. In the example, we observe two groups of nodes, namely

{f1, g2} and {g1, x}, and we can assign to them the type variables b and c, respectively.

The edges in a type-flow graph represent constraints on the labels of the connected nodes: An

undirected edge expresses the requirement that the labels must be equal; a directed edge expresses

the dependency of the target’s label on that of the source, that is, whatever type the source node

is labeled with, the target node will be labeled in the same way. Whenever new type information

is added to a type-flow graph by propagating labels along edges, the constraints represented by

these edges have been satisfied so that the edges are not needed anymore. Similarly, after having

assigned one new type variable to a group of nodes that are connected by undirected edges, these

1The directed edge indicates that the type for the result node is completely determined the result type of f ’s

function type. The use of directed edges helps to simplify the type inference process since it generally reduces the

number of required graph restructuring steps.
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undirected edges have also served their purpose and are not needed anymore.2 Consequently, we can

remove these unneeded edges from the graph to simplify further operations by enhancing the graphs

comprehensibility. In addition to unneeded edges, unconnected nodes (except the result node) can

also be removed from the graph. For small examples like the one we are currently working with

the effects are not that dramatic, but for larger graphs, edge and node removal can significantly

simplify the inference process.

Returning to our example, we can observe that the edge connecting the nodes f1 and g2 and the

edge between g1 and x can be removed. We therefore obtain the type-flow graph shwon in Figure

3.3

f → g → c → •

b → a c → b

Figure 3: Type-flow graph after node labeling.

The next step is to propagate node labels via edges. We can propagate node labels via directed

and undirected edges. Propagation works by labeling an unlabeled node with the label of its

predecessor. In our example, we can first propagate a (the label of f2) to the node r. Moreover,

since the labels of the neighbors of f and g are saturated, we can also propagate the type b → a

to f and the type c → b to g. After these three propagations, the remaining three edges are not

needed anymore and can be dropped from the type-flow graph. The removal of the two undirected

edges leaves the lower two nodes unconnected from the graph component that contains the result

node, so that they can be removed, too. In general, propagation can lead to new saturated type

expressions, enabling further propagations. However, in our example no unlabeled nodes are left,

so no further propagation is possible, and we obtain the type-flow graph shown in Figure 4.

(b → a) → (c → b) → c → a

Figure 4: Result type of composition combinator.

At this point, since the result node is labeled and since the graph contains no conflicts, the type-

2Another view is that assigning a fresh type variable to a group of nodes is actually an operation that consists of

two consecutive steps, namely first assigning a variable to one node and then propagating it over the undirected edges

to all other nodes in the group.
3Note that variable names, like f , g, and x, which we have kept in the type-flow graph for convenience, are not

node labels but node identifiers. In this paper we use the type variables a, b, and c. All other lower case characters

are node identifiers.

4



inference algorithm terminates successfully and reports the type of the function, which is obtained

by the label of the result node of the lambda expression’s type-flow graph.

Compared to the traditional type-inference algorithm, the described graph-labeling method is

shorter and employs a more concise notation. Moreover, we do not have to maintain an explicit

type environment throughout the algorithm. The type environment is represented rather implicitly

through node labels. Unification requirements are represented by edges in the type-flow graph.

Since these requirements are resolved in many cases through propagation, the use of unification is

effectively reduced to a more moderate level.

Another observation is the following. We have shown the type inference in several small steps.

For small examples like the one just considered, one would probably not redraw the whole graph

in each step, but rather successively annotate just one graph. On the other hand, in more complex

situations, producing intermediate results might be helpful. The point is that the described method

supports any level of detail in the description of an inference, which is more difficult to achieve for

the traditional algorithm.

One question remains: Why do we need directed as well as undirected edges? The answer is

that directed edges indicate a possible type flow in only one direction, while an undirected edge,

such as {v,w}, initially allows the flow of type information in either direction. Then later, during

the execution of the algorithm, one of the nodes, say v, will be labeled. In that case, one of three

things can happen. If w is unlabeled, v’s node label can flow to w, that is, the label is copied. (This

can happen also if v still contains unlabeled nodes in which case the undirected edge is moved and

distributed into the type expression.) If w is labeled and the outermost type constructors of v’s

and w’s label agree, the undirected edge {v,w} is removed and new undirected edges are inserted

between the corresponding arguments of v’s and w’s type (if any). Otherwise, we have found a type

error. We illustrate these issues with more examples in later sections of this paper.

One important difference between the just presented algorithm and the traditional algorithm

that explains much of their different style is the order in which the typing of subexpressions is

performed. The traditional algorithm works in a syntax-directed way, which often forces to delay

typing decisions and to resolve them later through unification. In contrast, the typing decisions in

our algorithm are dependency-driven—the type-flow graph is essentially processed in topological

order, which reduces notational and bookkeeping overhead to a minimum.

The rest of this paper is structured as follows. In Section 2 we discuss related work. In Section 3

we introduce type-flow graphs as a representation for type specifications of lambda terms. In Section

4 we introduce a type-inference algorithm that is based on a stepwise relabeling of the nodes of type-

flow graphs. In Section 5 we extend the presented type-inference method to non-closed lambda terms

by including predefined functions. We identify the notion of normalized type-flow graphs to avoid

the re-checking of predefined functions. In Sections 6 and 7 we extend the method further to deal

with recursive and polymorphic function definitions, respectively. Finally, in Section 8 we present

some conclusions and comment on future work.
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2 Related Work

Graphs have been used a lot as representations for lambda terms. Wadsworth [21] introduced

a representation that is the basis for graph reduction. This representation allows the sharing

of subexpressions. Lamping extended the representation by control nodes to avoid unnecessary

copying [12]. These graphs are similar to the more general notion of interaction nets [11].

All these graph representations were used to study or improve the implementation of lambda

term (graph) reduction; see also [1, 19]. A visual representation for lambda calculus (called VEX)

was proposed in [4]. Through the use of nested circles this notation allows for an easy identification

of scope and free and bound variables. On an abstract level the notation corresponds closely to other

graph representations of lambda calculus and can be used to give a concise denotational semantics

for lambda calculus [6].

The use of graphs in the context of type systems and type inference can be distinguished ac-

cording to what information is being represented by graphs.

Most common is the use of graphs as a supporting data structure for type inference or for

type explanation. Chitil [2] uses graphs to represent explanations of type inferences with the goal

to produce better error messages. To this end he defines a version of the Hindley/Milner type

system that is compositional. Flow graphs are used by Walz and Johnson to locate the most likely

source of a type error [22]. A graph representation of types has been used in [10] to represent well-

typed lambda terms by homomorphisms from graphs that represent lambda terms. In the work of

McAdam [14, 13], graphs are used to represent lambda terms and types. The edges in the type

graphs are labeled by terms that serve as explanations for the types. During type inference, the type

graphs constantly grow, that is, there is no process of graph simplification, which makes perfectly

sense for the described application of gathering information for type (error) explanation. However,

for a description of the type-inference process itself, the used graph structures are too large and

complex. Duggan and Bent [5] use graphs to represent the results of unifications, but graphs are

not used to represent typing constraints. Again, the goal is to exploit the graph information to

obtain explanations of type errors. The graph representation is derived from the one that is used

in the almost linear time unification algorithm that was invented by Huet in his dissertation and is

described in [9].

The use of graphs in this paper is to express type equality or type-flow constraints. Heeren

et al. take a constraint-based approach [8] to improve type-error messages. They use a graph

structure, called equality graph, to represent equality constraints between type variables and type

constants. The graph concept we use in this paper differs in several respects: First, we represent

constraints between arbitrary type expressions. To this end, we have developed a more sophisticated

hierarchical graph structure that allows node labels to be expressions that may themselves contain

nodes. Second, our graphs generally evolve during the type-inference process while their graphs are

static. Finally, the graphs we are using are intended to be a direct communication device for users

and not just an implementation structure. A similar use of graphs appears in [17] where constraint

graphs are used to represents sets of typing constraints. However, these constraint graphs are also

flat, static graphs. Solutions to the represented constraints are obtained through an automaton
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that computes assignments of types to nodes. No graph operations are employed, and no graph

simplification takes place. The most closely related graph representation appears in the Ph.D.

thesis by Choppella who represents the type-unification problem by a unification graph [3]. Based

on the work of Port [18], these unification graphs represent types. Like the graphs used in [8, 17],

unification graphs are unstructured, that is, each vertex represents an unstructured type or a type

constructor. In addition to edges expressing constraints between type nodes, the unification-graph

representation contains also derived edges and paths. The graph is not simplified during the type-

inference process. In contrast, unification is used to construct a closure relation of the represented

equational constraints and thus grows more and more complex whereas in this paper the goal is to

simplify graphs by repeatedly applying rewrite rules.

Finally, a use of graphs for explaining the process of type inference appears in the book by John

Mitchell [16, Chapter 6] where he uses a graph notation for lambda expressions in an informal way

to discuss the types of lambda terms.

3 Type-Flow Graphs

A type-flow graph is a graph to represent a specification of the type of a lambda expression. Nodes

are labeled by type expressions in which type variables may be replaced by unlabeled nodes.

We are working with a set of type expressions T that is defined as the set of terms generated by

an otherwise unspecified type signature Σ of type constructors σ1, . . . , σn and a set of type variables

A, that is, T = TΣ(A). The corresponding set of type expressions TV to be used in type-flow

graphs is obtained from T by allowing nodes in addition to type variables in terms. We assume

that nodes are drawn from a set V , which is required to be disjoint from A. Therefore we define

TV = TΣ(A∪V ). For the type-inference algorithm we need a refinement operation that moves edges

between nodes labeled by type expressions down to (nodes contained in) the subexpressions. The

result of this operation is a sequence of updates to the current graph. In the following definition t

ranges over types, and v and w represent nodes. Note that the unbound w on the right-hand side

in the third case denotes a fresh node, that is, we require w /∈ V .

σ(t1, . . . , tn) ⇓ σ′(t′1, . . . , t
′

n) =

{

t1 ⇓ t′1; . . . ; tn ⇓ t′n if σ = σ′

type error otherwise

v ⇓ w = E ⊕ {v,w}

v ⇓ t = E ⊕ {v,w};V := V ∪ {w};L(w) := t

t ⇓ v = v ⇓ t

In pictures representing type-flow graphs we also use for convenience • to represent unlabeled nodes.

The symbol • serves as a kind of “anonymous node identifier” that allows us to depict an unlabeled

node in a picture without having to invent a unique identifier for it.

The information that is expressed by using the same variable name at different places in a

type expression is represented in type-flow graphs by an undirected edge between the corresponding

nodes. Note that with this representation, type-flow graphs are compositional under the assumption

that type variables cannot be shared among different type expressions.
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A type-flow graph is a triple G = (V,L, E) where V is a set (the node set of G), L : V → TV is a

partial function that assigns node labels to nodes, and E ⊆ V ×V represents the set of edges in the

graph. We sometimes use the notation {v,w} to denote an undirected edge, which is represented

in the graph by the two directed edges (v,w) and (w, v). This shorthand allows us to use more

succinct expressions, such as E ∪ {. . . , {v,w}, . . .}, in place of E ∪ {. . . , (v,w), (w, v), . . .}. Let

nodes : TV → 2V be a function that computes the set of nodes contained in a type expression. We

require the node labeling function L to be closed with respect to G, that is, ∀v ∈ V : nodes(L(v)) ⊆

V . With E(v) = {w | (v,w) ∈ E} we can determine the set of successors of node v. Likewise,

E−1(w) = {v | (v,w) ∈ E} yields the set of w’s predecessors. We write L(v) = ⊥ whenever

v /∈ dom(L).

We use the following auxiliary notation for manipulating type-flow graphs. Let G = (V,L, E).

Adding a node v labeled by t to a graph G is defined as follows.

v〈t〉 ⊕ G = (V ∪ {v} ∪ nodes(t),L ∪ {(v, t)}, E)

We assume that ({v} ∪ nodes(t)) ∩ V = ∅. Correspondingly, we define v ⊕ G = (V ∪ {v}, L,E) for

adding an unlabeled node v to G. We use a similar notation to add directed and undirected edges

to a graph.
(v,w) ⊕ G = (V,L, E ∪ {(v,w)})

{v,w} ⊕ G = (V,L, E ∪ {{v,w}})

The operation is well defined only if {v,w} ⊆ V .

To illustrate the graph-theoretic definition we show the type-flow graph of the composition

combinator.
({v, f, g, x, r, f ′, f1, f2, g

′, g1, g2},

{(v, f → g → x → r), (f ′, f1 → f2), (g
′, g1 → g2)},

{{f, f ′}, {g, g′}, {f1, g2}, {g1, x}, (f2, r)})

Next we describe the algorithm F to construct a type-flow graph from a lambda expression M . F

computes a pair consisting of a graph representing the type specification for M and a node whose

label represents the result type of M . This node is also called result node in the following.

The structure of type-flow graphs, their construction, and also the type-inference process is

simplified by translating maximal groups of nested lambda abstractions and applications. We

therefore assume in the following that patterns, such as λx1 . . . xk.M or M N1 . . . Nk, always match

a maximal number of parameters, respectively, arguments, that is, we assume that M is not a

lambda abstraction in λx1 . . . xk.M and M is not an application in M N1 . . . Nk. This assumption

is not essential—the type inference algorithm works as well in the general case—but it makes type

inferences generally simpler. Moreover, we assume that all lambda-bound variables in a lambda

term are distinct. This property simplifies the translation into type-flow graphs and can easily

be achieved by appropriately renaming variables. Note that renaming a lambda term M is not

problematic in this context since the goal is to construct a graph representing M ’s type, which is

not affected by the choice of variable names.

We provide two equivalent definitions for F . First, we give a visual definition of the algorithm,

which is helpful for two reasons: (i) it helps understanding the following abstract graph-theoretic
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definition and (ii) it serves as a construction guide for drawing type-flow graphs when performing

type inference “by hand”. We employ the following visual notation.

• A rectangular, shaded box M indicates the application of the transformation F to the en-

closed lambda expression M .

• A black diamond � on the border of a shaded box refers to the result node of the graph that

is obtained by that translation.

• A rounded box t represents a node that is labeled by a type expression t; unlabeled nodes

are represented by • or by lowercase variables, such as v or w.

• Arrows represent directed edges to be created, whereas lines represent undirected edges.

• A black diamond � next to a node marks the node to represent the result type of the con-

structed type-flow graph.

The translation of an abstraction λx1 . . . xk.M creates one node v that is labeled by a function type

corresponding to the number of parameters of the abstraction (k+1 defines the number of unlabeled

nodes in the generated type expression) and a graph GM that is obtained by translating the body

of the abstraction. Since the result type of a function is given by the type of the function’s body, a

directed edge is added from the result node of GM to the last node in v’s label. The result type of

the abstraction is given by the label of v. Therefore, v is marked as the result node, see Figure 5.

λx1 . . . xk.M −→
• → . . .k+1→ •

�

M
�

Figure 5: Translation of abstractions.

An application M N1 . . . Nk is translated into graphs for the applied function M and all k

arguments N1, . . . , Nk. An application is well typed if the type of M is a function type of (at least)

k arguments and if the types of the arguments match the corresponding parameter types. The first

requirement is established in the generated type-flow graph by creating a node v that is labeled

with a function type and by adding an undirected edge between v and the result node of M . The

second constraint is realized by adding an undirected edge between the result node of each argument

graph and the corresponding parameter node in v’s label, see Figure 6. The result type of the whole

application is given by the result type of M , which is reflected by marking the last unlabeled node

of v’s type expression as a result node.

Finally, the translation of a variable shown in Figure 7 simply causes the unlabeled node that

represents the corresponding parameter to be marked as a result node. This marking will then be
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M N1 . . . Nk −→

M
�

• → . . .k → • → •�

N1

�

. . . Nk

�

Figure 6: Translation of applications.

exploited by the algorithm to attach an edge to that node. Since we assume that all lambda-bound

variables have unique names, this node is uniquely determined. Note that this step may fail in the

case of unbound variables. In that case F returns an error.

x −→ · · · x� → · · ·

Figure 7: Translation of variables.

The translation can also be generalized to work with terms that contain the same variable

multiple times by maintaining an stack of node/variable pairs. However, this generalization requires

additional technical machinery and does not help otherwise.

Next we give the formal definition of the type-flow graph construction. F takes as input an

already constructed type-flow graph and the lambda expression to be added to that graph. The

type-flow graph is constructed inductively by scrutinizing the lambda expression and applying one

of the following rules. Unbound variables in the definitions, such as w, v, v1, . . . , vk+1, denote fresh

nodes that are not contained in any of the involved graphs yet.

The type of a lambda abstraction is a function type whose result type is given by the type of the

lambda body. Therefore the following construction creates for a lambda expression of k parameters

a new node v labeled by a corresponding function type, that is, x1 → . . . → xk → w, and connects

the node r that represents the result type of the lambda body M with the result type node w by a

directed type-flow edge.

F(G,λx1 . . . xk.M) = ((r, w) ⊕ G′, w)

where (G′, r) = F(v〈x1 → . . . → xk → w〉 ⊕ G,M)

The type-flow graph for an application generates graphs for all k arguments and links each node

ri, representing the type of the argument term Ni, to the corresponding node in the function type

v1 → . . . → vk+1, which is used as a label of the node v, which is to be linked to the node r
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representing the result type of M .

F(G,M N1 . . . Nk) = ({r0, v0} ⊕ . . . ⊕ {rk, vk} ⊕ v0〈v1 → . . . → vk+1〉 ⊕ Gk, vk+1)

where (G0, r0) = F(G,M)

(Gi, ri) = F(Gi−1, Ni) for 1 ≤ i ≤ k

Finally, the type-flow graph of a variable does not change the graph, but simply returns the corre-

sponding node as a result node if it is present in the graph. With G = (V,L,E) we define:

F(G,x) =

{

(G,x) if x ∈ V

error otherwise

4 Type-Inference with Type-Flow Graphs

The type-inference algorithm works by successively labeling nodes in the type-flow graph for a

lambda expression. The basic idea is to repeatedly label unlabeled nodes that do not depend on

the type of any other node by new type variables and to propagate type expressions via edges to

other unlabeled nodes.

In the description of the algorithm we employ the following characterizations of nodes in a

type-flow graph. For each unlabeled node v, the set of its equivalent nodes is defined as the set

of all unlabeled nodes that can be reached from v via path of undirected edges, that is, with

v ≡ w :⇐⇒ {v,w} ∈ E we have

equiv(v) = {w ∈ V | L(w) = ⊥ ∧ v ≡∗ w}

where ≡∗ denotes the reflexive and transitive closure of ≡.

An node is said to be unconstrained if it does not have a labeled predecessor.

uc(v) = E−1(v) ∩ dom(L) = ∅

Note that the use of E−1 (instead of E) ensures that possible directed incoming edges are caught.

(Outgoing directed edges do not constrain a node.)

A node is called a free node if all of its equivalent nodes are unconstrained and if they are part

of node labels of unconstrained nodes only. The formal definition is as follows.

free(v) = ∀w ∈ equiv(v) :
(

uc(w) ∧ ∀u ∈ V : w ∈ nodes(L(u)) =⇒ uc(u)
)

If an unlabeled node is free, it can be labeled by a fresh type variable.

Finally, a saturated node is a node whose label does not contain any unlabeled nodes, that is,

sat(v) = {v} ∪ nodes(L(v)) ⊆ dom(L)

In the propagation step, which promotes node labels, saturated nodes are preferred to simplify and

to accelerate the type-inference process.

11



Algorithm G (Graph-Based Type Inference)

Input. A lambda expression M .

Output. The type for M or type error.

Method.

First, compute the type-flow graph G for M . Let r be the result node of G. Repeatedly

apply the first applicable of the following four steps. After each step remove single, isolated

nodes (except r).

1. Recognize type error. If an edge connects two incompatible nodes, report a type error

and stop. Two nodes are incompatible if (a) they are labeled with type expressions

that do not match or (b) one node is not part of the label of the other.

2. Label. Label a group of free nodes with a new type variable, that is, select equiv(v) ⊆ V

with free(v) and assign for all w ∈ equiv(v) : L(w) := a for an a /∈ L(V ). Let

E := E − {{u,w}} for all u,w ∈ equiv(v).

3. Propagate. Label an unlabeled node with the type expression of one of its (preferably

saturated) predecessors, that is, select u ∈ E−1(v) with L(v) = • and let L(v) := L(u).

Let E := E − {(u, v)}. Favor the propagation of saturated predecessors.

4. Refine. Distribute undirected edges to nodes in type expressions, that is, select

{v,w} ∈ E with L(v) 6= ⊥ and L(w) 6= ⊥, let E := E − {{v,w}}, and perform

the operations determined by v ⇓ w. Note that for n = 0 this step amounts to just

checking constraints on saturated type expressions, which is reflected in the first case

of the definition of ⇓.

If L(r) is saturated, return L(r). Otherwise, report a type error.

Figure 8: Type Inference Algorithm G.

The graph-based type-inference algorithm G shown in Figure 8 essentially consists of repeatedly

applying one of two node-labeling steps: (i) labeling free nodes with new type variables or (ii)

propagating node labels along type-flow edges. In some situations, the graph structure is refined to

enable further relabeling or the identification of type errors.

We have already illustrated in Section 1 how G can successfully infer types. Therefore, we now

present an example that demonstrates the identification of a type error. Consider the lambda term

λx.x x, which is ill typed. To apply G, we first have to create the type-flow graph. The process is

illustrated in Figure 9.

For the further discussion we use, in addition to x, the names r, y, and z (top to bottom, left

to right) for the unlabeled nodes in the resulting graph and f for the labeled node at the bottom.

Now we can try to apply the different steps of the algorithm G. We cannot yet recognize a type

error because in order to identify condition (a) we have to find an edge that connects two labeled

nodes, which does not exist in the above type-flow graph. To apply the second step, we find that z

is free because (i) it does not have any labeled predecessor and is thus is itself unconstrained and (ii)
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λx.x x −→

x → •
�

x x
�

−→

x → •
�

x
�

• → •

x
�

−→

x → •
�

• → •

Figure 9: Application of F .

although it is part of f ’s node label y → z, the node f is unconstrained, too, because it only has an

unlabeled node, namely x, as a predecessor. Therefore, we can label z with a. Since equiv(z) = {z},

E does not have to be adjusted. Note that y is not free and cannot be labeled because one of its

equivalent nodes, namely x, is constrained (since it is connected by an edge to the labeled node f).

Therefore, we obtain the type-flow graph shown in Figure 10.

x → •
�

• → a

Figure 10: Type-flow graph after labeling.

In the next round of the algorithm, the first step that applies is propagation. Since we prefer

the propagation of saturated nodes, we select z and propagate the label a to r, which produces,

after removing the edge (a, r), the type-flow graph shown in Figure 11.

x → a
�

• → a

Figure 11: Type-flow graph after propagation.

In the next iteration, propagation is again the first possible step. This time we propagate the

label y → z of the unsaturated node f to x. Note that for convenience we may “inline” labeled nodes

in type expressions. For example, instead of talking about “f with L(f) = y → z and L(z) = a”, we

can more succinctly as well refer to “f with L(f) = y → a”. Formally, we can define the following

equivalence relationship on type-flow graphs. For σ ∈ Σ, t1, . . . , tn ∈ TV , v ∈ V we define that the

13



following two type expressions are equivalent in a graph G:

σ(t1, . . . , ti, . . . , tn) ∼= σ(t1, . . . , v, . . . , tn)

iff L(v) = ti and v /∈ nodes(σ(t1, . . . , ti, . . . , tn)) and if E(v) = E−1(v) = ∅.

Returning to the example, after the propagation we obtain the type-flow graph shown in Figure

12. Note that after removing the edge {x, f}, f is isolated and can be removed from the graph.

Note also that we cannot substitute in this case x by L(x) = y → a since E(x) = {y} 6= ∅.

• → a → a
�

Figure 12: Type-flow graph revealing the type error in λx.x x.

In the last iteration, the first step applies since part (b) of the condition is satisfied, that is, we

recognize the nodes y and x as being incompatible since they are connected by an edge while at the

same time y is contained in L(x). Therefore the algorithm stops at this point and reports a type

error.

The correctness of the algorithm follows from the following theorem that relates typeability in the

Hindley/Milner type system to the computation of a saturated result node by G. For completeness

the type inference rules of the Hindley/Milner type system for application, abstraction, and variables

are shown in Figure 13. These rules define a typing judgment Γ ` M : t that expresses that M has

type t under the typing assumptions in Γ where Γ is a list of variable/type pairs that realizes a

mapping from variables into types.

Var
Γ(x) = t

Γ ` x : t
App

Γ ` M : t′ → t Γ ` N : t′

Γ ` M N : t
Abs

Γ, x : t′ ` M : t

Γ ` λx.M : t′ → t

Figure 13: Hindley/Milner typing rules.

In the following we write GΓ for the graph (dom(Γ),Γ, ∅), which consists of a labeled node for

each variable in Γ.

Theorem 1 Γ ` M : t ⇐⇒ L(r) = t where (V,L,E) = G(G) and (G, r) = F(GΓ,M).

Proof. The proof is by induction over the structure of lambda terms.

For M = x the premise of the typing rule Var requires Γ(x) = t. We observe that F(GΓ, x) =

(GΓ, x) will just mark x as a result node. Since in GΓ we have L = Γ, it follows that L(r) = L(x) =

Γ(x) = t, which proves the “=⇒” direction of this case. On the other hand, since F(GΓ, x) does not

change the graph GΓ, the fact that L(r) = t, which is equivalent to Γ(x) = t in this case, provides

the premise for rule Var to conclude Γ ` x : t, which proves the “⇐=” direction of this case.
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If M = N N ′, we know by typing rule App that Γ ` N : t′ → t and Γ ` N ′ : t′. By induction

we can assume that L(r) = t′ → t and L′(r′) = t′ where (V,L,E) = G(G) with (G, r) = F(GΓ, N)

and (V ′, L′, E′) = G(G′) with (G′, r′) = F(GΓ, N ′).

F will construct the following type-flow graph for M to which we can first apply the induction

hypothesis (1). The resulting graph can then be reduced through (2) propagation, (3) refinement,

(4) the special case of refinement that amounts to constraint checking for the nodes labeled with t′,

and finally (5) propagation of t to v2. This process is illustrated in Figure 14.

N
�

• → •�

N ′

�

(1)
−→

t′ → t

v1 → v�

2

t′

(2)
−→

t′ → t

t′ → v�

2

(3)
−→

t′

t′

t

v�

2

(4)
−→

t′

t′

t

v�

2

(5)
−→ t�

Figure 14: How G works on applications.

We can observe that the label of the result node is t, which proves the “=⇒” direction of this

case. To prove the “⇐=” direction of this case, we note that F will start in the same way as

illustrated above. Then, in order for G to be able to label the result node with t, the type of N must

be a function type, say t′ → t′′, because otherwise refinement would not be possible. Moreover,

the result type t′′ must be t so that propagation can move t to the result node. Similarly, the

argument type t′ must be equal to the type inferred for N ′ so that refinement will be successful

for both function types’ argument types. This line of reasoning leads to the type-flow graph shown

above after “(1)”. The labels for the result nodes of the graphs for N and N ′ establish by using the

induction hypothesis the premises for the App typing rule, which can then be applied and leads to

the conclusion Γ ` N N ′ : t to prove this case.

If M = λx.N , we know by typing rule Abs that Γ, x : t′ ` N : t. By induction we can assume

that L(r) = t where (V,L,E) = G(G) with (G, r) = F(GΓ,x:t′ , N).

F builds the type-flow graph for M that is shown in Figure 15. To this graph we can apply the

induction hypothesis (1). The resulting graph can then be reduced through propagation (2).

We can observe that the label of the result node is t′ → t, which proves the “=⇒” direction

of this case. To prove the “⇐=” direction, we observe that F builds a type-flow graph as shown

above. Then G will determine some type t for N , which is propagated to the result node. In doing

so, sooner or later some type t′ will be assigned to the node x (for example, through propagation

15



x → •
�

N
�

(1)
−→

t′ → •
�

t

(2)
−→ t′ → t

�

Figure 15: How G works on abstractions.

or through labeling x should it be free). The fact that the result node of the type-flow graph for N

is labeled t while x is labeled t′ establishes by using the induction hypothesis the premise for the

Abs typing rule, which can then be applied and leads to the conclusion Γ ` λx.N : t′ → t to prove

this case and the theorem. �

5 Using Predefined Functions

So far we have considered the type inference for closed lambda terms. In this section we demonstrate

how the type-flow-graph approach can be extended to infer types of expressions that contain pre-

defined symbols. The basic idea is very simple: Create type-flow graphs for all predefined symbols

to be used and insert them during the inference process.

However, in this simple and naive form the approach is not practical since using the type-flow

graphs as generated by the algorithm F described in Section 3 would require to re-typecheck the

predefined operations on every use, which is not desirable. Fortunately, we can use a normalized

form of type-flow graphs that represent the type information in solved form. A normalized type-flow

graph can be constructed from a type by the algorithm that is shown in Figure 16.

Algorithm N (Type-Flow-Graph Normalization)

Input. A type expression t.

Output. A normalized type-flow graph G for t.

Method.

(1) Replace each type variable in t by a new node. Let V be the set of inserted nodes, and let

t′ ∈ TV the changed type expression.

(2) Insert undirected edges so that all nodes in V that have replaced the same type variable

are connected. Let E be the set of all generated edges.

(3) Return (V ∪ {v}, {(v, t′)}, E) where v /∈ V .

Figure 16: Generating normalized type-flow graphs.

As an example consider the normalized type-flow graph that is obtained for the function com-

position combinator, see Figure 17.

Normalized type-flow graphs for constants like numbers or booleans are given by labeled nodes

that will be shown in type-flow graphs just by their label. As further examples we show the

normalized type-flow graphs for a conditional and for a pair constructor in Figure 18.
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(• → •) → (• → •) → • → •

Figure 17: Normalized type-flow graph for composition combinator.

Bool → • → • → •

• → • → (•, •)

Figure 18: Normalized type-flow graphs for conditional and pair.

As an example application of G consider the task of inferring the type of

compose not even

where compose = λf.λg.λx.f (g x) is the composition combinator. The type-flow graph shown in

Figure 19 is obtained from the translation of the application by inserting the normalized type-flow

graphs for compose, not, and even.

(• → •) → (• → •) → • → •

• → • → •�

Bool → Bool Int → Bool

Figure 19: Application of composition.

The first applicable step of G is to propagate the types of not and even, which yields the type-flow

graph shown in Figure 20 after removing two undirected edges and the unconnected nodes.

Why is it not possible to label the groups of equivalent nodes in the topmost node with fresh

type variables? Because they are not free: The second condition of freeness is violated, that is, the

nodes are contained in a label of a node that is connected to a labeled node.
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(• → •) → (• → •) → • → •

(Bool → Bool) → (Int → Bool) → •�

Figure 20: Type-flow graph after two propagations.

Next we can repeatedly refine over the function type constructors, which causes a new node

with label • → • to be introduced in the upper node (following the third case in the definition of

the operation ⇓), see Figure 21.

• • • • • → •

Bool Bool Int Bool •�

Figure 21: Type-flow graph after refining steps.

Now we can propagate the constant types and obtain the graph shown in Figure 22.

Bool Bool Int Bool Int → Bool

Bool Bool Int Bool •�

Figure 22: Type-flow graph after propagation of constant types.

The next steps are refinements in the special form of constraint checking. After that a propa-

gation of Int → Bool to the result node, followed by edge and isolated node removal, leads to the

final graph shown in Figure 23.
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Int → Bool
�

Figure 23: Result node.

6 Recursion

Recursion means for the process of type inference to make the type node for the function being

defined accessible in the inference of the function’s definition. In this section we consider only

monomorphic definitions and focus on the treatment of recursion.

Consider a let expression let x = d in e. In the flow-type graph we will have a node vd that is

labeled by a type expression td. All references to x in d can be treated in the type-flow graph by

assuming x is a predefined symbol, which would mean to copy the corresponding type-flow graph.

However, instead of copying we can use the instance that is already present in the current type-flow

graph, namely vd, and connect any edges to vd.

As an example we consider the type inference for the function length, which is defined as follows.

length = λxs.if null xs then 0 else succ (length (tail xs))

First, we construct the type-flow graph for this function definition, see Figure 24.

• → •
�

Bool → • → • → •

[•] → [•] [•] → Bool Int Int → Int

Figure 24: Type-flow graph for the length function.

Note how the type specification for the else branch of the definition appears somehow “dis-

tributed” in the translation: First, the recursive call to length is represented by the function-type

node for tail whose argument and result types are both connected to the node representing the type

of xs (since tail is applied to xs and since its result is used by length). Second, the application of

succ to (length (tail xs)) is represented by an edge between the argument type of the Int → Int

labeled node representing succ to the result node of length’s type. In particular, it is striking that

different occurrences of one symbol are represented by one node with additional edges reflecting

the constraints of all uses, which shows that type-flow graphs do not reflect the exact structure of

expressions, but only their typing relationships.
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Let us now apply the algorithm G. First, we propagate the type Int to unlabeled nodes. The

edges over which Int was propagated are deleted after propagation, as well as the now disconnected

node Int itself, see Figure 25.

• → Int
�

Bool → Int → Int → Int

[•] → [•] [•] → Bool Int → Int

Figure 25: Type-flow graph after propagation and edge/node removal.

Next we can refine at three places. In fact, in all cases the refine step applies to type constructors

without argument, which means to just check constraints. The corresponding edges can be removed,

which leaves the type nodes for the conditional and for succ isolated, so that they can be removed

from the graph, too. We are left with the type-flow graph that is shown in Figure 26.

• → Int
�

[•] → [•] [•] → Bool

Figure 26: Type-flow graph after constraint checking.

At this point, propagation applies to all remaining edges, which means to label the unlabeled

node by [•]. After that, refinement over the list type constructor moves the three undirected edges

inside the type expression, which yields the type-flow graph shown in Figure 27.

Since all unlabeled nodes are free, the second step of G applies, which allows us to label them

with a fresh type variable a. Removing the edges that connect all relabeled nodes leaves the type

nodes for tail and null unconnected so that they can be removed. Therefore, we are finally left with

the result node that is labeled with the resulting type expression as shown in Figure 28.

We observe that in order to deal with recursion, no changes were required to the algorithm G,

and only a minimal change was needed for the algorithm F , namely linking recursive calls by edges

to the corresponding node in the graph. A corresponding extension to the definition of F to deal
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[•] → Int
�

[•] → [•] [•] → Bool

Figure 27: Type-flow graph after refinement.

[a] → Int
�

Figure 28: Result node carrying the type of the length function.

with let expressions will be presented in the next section.

7 Polymorphism

Parametric polymorphism in the Hindley/Milner type system means the ability to instantiate generic

type variables at different places to different types. In the algorithm G we can realize this behavior by

creating different copies of the type node for the polymorphic function. But how can we ensure that

only type variables are generalized that are “not free in the type environment Γ”, speaking in terms

of the traditional algorithm? The somewhat surprising answer is that this happens automatically!

The reason is that free type variables are represented by unlabeled nodes that are not copied, so that

different copies of type nodes for the let-bound variables will eventually be linked to one common

node that would lead to a conflict during propagation.

First, we extend the definition of F to let expressions. In order to distinguish let-bound from

lambda-bound variables, we extend the type-flow graph representation by an additional set C (as

a fourth component), which will consist of all nodes that represent let-bound variables. The set C

is initialized to ∅ and is not affected by other cases than the following.

F(G, let x = M in N) = F(G′, N)

where ((V,L,E,C), r) = F(G,M)

G′ = (V,L,E,C ∪ {r})

In addition, we have to extend F ’s definition for translating references to let-bound variables. In

contrast to lambda-bound variables, which are just marked as a result node to prepare the addition of

edges, nodes for let-bound variables are copied to enable the independent instantiations of different

references to such variables. With G = (V,L,E,C) we obtain the following definition. Again the
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unbound variable v represents a fresh node.

F((V,L,E,C), x) =











((V ∪ {v}, L ∪ {(v, L(x))}, E,C), v) if x ∈ C

((V,L,E,C), x) if x ∈ V − C

error otherwise

As an example let us first consider how type inference works for the following expression.

let f = λx.x in (f 3, f True)

In the type-flow graph for this expression shown in Figure 29 the type node for f is duplicated.

Note also that the result node of the flow graph is not given by the node for the let body (the

normalized type-flow graph for the pair constructor), but rather by the node that carries the result

type of the pair constructor.

• → •
• → • → (•, •)�

• → •

Int

• → •

• → •

Bool

Figure 29: Type-flow graph for let expression.

The application of the algorithm G solves the typing problem in three steps by propagating both

constant types, followed by a refinement, and finally another propagation, so that we eventually

obtain the result shown in Figure 30.

Int → Bool → (Int,Bool)�

Figure 30: Final type-flow graph for let expression.

The result type of the let expression is given by the result node of the flow graph, which carries

the label (Int,Bool).
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To illustrate the proper treatment of free type variables we consider as another example a

variation of the previous expression that is not typeable.

λg.let f = g in (f 3, f True)

Since the type of g is not polymorphic, the type variable in f ’s type cannot be generalized, which

prohibits the instantiation to different types in the pair.

In the type-flow graph for the above expression, we create a new copy for each reference to f

in the pair constructor, but the referenced node that represents the type of g is not copied so that

both type nodes for f are connected to the same node g, see Figure 31.

• → •

• → • → (•, •)
�

• → •

Int

• → •

Bool

Figure 31: Type-flow graph for erroneous let expression.

After propagating Int and Bool and one of the resulting function types to the node representing

g, refining we obtain the type-flow graph shown in Figure 32.

In a following refinement step between Int → • and Bool → • an edge will created between

an Int and a Bool node, which causes G to report a type error. These examples show that the

node-copying approach for polymorphic types works well, in particular, it respects the different

treatment of generic and non-generic type variables.

8 Conclusions and Future Work

The presented type-inference algorithm G and the underlying structure of type-flow graphs is in-

tended to serve the explanation of type inference in the classroom as well as in editing and reasoning

tools for types. We believe that demand-driven processing of typing constraints and the iterative

process are easier to understand and to perform (for humans) than the recursive, syntax-directed
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Int → • → •

• → • → (•, •)
�

Int → •

Bool → •

Figure 32: Intermediate type-flow graph revealing a type error.

approach of the traditional algorithm. Although the generation of type-flow graphs happens syntax-

directed as well, the solving of the typing constraints is separated from this process, which simplifies

the overall procedure.

We believe that the type-inference approach has potential for improvements. One direction for

further investigations are sound, composite graph operations that can simplify type-flow graphs

even faster. For example, it is correct to join both pairs of connected function nodes in the first let

example from Section 7, which would simplify the graph immediately as shown in Figure 33.

• → •
• → • → (•, •)�

Int

• → •

Bool

Figure 33: Shortcut type-flow graph.

The final result is now obtained by just propagating Int and Bool.

The presented approach seems to be well-suited for tool support. For example, specialized

graph editors for creating type proofs or for animating type proofs can be developed. Besides the

general graph-layout problem, a particularly important aspect is to provide means for zooming in

and out of complex type proofs, which requires an appropriate concept of a hierarchy of type-flow
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graphs to (re)present type inferences on different levels of abstractions. In this context we could also

investigate whether the graph representation provides opportunities to improve type error messages.

Finally, one of our original motivations for investigating a graph-based type representation was

to obtain more concise representations of type information to be used in the area of type-safe

metaprogramming [7]. A simpler representation of typing derivations can be exploited to obtain an

expressive, but still easily comprehensible notation for describing type changes and type changing

operations.
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Appendix

The following equations illustrate an example application of the type-inference algorithm W. U

denotes the unification algorithm.

W(∅, λf.λg.λx.f (g x)) = (U, Ua → t)

where (U, t) = W({f 7→ a}, λg.λx.f (g x))

= ([e → d/a, c → e/b], (c → e) → (c → d))

= ([e → d/a, c → e/b], (e → d) → (c → e) → (c → d))

W({f 7→ a}, λg.λx.f (g x)) = (V, V b → t′)

where (V, t′) = W({f 7→ a, g 7→ b}, λx.f (g x))

= ([e → d/a, c → e/b], c → d)

= ([e → d/a, c → e/b], (c → e) → (c → d))

W({f 7→ a, g 7→ b}, λx.f (g x)) = (W, Wc → t′′)

where (W, t′′) = W({f 7→ a, g 7→ b, x 7→ c}, f (g x))

= ([e → d/a, c → e/b], d)

= ([e → d/a, c → e/b], c → d)

W({f 7→ a, g 7→ b, x 7→ c}, f (g x)) = (TSR, Td) = ([e → d/a, c → e/b], d)

where (R, s) = W({f 7→ a, g 7→ b, x 7→ c}, f) = (∅, a)

(S, s′) = W(R{f 7→ a, g 7→ b, x 7→ c}, g x) = ([c → e/b], e)

T = U(Ss, s′ → d) = U(a, e → d) = [e → d/a]

W({f 7→ a, g 7→ b, x 7→ c}, g x) = (T ′S′R′, T ′e) = ([c → e/b], e)

where (R′, u) = W({f 7→ a, g 7→ b, x 7→ c}, g) = (∅, b)

(S′, u′) = W(R′{f 7→ a, g 7→ b, x 7→ c}, x) = (∅, c)

T ′ = U(S′u, u′ → e) = U(b, c → e) = [c → e/b]
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