

Explicit Graphs in a Functional
Model for Spatial Databases

FernUniversität Hagen, Praktische Informatik IV,

58084 Hagen, Germany

Abstract.

Observing that networks are ubiquitous in applications for spatial databases, we define a

new data model and query language that especially supports graph structures. This model integrates

concepts of functional data modeling with order-sorted algebra. Besides object and data type hierar-

chies graphs are available as an explicit modeling tool, and graph operations are part of the query lan-

guage. Graphs have three classes of components, namely nodes, edges, and explicit paths. These are

at the same time object types within the object type hierarchy and can be used like any other type.

Explicit paths are useful because “real world” objects often correspond to paths in a network. Further-

more, a dynamic generalization concept is introduced to handle heterogeneous collections of objects

in a query. In connection with spatial data types this leads to powerful modeling and querying capa-

bilities for spatial databases, in particular for spatially embedded networks such as highways, rivers,

public transport, and so forth. We use multi-level order-sorted algebra as a formal framework for the

specification of our model. Roughly spoken, the first level algebra defines types and operations of the

query language whereas the second level algebra defines kinds (collections of types) and type con-

structors as functions between kinds and so provides the types that can be used at the first level.

Martin Erwig
erwig@fernuni-hagen.de

Ralf Hartmut Güting
gueting@fernuni-hagen.de

– 1 –

1 Introduction

We describe a new data model that can be seen from the following two perspectives:

(1) From an application point of view, it is a

model for spatial databases

. Its novel aspects are sup-

port for the modeling and querying of

networks

 (highways, rivers, power lines, and so forth) and

for queries on

heterogeneous collections of spatial objects

.

(2) From a general data modeling point of view, we provide

explicit graphs

 as a modeling concept

and integrate them into data model and query language. Also, heterogeneous collections of ob-

jects are cleanly modeled by a

dynamic generalization

 concept.

The main emphasis lies on the first point. However, since we provide these features by introducing

new concepts we also have to discuss data model aspects on a more general level. Let us briefly con-

sider each perspective in turn.

Graphs and Heterogeneous Collections

We address two issues that have not been solved satisfactorily. The first is the modeling and querying

of networks. Networks are a ubiquitous part of geographic information, for example,

– highways, roads, pedestrian ways, bicycle routes, trails, …

– rivers, lakes, canals, …

– trains, buses, underground, air planes, …

– electricity, telephone, gas, water, sewage, …

Current spatial database systems support well enough the handling of the geometry of such networks.

That is, we may ask queries with respect to the spatial position of objects in a network, such as “Find

roads intersecting a given region”. What is missing, is an adequate treatment of the connectivity, or

graph structure, of the network. This is needed to support queries such as “Which parts of a river net-

work are downstream from a pollution site and would be affected?” Other examples, that combine

geometric and connectivity aspects, are “A fog region blocks part of the highway network. Which

alternative routes should be recommended?” and “How many people live in the area affected by the

failure of a power plant?”

The second issue concerns queries on distinct classes of objects that are in the query viewed under

some common geometric aspect, like “Show everything within 50 kms from Munich” or “Which

roads and supply lines (electricity, phone, …) intersect a planned highway section?” Current spatial

data models support such queries – if at all – only by, for example, overlaying different query results

on display devices. Generally, there are no clean modeling concepts for spatial data models to deal

with heterogeneous collections of objects.

Data Modeling Aspects

Data models have to provide facilities to represent relationships among objects. In many cases it is

helpful to view such relationships as graphs structures: Then many queries can directly be mapped to

well-known graph problems for which efficient algorithms exist (for example, route finding is solved

by shortest paths). One approach is to consider certain structures of the data model as a graph (in the

– 2 –

relational model, for example, a relation with two attributes, say, “from” and “to”) and define graph

operations which are only applicable to such structures [2, 11, 58]. We believe that this does not meet

the importance of graphs in applications as sketched above. On the other hand, there are proposals to

use explicit graph structures as the only modeling concept [15, 28]. However, this forces the user to

re-model all other (“non-graph”) relationships with graphs (this would be like forcing the user to

encode spatial data types in relations).

In contrast, our approach is to offer graphs as a separate, “first-class” concept besides other facilities

of a data model. Graphs are defined as explicit structures within a functional data model with an object

class hierarchy. (Disregarding graphs, the functional model is similar to those of [64, 10].) Spatial net-

works can be modeled in terms of graphs. Nodes and edges may carry geometric information, for

example, a POINT value may be associated with a node and a polygonal LINE with an edge. Further-

more, explicit paths are available as entities in a graph. This is important since objects often cor-

respond to paths in a network. For example, highways and rivers are naturally modeled as paths over

the corresponding networks. Nodes, edges, and explicit paths are at the same time object classes of

the hierarchy.

The implementation strategy behind this is to offer special data structures for the representation of

graphs [33] that allow efficient traversal. Graph operations are to be implemented on the basis of effi-

cient graph algorithms. The properties of spatially embedded networks can be used to obtain more

efficient algorithms than is possible in the general case [49, 20]. Also, specific applications are sup-

ported by special-tailored graph structures and algorithms [22].

Framework for Data Model Definitions

Since the model to be described has a sophisticated type system we find it convenient to use

multi-

level order-sorted algebra

 [23] as the formal basis to define all concepts within a common formalism.

Many-sorted algebra was introduced in [35] as a query language framework and further used in [30,

32, 6, 60], also in [65] to define a complex object algebra. The description of a query as a nested appli-

cation of functions is common to both algebra and functional modeling. Many-sorted algebra provides

in addition a well-structured type system. Order-sorted algebra [27] allows for subtype hierarchies

and inheritance. Furthermore we can add a second level of order-sorted algebra to describe the appli-

cability of type constructors to kinds, which are sets of sorts of the first level algebra, and a third alge-

bra level formally accounts for operations with a variable number of arguments [23]. As a result one

can model in a uniform framework a type system as well as a query algebra based on that type system.

A similar framework with two levels is used in [34]. Order-sorted algebra allows one to represent data

type as well as the object type hierarchies that are also part of functional modeling. Remaining key

aspects of the functional model are the use of higher order functions and the modeling of object

attributes and relationships between objects by functions including multi-valued functions. It turns out

that these concepts fit very well with the order-sorted algebra framework, see also [8].

The paper is structured as follows: In Section 2 a short description of the framework of multi-level

order-sorted algebra is given. The data model is then built along the concepts of data types, object

– 3 –

types, and constructed types. Data and object type hierarchies and algebras are defined in Sections 3

and 4, respectively. Section 5 introduces derived functions. In Section 6 constructed types and the

central operations of the query language are described. The constructed types available are essentially

sequences (Section 6.1) and graphs (Section 6.3). Operations to handle heterogeneous sequences of

objects are defined in Section 6.2. After considering related work (Section 7) a brief discussion com-

pletes the paper (Section 8). Note that type system, query language and example schema are summa-

rized in Appendices I–IV.

2 The Formal Framework: Multi-Level Algebra

We shall model a database system and its query language together with one specific database as a sys-

tem of sets (representing data and object types) and functions (representing attributes and relation-

ships) between these sets, that is, an algebra. This view is almost identical to that of the functional

data model as described by [64].

1

 We will use the facilities of multi-level order-sorted algebra to

describe our data model and also specific schemas. In this section we briefly review the relevant

notions and motivate the use of this formal system.

The classical relational algebra is a

universal

 or

one-sorted

 algebra: it has a single domain whose ele-

ments are relations and a collection of functions (such as join) on this domain. It has been recognized

that it is advantageous for the definition of database query languages to move to a

many-sorted

 alge-

bra; for example, it is then possible to integrate arithmetic, aggregate functions and generally ADT

functions into such an algebra [35, 30]. Furthermore, it would be nice to add the concepts of subtype

and inheritance. From the algebra point of view, this means to define a (partial) subset order on alge-

bra sets, which implies that functions defined on one set can be applied to elements of a subset. This

is achieved by

order-sorted

 algebra [27, 25]. Complex object types are built from simpler ones by

means of type constructors. The functions associated with generic type constructors are applicable to

a large class of types, and their signatures typically contain type expressions in which constructors are

applied to variables ranging over a set of type names. Such functions are said to be polymorphic. Since

it is not possible, in general, to model parametric polymorphism by only one level of algebra

2

 [42] we

can use a signature on a second level describing types and type constructors. The values of an algebra

for such a signature are then considered as sort names on the first level. This idea, generalized to an

arbitrary number of levels, is formalized by

multi-level

 algebra [23]. A two-level algebra is used in

[34] to describe a setting in which extensible database systems can be defined.

2.1 Modeling Subtypes and Inheritance with Order-Sorted Algebra

Let (

S

,

Σ

) be a partially ordered set. We assume that the order relation

≤

 is extended in the canonical

way to strings of equal length over

S

. The empty string is denoted by

ε

.

Definition 1.

A

many-sorted signature

 is a pair (

S

,

Σ

), where

S

 is a set of

sorts

 and

Σ

 is an

S

*

×

S

 -

1

When we speak of

the

 functional data model we mean just these basic features.

2

Parametric order-sorted algebra [26] offers a partial solution, but there are still dependencies that cannot be expressed.
For example, it is not clear, in general, how to define a parametric module that is not allowed to accept an instance of
itself as parameter. As shown below this is needed, for instance, to define a sequence type constructor that is not allo-
wed to be nested.

– 4 –

sorted family {

|

w

∈

S

* and

s

∈

S

} of

operations

. An operation is said to have

arity

w

and

rank

ws

. An

order-sorted signature

 is a triple (

S

,

≤

,

Σ

) such that (

S

,

Σ

) is a many-sorted signature,

(

S

,

≤

) is a partially ordered set, and the operations of

Σ

 satisfy a monotonicity condition:

An (

S

,

≤

,

Σ

)-

algebra

A

 contains for each sort

s

 ∈

S

 a set

s

A

 (the

carrier

 of

s

) and for each operation

symbol a function :

w

A

 →

 s

A

 where (

ws

)

A

 =

w

A

 ×

s

A

 and

ε

A

 ={

∅

}. Algebra

A

 must satisfy

the following conditions:

(i)

(ii)

Example

. A many-sorted signature might have a sort set

S

 = {REL, INT, LINE, …} and include oper-

ations

count

: REL

→

INT

intersects

: LINE

×

 LINE

→

BOOL

An algebra for this signature would have a carrier set REL

A

 containing all possible relation instances,

a carrier INT

A

 = {… -2, -1, 0, 1, 2, …}, and a function

count

A

 mapping a relation to the number of

tuples in it. In the sequel we shall use a function ‹ · › to refer to the meaning of a sort or operation, for

example, INT

A

 will be denoted by ‹INT›.

Data type and object type hierarchies can be defined by a partial order on sorts, see Figure 1.

Operations are, for example,

inside

: POINT

×

 REG

→

BOOL (1)

inside

: GEO

×

 REG

→

BOOL (2)

name: Water

→

STR (3)

name: River

→

STR (4)

Rhine:

→

River

The conditions above state, for example, that since POINT

≤

 GEO we have ‹POINT›

⊆

 ‹GEO› and

that the two

inside

 functions agree on the ‹POINT›-subset of ‹GEO› (similarly for the function

“name” on Water and River). Note that the definition of order-sorted algebra does not by itself specify

that functions are inherited. Therefore we introduce signature specifications:

Definition 2.

Any order-sorted signature (

S

,

≤

,

Σ

) is at the same time a

signature specification

. The

induced signature

 (

S

,

≤

,

IND

(

Σ

)) is defined by

Σ

w s

,

σ Σ

w s

,

∈

σ Σ

w s

,

Σ

w

'

s

'

,

w w

'

w

'

ε≠∧≤∧∩∈()

s s

'

≤⇒

σ

w s

,

σ

w s

,

A

s s

'

≤

s

A

s

'

A

⊆⇒

σ Σ

w s

,

Σ

w

'

s

'

,

∩∈

a w

A

w

'

A

σ

w s

,

A

a

()⇒∩∈∧ σ

w

'

s

'

,

A

a

()=

■■

■■

GEO

EXT

POINT LINE REG BOOL STR

Water

River Lake

Figure 1

IND

Σ() Σ σ

w

''

s

, | σ Σ w s , : w '' w σ Σ w ' s ' , ∈ : w ' w w ' w '' <⇒≤∀∧≤()∈∃{ }∪=

■■

– 5 –

This definition describes inheritance of functions downwards: It says that we add

σ

 on subtypes

w

'' of

w

 with the same result type

s

 as long as there is not already an overloaded definition of

σ

 on

w

''.

From now on we shall interpret each signature as a signature specification. With regard to the above

example this means that line (2) specifies five different functionalities (or, ranks) (including the one

in line (1)) for

inside

. Likewise, we could have omitted line (4) since this signature entry is covered

by line (3).

Note that terms, equations, congruence, and so on, are defined in the usual way. Equations will be

used later to define abstract properties (such as associativity) of type constructors.

2.2 Decribing Parametric Polymorphism by a Second Algebra Level

A function having different types of a similar structure is said to be

parametric polymorphic

. This

name reflects the fact that the ranks for this function are specified by one entry containing variables

describing type parameters. In general, type variables range over a subset of all type names (for exam-

ple, weak and equality variables in ML). Therefore, it is helpful to identify useful sets of type names

and assign names to them. This can be done by defining a set of

kinds

 [12].

Kinds are in fact sorts of another signature (on a second level), and their carriers are

sets of sorts of

the first level

. Operations of the second level are called (type)

constructors

; the associated functions

are mappings between kinds, that is, they map one or more sorts of one kind to a sort of another kind.

Therefore we call this second level the

kind signature/algebra

. In addition, we need to specify the

behaviour of constructors on the carriers of sorts. To see this, consider, for example, a cartesian prod-

uct constructor which maps two sorts

s

 and

t

 to their product sort, prod(

s

,

t

). A reasonable property of

the function prod

B

 (let

B

 denote the corresponding kind algebra) would be, for instance, associativity,

that is, the sorts prod(

s

, prod(

t

,

u

)) and prod(prod(

s

,

t

),

u

) are considered to be equal. This can be con-

veniently stated as a law/equation of the second level. In contrast, the intended mapping of the carriers

is yet to be described by another function, say, prod, and could be defined by: prod(

s

A

,

t

A

) =

s

A

×

t

A

.

(Note that the carrier mapping must be compatible with the properties of prod

B

). In the following def-

inition we denote the individual algebra levels of a multi-level algebra by counting backwards (with

regard to the construction history). That is, an

n

+1

st

-level algebra

A

 (or,

A

1

) depending on the

n

th

-level

algebra

 B

 (or,

A

2

) is said to be on the first level whereas

B

 is said to be on second level, and so on.

Definition 3.

An order-sorted signature is a 1

st

-

level signature

, and an order-sorted algebra is a 1

st

-

level algebra

. Given an

n

th

-level signature (

S

,

≤

,

Σ

) and an

n

th

-level (

S

,

≤

,

Σ

)-algebra

B

, an order sort-

ed signature (

S

',

≤

',

Σ

') is an

n

+1

st

-

level signature

 depending on (

S

,

≤

,

Σ

) and

B

if . An

(

S

',

≤

',

Σ

')-algebra

 A

 is an

n

+1

st

-

level algebra

 if for each operation there is a function

(

type constructor

 of) and if for each

t

∈

S

' such that (with

w

=

s

1

 …

s

n

 and

t

i

∈

s

i

B

 for 1

≤

i

≤

n

) we have . The functions define the

constructor se-

mantics

 for

Σ

, and we say that

A

depends

 on

B

 and the constructor semantics for

Σ

.

We extend the previous example by adding the data sorts INT and REAL and introduce at the second

level the set of kinds

S

 = {

NUM

,

ORD

,

GEO

,

DATA

,

OBJ

,

ANY

,

SEQ

} and a sequence constructor

“seq” which is used to build sorts of kind

SEQ

. The elements of the remaining kinds are given by

S

'

s

B

s S

∈

∪

=

σ

w s

,

Σ∈

σ

w s

,

σ

w s

,

t

σ

w s

,

B

t

1

…

t

n

, ,()=

t

A

σ

w s

,

t

1

A

…

t

n
A

, ,()=

σ

w s

,

■■

– 6 –

(sort) constants. This is summarized in the following second-level signature.

3

ord NUM

≤

 ORD

;

 ORD

,

GEO

≤

 DATA

;

 DATA

,

OBJ

≤

 ANY

tc

INT, REAL:

→

NUM

BOOL, STR:

→

ORD

POINT, LINE, REG, EXT, GEO:

→

GEO

Water, River, Lake:

→

OBJ

seq:

ANY

→

SEQ

The subtype hierarchy is also shown in Figure 2.

Since the term algebra is initial in the category of algebras we can use terms as representatives of val-

ues of an algebra for this signature, that is, we have (at the second level we use double angle brackets

to denote interpretation in an algebra):

«

NUM

» = {INT, REAL}

«

ORD

» = {BOOL, STR, INT, REAL}

…

«

SEQ

» is the set of sorts that can be obtained by applying the seq constructor to sorts in «

ANY

»; the

sorts in

SEQ

 are denoted by the corresponding terms of this algebra, hence we have

«

SEQ

» = {seq(BOOL), seq(INT), …, seq(Water), seq(River), seq(Lake)}

The constructor semantics for the seq is defined as:

∀

s

∈

 «

ANY

»: seq(‹

s

›) := ‹

s

›* (= ‹seq(

s

)›)

Since the kind

SEQ

 contains just the sorts obtained by applying seq to sorts in

ANY

 we also use

seq(

ANY

) to denote

SEQ

. Furthermore, kinds that are subsets of

SEQ

 can be specified by applying

seq to subsets of

ANY

, such as seq(

DATA

), seq(

OBJ

), and so forth.

The types of polymorphic functions are usually described by

type schemes

, for example, the type of

3

The key word

ord

 precedes an order specification where

s

,

t

, …

≤

v

,

w

, … is a shortcut for

s

≤

v

;

t

≤

v

;

s

≤

w

;

t

≤

w

, …

tc

 introduces type constructors; on the first level, operations are introduced by

op

. Below we will also use equations
which are preceded by

eq

.

Figure 2

ANY

DATA

ORD GEO

OBJ

SEQ

NUM

seq

– 7 –

the operation

count

 could now be specified by:

∀

α ∈

«

ANY

».

count

: seq(

α

)

→

 INT

As an abbreviation for this we replace occurences of the variable by the quantifying term, that is:

count

: seq(

ANY

)

→

INT

(Recall that the type is the same as

SEQ

→

 INT.) The idea behind is to expand kinds in such a type

specification by all sorts contained in the kind. When a kind appears more than once in such a speci-

fication, each occurence is interpreted as a new variable quantification, for example,

/:

NUM

×

NUM

→

REAL

defines one division operator for any combination of INT and REAL operands. Here we can observe

that since we are dealing with bounded type variables this notation is not only capable of describing

parametric polymorphism but also

ad hoc polymorphism

 (also often called

 overloading

). We find it

very convenient to use one notation for expressing these different aspects of overloading.

It is often desirable to specify that from a given kind always the same element is chosen in different

positions of a signature specification; we denote this by indexing the kinds with the same index. For

example, comparison operators can be applied to any two objects of the same sort within the kind

ORD

 (which describes data types with a total order):

<,

≤

,

≥

, >:

ORD

i

×

ORD

i

→

BOOL

With regard to variable quantification this means only the first occurrence of a specific indexed kind

introduces a new variable, the remaining only refer to one. An operation that concatenates any two

sequences of the same type could be defined as follows.

concat

:

SEQ

i

×

SEQ

i

→

SEQ

i

which could equivalently be denoted as

concat

: seq(

ANY

i

)

×

 seq(

ANY

i

)

→

seq(

ANY

i

)

But one may also restrict to specific types of sequences, as in

sum

,

min

: seq(

NUM

i

)

→

NUM

i

The example given in this section is in fact part of the type system, or kind algebra, that we develop

in this paper. To give an impression and survey of what is to come, Figure 3 shows the actual type

system to be defined. The parts of this diagram will be explained in the following sections.

With multi-level algebra we have a fairly general tool to define languages with heavily overloaded

operation symbols. So a few remarks on type checking are in order: Since in two-level signatures

types are given by expressions containing bounded variables type checking can in principle be done

by order-sorted unification [51] (a simplified setting is described in [50]). Viewing variable quantifi-

cation and subtype definitions as constraints/predicates, [40] presents a very general framework for

type checking in two-level signatures. In our application we only have to check expressions of a query

language, which means that signatures on both levels are fixed. Therefore we get along with a small

subset of inference rules (in fact, we only need abstraction and application rules). Morevover, since

– 8 –

we will require lambda-abstractions to be explicitly typed (see Section 5) the type checker only needs

pattern matching and not unification.

To close this section, let us summarize some points in favour of multi-level algebra. The use of multi-

level algebra for the definition of our data model is motivated by:

– the ability to express parametric polymorphism,

– the convenient specification of all types of polymorphism (subtype, ad hoc, and parametric),

– a common framework for extending a data model with new structures (for instance, graphs, he-

terogeneous sequences),

– the ability to express subtle details for type constructors (for example, prevent nested applica-

tions of a sequence constructor),

– separating abstract properties of type constructors (such as, associativity) from constructor se-

mantics,

– having available standard methods for static type checking.

3 Data Types

We shall develop the data model in three steps by introducing data types, then object types, and finally

structures (or constructed types), which are sequences and graphs.

The data types used depend in general on the application to be supported. For our specific example

application we introduce a collection of “standard” data types that are useful in many applications,

and some geometric types. The sort hierarchy is shown in Figure 4 together with the part of the kind

hierarchy (repeated from Figure 3) that is relevant here.

Let us first consider the sort hierarchy. The leaves of this tree show sorts for basic data types; we

Figure 3

.

DATA

ORD GEO

OBJ

NUM EXT

BASEOBJ

COMPOBJ

GRAPH

⊕
⊗

⊕

graph

node edge xpath

PATH

path

ANY SEQ
seq

…

FUN

→

FUNARG

– 9 –

assume that for each of them the carrier is defined somewhere (for geometric types in [31]), but for

this paper the precise definition is not relevant. An element of ‹LINE› is a polygonal line, an element

of ‹REG› a simple polygon. The carrier of an internal node of the sort hierarchy is defined to be the

union of the carriers of the children, for instance, ‹NUM› = ‹INT›

∪

 ‹REAL›. This meets the subtype

constraint of order-sorted algebra.

For the kind hierarchy, we assume that the carriers contain just the sorts that are descendants in the

sort hierarchy, for example, «

NUM

» = {NUM, INT, REAL}, and for

 ORD

, which is not a sort, that

«

ORD

» = {BOOL, STR, INT, REAL}. Note, that the distinction between sort and kind hierarchy

allows us to express rather subtle differences in the definition of operations. The definition

+: NUM

×

 NUM

→

NUM

specifies an addition operation that takes elements of the carrier of NUM and returns an element of

this carrier; due to the sort hierarchy, this is also applicable to integers and reals. But the result type

of this operation is NUM, even if it is applied to two integers. In contrast, the definition

+:

NUM

i

×

NUM

i

→

NUM

i

specifies three addition operations with functionalities INT

×

 INT

→

 INT, REAL

×

REAL

→

 REAL,

and also the one above, NUM

× Ν

U

Μ →

 NUM. Hence with this definition we know that “+” returns

an integer if it is applied to two integers.

The following operations are defined for standard types.

For our example spatial application, we define the following operations (a more complete collection

can be found in [30]):

op and

,

or

: BOOL

×

 BOOL

→

BOOL

not

: BOOL

→

BOOL

+, -, *,

div

,

mod

: INT

×

 INT

→

INT

/: INT

×

 INT

→

REAL

+, -, *, /: REAL

×

NUM

→

REAL

+, -, *, /:

NUM

×

 REAL

→

REAL

=,

≠

:

DATA

i

×

DATA

i

→

BOOL

<,

≤

,

≥

, >:

ORD

i

×

ORD

i

→

BOOL

Figure 4

DATA

ORD GEO

NUM EXT

⊕

DATA

NUM

GEO

BOOL STR INT REAL POINT LINE REG

EXT

– 10 –

The

intersection

 operator returns a set of intersection objects in the form of a sequence (the seq con-

structor is defined as in Section 2). Given a sequence of points

S

 and another point

P

, the

 closest

 oper-

ator returns the point in

S

 that is closest to

P

. (Usually, we will expect only one closest point; when

there are more than one, one point is chosen non-deterministically.) The remaining operations are

mostly self-explaning.

In the first place, the signature entries specify the typing of operations and not their syntax. In the fol-

lowing we will use the convention that binary predicates as well as arithmetic operations are written

infix and that all other operations are written postfix. In addition, we allow any unary function to be

used in prefix notation with its argument following in parentheses. Thus, given two lines

L

1

 and

L

2

their intersection points are determined by

L

1

L

2

intersection

and testing whether

L

1

 is longer than

L

2

 is done by

(

L

1

length

) > (

L

2

length

)

If we look carefully at the signature specification, it seems that the sort hierarchy is not really needed;

the definitions just rely on the specification of kinds to achieve the desired form of overloading. Could

we not omit the sort hierarchy?

Indeed, the sort hierarchy has another purpose, which is related to “dynamic generalization” discussed

in the introduction and the

⊕

 constructor in the kind algebra. If the sort hierarchy were omitted, then

there would be a kind

GEO

 but no sort GEO (there would be no carrier for GEO) and not a sort

seq(GEO) either. However, we are interested in these generalization data types in connection with the

handling of heterogeneous sequences and generalization of object types (see Section 6.2). For this

purpose, the

⊕

 constructor (union) on data types with functionality

⊕

:

DATA

×

DATA

→

DATA

is defined to return for any two sorts in «

DATA

» their smallest common supersort, for example, LINE

⊕

REG = EXT and POINT

⊕

LINE = GEO. Introducing

DATA

 not only as a kind but also as a sort

makes

⊕

total on

DATA

.

op inside

:

GEO

×

 REG

→

BOOL

intersects

:

EXT

×

EXT

→

BOOL

intersection

: LINE

×

 LINE

→

seq(POINT)

intersection

: LINE

×

 REG

→

seq(LINE)

intersection

: REG

×

 LINE

→

seq(LINE)

intersection

: REG

×

 REG

→

seq(REG)

closest

: seq(POINT)

×

 POINT

→

POINT

concat

: LINE

×

 LINE

→

LINE

mindist

:

GEO

 ×

GEO

→

REAL

length

: LINE

→

REAL

area

: REG

→

REAL

– 11 –

4 Object Types

The part of the order-sorted algebra that we have seen so far, concerned with data types, models rep-

resentation and querying facilities of a

database system

. The same holds for the structures, sequences,

and graphs, that will be considered in Section 6. In contrast, the subalgebra dealing with object types

models one specific

database

. Sorts represent object classes, and operations represent functions appli-

cable to objects. As usual in functional modeling, these functions serve to describe object attributes

as well as relationships between objects. Functions may be single- or multi-valued; if they are multi-

valued, we represent the result set as a sequence of objects or data values.

Let us introduce an example database describing cities, highways, and so on. This database has a sort

hierarchy, which is shown in Figure 5 together with the part of the kind algebra relevant to this section.

The object sorts shown model objects

stored in the database

; they make up the kind

 BASEOBJ

, that

is,

«

BASEOBJ

» = {State, Water, Lake, River, Location, City, HLocation, HCity,

 Section, Highway}

There are also “potential objects” derivable from the database, which are not stored. These sorts are

collected in a kind

OBJ

 discussed below. For each sort in

BASEOBJ

 the carrier is in principle a set

of object identifiers, which are drawn from some unlimited domain

Ω.

 For technical reasons that will

become clear shortly, instead of an object identifier we use a list containing just that single object

identifier. So we have (let

Ω

+

 denote the set of non-empty sequences over

Ω

):

∀

s

∈

 «

BASEOBJ

»: ‹

s

›

⊆

 2

Ω

+

So each carrier is a set of lists of object identifiers. If there are three rivers stored in the database, the

carrier of River contains three one-element lists:

‹River› = {

〈

r

1

〉

,

〈

r

2

〉

,

〈

r

3

〉

}

From the definition of order-sorted algebra we know that ‹River›

⊆

 ‹Water›. For object sorts we

require additionally that each object has a single base type (together with its supertypes in the

hierarchy) which can be formulated as follows:

∀

s

,

t

∈

 «

BASEOBJ

»:

 ‹

s

›

∩

 ‹

t

›

≠

∅ ⇒ ∃

u

∈

 «

BASEOBJ

»:

u

≤

s

 and

u

≤

t

 and ‹

s

›

∩

 ‹

t

› = ‹

u

›

This says in particular, that an object cannot belong to two sorts that are different leaves of the sort

hierarchy.

State

Water

Lake River Section Highway

OBJ

BASEOBJ

⊗
⊕Location

CityHLocation

HCity

Figure 5

– 12 –

The operations defined on the object types of our example database are given in Figure 6. To enhance

the readability of queries we write object sorts with a capital first letter.

Figure 6

Recall that we regard this signature as a signature specification, thus we can assume that functions are

inherited along the sort hierarchy which means that the function “name” is applicable to River and

Lake objects and a City has a position available through the “pos” function, which it inherits from the

Location sort that just has a POINT attribute. Note that there are object-valued and multi-valued func-

tions. The object types HLocation, HCity, Section, and Highway are used below to model a highway

network. HLocation and HCity are specializations of Location and City, respectively, containing

those positions and cities that are also nodes of the highway network; the HLocation type represents,

for example, junctions or exits. Obviously, a HCity is a city but also a special type of location within

the highway network. HLocations are connected by highway Sections; the geometry of the Section is

given by the “way” attribute. A Highway corresponds to a path over this network. The relationships

between HLocations, Sections, and Highways in the network are defined in Section 6.3 by a graph

structure.

HCity being a subtype of two types, embodies what is often called

multiple inheritance

. Since the

definition of order-sorted algebra requires that for an operation defined on more than one type, all

associated functions of an algebra must agree on common subsets (Definition 1, (ii)) no ambiguities

can arise. Of course, this condition must be ensured by an implementation.

A special “type restriction” function is defined implicitly for each object sort. For sort X the name of

this function is “restrictX”. It is applicable to any sequence of objects and has a double effect: First,

it changes the type of the sequence to X. Second, it passes to the result sequence only those objects of

the operand sequence that have type X. So we have additional functions

restrictState: seq(

OBJ

)

→

 seq(State)

restrictWater: seq(

OBJ

)

→

 seq(Water)

…

name: State

→

STR name: City

→

STR

region: State

→

REG pop: City

→

INT

facilities: City

→

seq(STR)

name: Water

→

STR lies_in: City

→

State

surface: Lake

→

REG way: Section

→

 LINE

limit: Section

→

INT

flow: River

→

LINE duration: Section

→

REAL

pos: Location

→

POINT hno: Highway

→

INT

route: Highway

→

LINE

visits: Highway

→

seq(State)

– 13 –

The normal use of these functions is to apply them to a sequence of objects of a supertype to restrict

to elements belonging to a subtype. For example, let “Water”, “Location”, and “HLocation” denote

corresponding sequences of objects. Then

Location restrictCity

returns a sequence of type seq(City) containing only those Location objects that are also cities. What

happens when “restrictCity” is applied to the other sequences? The expression

Water restrictCity

returns an empty sequence of type seq(City). This results from the fact that Water and City are unre-

lated in the object type hierarchy. On the other hand,

HLocation restrictCity

might in principle return a sequence of type seq(HCity) since all objects in the result sequence must

be of type HLocation and also of type City. That is, the result object type might be the greatest lower

bound of the two types in the type hierarchy. However, we feel that the user wants to think of the result

objects as of the type that he has restricted to, rather than determine the greatest lower bound; there-

fore we have defined the restriction functions in this way. If one wants to obtain the greatest lower

bound type, it is always possible to restrict directly to that type. – More examples of the use of restric-

tion functions are given below.

The functions defined on object types may be

extensional

 or

intensional;

 extensional functions are

stored in the database whereas intensional or

derived

 functions are given by a defining expression.

From the point of view of the algebra and for the user there is no difference between extensional and

intensional functions except that extensional functions are restricted to have a single operand sort (this

is mainly for implementation reasons). In fact, some of the functions listed above are defined inten-

sionally; their defining expressions are given in Section 5.

Derived Objects

What remains to be explained about object types are the mysterious “potential objects” and the type

constructors

⊕

 and

⊗

. The corresponding part of the second level signature is:

ord BASEOBJ

≤

 OBJ

tc

⊕

:

OBJ

×

OBJ

→

OBJ

⊗

:

OBJ

×

OBJ

→

OBJ

eq

s

⊕

s

 =

s

s

⊕

t

 =

t

⊕

s

s

⊕

(

t

⊕

u

) = (

s

⊕

t

)

⊕

u

s

⊗

t

 =

t

⊗

s

s

⊗

(

t

⊗

u

) = (

s

⊗

t

)

⊗

u

s

⊗

(

t

⊕

u

) = (

s

⊗

t

)

⊕

 (

s

⊗

u

)

The equations specify that both type constructors are commutative and associative, that

⊗

 distributes

– 14 –

over

⊕

, and that

⊕

is idempotent. In the following we explain these constructors in detail.

First, we would like to be able to form in a query the union of any two collections of objects of sorts

s

 and

t

. We shall later introduce a corresponding union operation in the algebra. A sort resulting from

this operation will represent a collection of objects of “union type”

s

⊕

t

. Therefore, the kind

OBJ

contains a set of sorts that can be derived from the sorts in

BASEOBJ

 by application of the

⊕

 con-

structor. For our example database, we have

{State, State

⊕

River, River

⊕

City, River

⊕

City

⊕

Highway}

⊆

 «

OBJ

»

Again, the sorts in

OBJ

 are denoted by terms of the type algebra whereas the constructor semantics

of

⊕

is

∀

s

,

 t

∈

 «

OBJ

»: ‹

s

›

⊕

 ‹

t

› := ‹

s

›

∪

 ‹

t

› (= ‹

s

⊕

t

›)

It follows from this definition that

⊕

is idempotent, associative, and commutative, which meets the

specification from above. In the object sort hierarchy, we shall view the constructed sort as a supersort

of the operands to the constructor, for example, State

≤

 State

⊕

River and River

≤

 State

⊕

River:

∀

s

,

 t

∈

 «

OBJ

»:

s

≤

s

⊕

t

∧

t

≤

s

⊕

t

The second constructor applicable to object types is the

⊗

(product) constructor. In a query it is some-

times necessary to form “aggregation objects”, that is, to build from two objects

o

1

 and

o

2

 an aggre-

gation object on which all functions applicable to

o

1

and

 all functions applicable to

o

2

 are defined. In

a relational setting, this corresponds to concatenating two tuples when forming a cartesian product;

the result tuple has all attributes of both operand tuples. The

⊗

 operation allows us to form a

corresponding product object type (sort). Hence the carrier of State

⊗

City contains one object for

each combination of objects in the carriers of State and of City. Formally, we define the following

subsort relationships:

∀

s

,

 t

∈

 «

OBJ

»:

s

⊗

t

≤

s

∧

s

⊗

t

≤

t

Now, the terms State

⊗

City, Highway

⊗

City

⊗

River, and so on, are also in

OBJ

. The constructor

semantics is defined by aggregation objects which are built by concatenating the lists of object iden-

tifiers of the two operand objects (this is the reason why lists are used at all). For example, there may

be an object

〈

h

42

,

c

17

〉

 in the carrier of Highway

⊗

City and an object

〈

r

92

〉

 in the carrier of River which

would lead to an aggregation object

〈

h

42

,

c

17

,

r

92

〉

. One can already observe that with this definition

⊗

is associative. In addition, we need it to be commutative. For this purpose, we define arbitrarily

some total order on object sorts in

BASEOBJ

, for example,

State < Water < Lake < River < Location < City < HLocation < HCity < Section < Highway

and keep for all aggregation objects the list of object identifiers sorted according to this order. Hence

the example objects would be

〈

c

17

,

h

42

〉

 in the carrier of Highway

⊗

City and

〈

r

92

〉

 in the carrier of

River and the resulting aggregation object is

〈

r

92

,

c

17

,

h

42

〉

. If one object sort occurs several times, as

in River1

⊗

City

⊗

River2 (like in a query “find the city closest to the point where two rivers meet”)

the order of writing is assumed to be preserved, so the object identifiers would be arranged according

– 15 –

to the order River1

⊗

River2

⊗

City. Formally, let there be an operation

merge

 that merges two

ordered lists of object identifiers. Then

∀

s

,

t

∈

 «

OBJ

»: ‹

s

›

⊗

 ‹

t

› := {

merge

(

s

',

t

') |

s

'

∈

 ‹

s

›,

t

'

∈

 ‹

t

›} (= ‹

s

⊗

t

›)

Now, this definition is consistent with associativity and commutativity specified for

⊗

above. Fur-

thermore, it is easy to check that

⊗

distributes over

⊕

. Observe that we can form arbitrarily nested

sort expressions with union and product type constructors. We have here the situation mentioned in

Section 2 that there may be many sort expressions denoting the same carrier; due to the associativity,

commutativity, and distributivity laws any such expression may be transformed into a “disjunctive

normal form”

(

s

1,1

⊗

s

1,2

⊗

 …

 ⊗

s

1,

n

1

)

⊕

 …

 ⊕

(

s

k

,1

⊗

s

k

,2

⊗

 …

 ⊗

s

k

,

n

k

)

which allows to decide whether two expressions are equivalent.

5 Derived Functions

As in DAPLEX, derived functions are given by expressions of the query language. Thus they can be

regarded as view definitions (if defined on object types). In general, a definition is of the form

name

[:

type restriction

] =

expr

where

name

 is either a new name or the name of a derived function, the

type restriction

 is a type

expression used in the definition of derived functions to aid the type checking process, and

expr

 is the

defining expression of the query language. Definitions may be used to assign names to intermediate

results when building a complex query or to produce derived functions. We do not allow recursive

definitions, such as those that determine transitive relationships between objects. Such relationships

should be modeled and queried using graphs, that is, we follow [15]: “recursive queries without recur-

sion”.

Derived functions can be built by means of lambda-abstraction. Using a syntax similar to ML the def-

inition of the derived function “duration” looks like:

duration:(Section

→

 REAL) =

fun

 (

x

)

⇒

(

x

 way

length

) / (

x

 limit)

The type annotation is not really needed in this example since the function “way” is only defined on

the type Section, and thus the type for “duration” could be inferred. To keep type checking simple

(that is, to avoid ambiguity problems occurring in the type inference for overloaded functions) we

require, though, each definition of a derived function to have a type annotation.

Lambda-abstraction is the counterpart of function application and is thus introduced in the definition

of terms, that is, if

expr

 is

a term of type

t

, and

x

1

, …,

x

n

 are variables of type

s

1

, …,

s

n

, respectively,

then

fun

 (

x

1

, …,

x

n

)

⇒

expr

is a term of type

→

(

s

1

, …,

s

n

,

 t

) (also written

s

1

, …,

s

n

 →

t

). Function types are of kind

FUN

. The

– 16 –

function space constructor is applicable to sorts for data values, objects, sequences, or graphs (in other

words, to just about anything) collected in a kind

FUNARG

 (see Figures 7 and 3).

The constructor semantics is defined in the obvious way:

∀

s

1

, …,

s

n

,

t

∈

 «

FUNARG

»:

→

(‹

s

1

›, …, ‹

s

n

›, ‹

t

›) :=

 {

f

 |

f

 is a function with domain ‹

s

1

›

×

 …

 ×

 ‹

s

n

› and range ‹

t

›}

Now we can fuse lambda-abstraction and type annotations into a more convenient syntax for function

definitions. For example, the definition for “duration” is written as:

fun

duration(

x

:Section):REAL =

(

x

 way

length

) / (

x

 limit)

In order to be able to apply functions obtained by lambda-abstraction (and to use them as arguments

in functionals) we have to demand

Σ

w

,

s

=

Σ

ε

,

w

→

s

 which actually means to consider higher order alge-

bras (see [48, 23] for a more detailed treatment). Note that this requirement is consistent with the def-

inition of “

→

”.

Some further examples of derived functions are given below.

6 Structured Types and the Query Language

The two fundamental structures available in this model are

sequences

 and

graphs

. These are intro-

duced through constructors “seq” and “graph”, respectively. A database is modeled by an object type

hierarchy together with a collection of graph definitions. Sequences are the central tool for data mani-

pulation and a collection of sequence operations is offered as a “general purpose” part, called the

ker-

nel operations

, of the query language algebra.

6.1 Sequences

In this subsection we consider the part of the kind algebra shown in Figure 7 and describe the kernel

operations of the query language (this collection might be extended if other operations are needed).

The seq constructor was already defined in Section 2. Note that it can be applied only to sorts in

ANY

;

it is not applicable to sorts in

SEQ

 which means we have no nested sequences. A sequence of objects

Figure 7

ANY SEQ
seq

…

FUN

→

FUNARG

– 17 –

is made available to a query simply by writing down the name of an object type. For an object sort

s

,

the result of writing “

s

” is a sequence containing all elements in ‹

s

› precisely once, in some unspeci-

fied order. As we have seen in Section 4, multi-valued object functions and some data functions

(

intersection

) also return sequences; so we can also obtain a sequence by applying such a function.

We prefer to use sequences as a fundamental structure rather than sets because it is then possible to

include sequence operations such as sorting, grouping, and so on into the algebra. This is motivated

further in [35]. Next we give signature specifications for the central parts of the query language.

Select

The

select

 operation takes one or more sequences of objects seq(

OBJ

1

), …, seq(

OBJ

k

) as operands.

Conceptually, it then produces one aggregate object (see Section 4) of type

OBJ

1

⊗

…

⊗

OBJ

k

 for

each combination of objects in the operand sequences. It further takes as a parameter a predicate appli-

cable to objects of type

OBJ

1

 ⊗

 …

⊗

OBJ

k

 and returns in the result sequence those aggregate objects

for which the parameter predicate evaluates to

true

.

select

: seq(

OBJ

1

)

×

 …

 ×

 seq(

OBJ

k

)

×

 [

OBJ

1

⊗

 …

 ⊗

OBJ

k

→

BOOL]

→

seq(

OBJ

1

⊗

 …

 ⊗

OBJ

k

)

With this functionality,

select

 comprises the operations of selection, cartesian product, and join of the

classical relational algebra; in fact, it is much more general, since it allows parameter predicates that

include arbitrary expressions of the query algebra. It can be used as comfortably as the select-from-

where clause in SQL. This means that a user can easily translate his favourite SQL-queries into our

language. Note, however, that projection is provided through a special

Show

 command (see below)

and that group-by must be reformulated using the inverse operation.

In the above signature entry we have used an obvious notation for denoting a sequence of sorts. This

can be formalized by a third algebra level (called

class signature/algebra

), which is actually demon-

strated in [23]. The formalization requires some technical effort, and for lack of space we describe

only the idea how it can be performed: First, define a

class

, say,

TOP

, the carrier of which will contain

all kinds that are allowed to appear in sequences. Second, define a

kind constructor

 list:

TOP

→

LIST

with the constructor semantics being the same as for the seq constructor. Thus, for a kind

k

, «list(

k

)»

contains all sequences of sorts from kind

k

. Using the notational conventions for type schemes intro-

duced in Section 2, the expression list(

OBJ

) introduces the variable binding

 ∀ α ∈

 «list(

OBJ

)» and

thus denotes sequences of object sorts, such as,

〈

Water, City, River

〉

. Now, in order to denote a product

type Water

⊗

 City

 ⊗

 River we need a means to “fold” the

⊗

 constructor along the sequence, and the

type seq(Water)

⊗

 seq(City)

 ⊗

 seq(River) is obtained by first “mapping” the seq constructor to the

list and then folding

⊗

. This means, having a function

map

 which applies a type constructor to each

element in a list of types and a function

fold

 which reduces a list of types by a binary type constructor

we can then specify the type of

select

 by:

select

:

fold

(

×

,

map

(seq, list(

OBJ

)

i

))

×

 [

fold

(

⊗

, list(

OBJ

)

i

)

 →

BOOL]

→

seq(

fold

(

⊗

, list(

OBJ

)

i

))

For readability we shall, however, use the intuitive notation from above. Yet, another new notation

– 18 –

occurs in the signature: Sometimes we write operand sorts in square brackets. This is to specify that

in queries arguments are written in square brackets behind the operator. Arguments of these sorts are

also called

parameters

. For example,

River

select

[(flow

length

) > 100]

Show

 name, flow

asks for all rivers longer than 100 kilometers. The predicate of

select

 compares the length of a river

which is given by a composition of the functions flow: River

→

 LINE and

length

: LINE

→

REAL

with a constant. Note that we have made a notational simplification: We are able to omit lambda-

abstraction since we know that

select

 takes a function defined on objects of type given by the operand

sequence. This means that a parser can always add the missing parts; in this example the full expres-

sion would be:

River

select

[

fun

 (

r

)

⇒

(

r

 flow

length

) > 100]

To this query we have added a

Show

 command in order to “see” some aspects of the returned River

objects. We assume that the task of a query is to return a collection of objects. An object can be made

visible only by applying some functions to it that return data values, for which a textual or graphical

representation exists. This is performed by the

Show

 command that takes a list of function names and

applies these functions to all objects resulting from a query (therefore there is no “projection” opera-

tion in the algebra). Since

select

 can be applied to an arbitrary number of object sequences we may

ask for all bridges of highways across rivers by:

Highway River

select

[route

intersects

 flow]

Since aggregate objects formed by

select

 preserve all functions defined on their component objects

we must be able to deal with name clashes between these functions. This is done by supplying addi-

tional names for the object sorts in a query which have to be appended to the conflicting functions:

Highway _H River _R

select

[route

intersects

 flow]

Show

 name_H, name_R

We have stated above that

select

 returns in the result sequence those aggregate objects for which the

parameter predicate evaluates to

true

. It is convenient to allow the parameter predicate to be undefined

for a given aggregate object (without raising an error condition) and to define the semantics of

select

in such a way that these objects are simply omitted from the result sequence. For example, suppose

we obtain as the result of a subquery some set of Location objects “QueryLocation”; among these, we

are only interested in big cities (that is, cities with population larger than 500 000). Though “Location”

does not have a “pop” attribute one can just write:

QueryLocation

select

[pop > 500000]

But note that the result of this query is still of type seq(Location). With a type restriction function we

could transform it into a sequence of type seq(City). This would also be used if we just want to filter

out City objects without applying a further condition:

QueryLocation restrictCity

– 19 –

Sequence Transformers

The following operations manipulate sequences:

The

map

 operation, with its first functionality, takes a sequence of elements of some sort

s

 in

ANY

and a function from

s

 to some

t

 in

ANY

 and returns a sequence of elements of

t

. It produces the result

sequence by applying the parameter function to each element of the operand sequence. We might

compute the total length of the rivers in River as follows:

River

map

[flow

length

]

sum

The parameter function of

map

 is here a composition of the functions flow: River

→

 LINE and

length

: LINE

→

REAL. Hence the result of applying

map

 is of type seq(REAL) to which the aggre-

gate function

sum

 (see below) can be applied, producing a result of type REAL.

Even with the type

ANY

i

→

ANY

j

 of parameter functions for

map

 it is possible to use sequence-

valued functions if they are composed with other functions to yield the required function type. For

example, we may determine the maximal number of states “visited” by a highway, as follows:

Highway

map

[visits

count

]

max

On the other hand, it is also possible to use indeed a sequence-valued parameter function; this is the

second functionality of

map

 with parameter function type

ANY

i

→

seq(

ANY

j

). In this case

map

 con-

catenates all the result sequences obtained by applying the parameter function to elements of the oper-

and sequence. We might use this to get a list of all states visited by any highway:

Highway

map

[visits]

rdup

Here we have additionally used the

rdup

 (“remove duplicates”) operation to obtain each state only

once. The operations

asc

 and

desc

are for sorting sequences. They take a parameter function mapping

the elements of the sequence into one of the totally ordered domains in

ORD

 according to which the

sequence is to be sorted.

Head

 and

tail

 return a front or end part of a sequence. For example, we might

get an alphabetic list of the ten largest states by the query:

State

desc

[region

area

]

head

[10]

asc

[name]

Show

 name

For simplicity we have defined

asc

 and

desc

with just one parameter function, this could be extended

to a list of functions to allow lexicographic sorting by several attributes.

Aggregate Functions

An aggregate function combines the elements of a sequence into an atomic value. We already used

op map

: seq(

ANY

i

)

×

[

ANY

i

→

ANY

j

]

→

seq(

ANY

j

)

map

: seq(

ANY

i

)

×

[

ANY

i

→

seq(

ANY

j

)]

→

seq(

ANY

j

)

asc

,

desc

: seq(

ANY

i

)

×

[

ANY

i

→

ORD

]

→

seq(

ANY

i

)

head

,

tail

: seq(

ANY

i

)

×

[INT]

→

seq(

ANY

i

)

rdup

: seq(

ANY

i

)

→

seq(

ANY

i

)

– 20 –

the functions

max

 and

sum

, which are instances of the more general operation

agg

.

The

agg

 function is a fairly general tool to build aggregate functions. It takes as a parameter a binary

function applicable to elements of its operand sequence (which must not be empty) and extends this

function

to

return a value for the whole sequence. For a

sequence containing only one element just that

element is returned.

4

 We are interested in

agg

 to produce non-standard aggregate functions as in the

following example. A highway is a path over the highway network and as such consists of a sequence

of edges (highway sections) each of which has an associated LINE attribute. With

agg

 we can com-

pute the LINE value of the complete highway which is done by the derived function “route”:

fun

route(

h

:Highway):LINE =

h

path edges map

[way]

agg

[

concat

]

(The subexpression “

h

path edges

” forms the sequence of edges of the path associated with highway

object

h

, see Section 6.3.)

The aggregate function

the

 is used to extract single objects from sequences. It is defined only for

sequences containing one element and returns just this element. For example, the object representing

the river “Rhine” can be retrieved by

Rhine =

the

(River

select

[name = 'Rhine']

)

Note that this is defined only if there exists exactly one river with that name. The operator

the

 makes

it easy to define the derived function “lies

_

in”:

fun

lies_in(

c

:City):State =

the

(State

select

[(

c

 location)

inside

 region])

Another derived function is “visits” defined as follows:

fun

visits(

h

:Highway):seq(State) =

State

select

[(

h

 route)

intersects

 region]

The

in

 operation makes it possible to form set differences: Given a sequence

S

 of type seq(

t

), it returns

a function of type (

t

→

BOOL) that can be used to check whether any object of type

t

 is contained in

S

. For example, suppose we would like to determine the states

not

 visited by any highway. Applying

4

Note that

agg

 is a simplified version of the

fold

 operation found in functional languages, such as, ML: First, the type
of parameter functions is a special case of the more general type that is possible, namely

α × β → β

. Second, we have
omitted the default value for empty sequences since this makes queries cumbersome to read.

op agg

: seq(

ANY

i

)

×

[

ANY

i

×

ANY

i

→

ANY

i

]

→

ANY

i

sum

: seq(

NUM

i

)

→

NUM

i

min

,

max

: seq(

ORD

i

)

→

ORD

i

count

: seq(

ANY

)

→

INT

exists

,

forall

: seq(

ANY

i

)

×

[

ANY

i

→

BOOL]

→

BOOL

the

: seq(

ANY

i

)

→

ANY

i

in

: seq(

ANY

i

)

→

(

ANY

i

→

BOOL)

– 21 –

in

 to the sequence “HighwayStates” yields a function of type (State

→

BOOL) that allows to check

for each State whether it is an element of the collection HighwayStates. Such constructed functions

can be used as parameter functions:

State

select

[

in

(HighwayStates)

not

]

City

select

[lies_in

in

(HighwayStates)]

Inverse Operation

The inverse operation is an important element of the functional data model; while a function realizes

a relationship with a predefined direction of access, the inverse operation allows for querying the rela-

tionship in the opposite direction.

inv

: [

OBJ

i

→

ANY

j

]

→

(

ANY

j

→

seq(

OBJ

i

))

Applied to a mapping

f

:

s

→

t

 that associates with an object of type

s

 an object or value of type

t

,

inv

returns a function of type

t

→

seq(

s

) that yields for each object or value in

t

 the list of elements of

s

that are mapped into it by

f

. Note that

inv

 may even be applied to derived object functions: Since

object types will be finite a single-valued derived function can always be materialized, and from that

the inverse function can easily be constructed (of course, in some cases optimization will yield better

results.) For example, we may define as a derived function the set of cities belonging to a state:

fun

cities(

s

:State):seq(City) =

s

inv

[lies_in]

This function can then be used in a query “List for each state the number of its big cities!”:

fun

no_big_cities(

s

:State):INT =

s

 cities

selec

t[pop > 500000]

count

State

Show

 name, no_big_cities

As a final example, let us formulate the query “Which city with at least 30 000 inhabitants is closest

to the point where highway 1 crosses the river Rhine?” The following query constructs in principle a

list of all intersection points between Rhine and highway 1, a result of type seq(POINT).

H1 =

the

(Highway

select

[hno = 1]

)

Rhine flow H1 route

intersection

We assume it is known that there is only one point where the highway crosses the river; this single

value of type POINT can be obtained by writing

the

(Rhine flow H1 route

intersection

)

We further need an auxiliary function that determines for a POINT the city located at that POINT

(defined for points that are city locations):

fun

the_city_at(

p

:POINT):City =

the

(

p

inv

[pos])

– 22 –

Since “pos” is a function of type City

→

 POINT, the inverse function “

inv

[pos]” has functionality

POINT

→

seq(City); therefore

the

 is needed to return a single City object. The final query can then

be formulated using the

closest

 operator (see Section 3) with functionality seq(POINT)

×

POINT

→

POINT as follows:

the_city_at(City

select

[pop > 30000]

map

[pos]

the

(Rhine flow H1 route

intersection

)

closest

)

6.2 Heterogeneous Sequences and Dynamic Generalization

We shall now use the union type introduced in Sections 3 and 4 to form and manipulate heterogeneous

collections of objects and data values. Two kernel operations provide facilities for constructing het-

erogeneous sequences and for type-dependent function application.

union

: seq(

OBJ

1

)

×

 …

 ×

 seq(

OBJ

k

)

→

seq(

OBJ

1

⊕

 …

 ⊕

OBJ

k

)

one_of

: [(

OBJ

1

→

DATA

1

)

×

 …

 ×

 (

OBJ

k

→

DATA

k

)]

→

(

OBJ

1

⊕

 …

 ⊕

OBJ

k

→

DATA

1

⊕

 …

 ⊕

DATA

k

)

The

union

 operation takes, like

select

, a variable number of operand sequences. It transforms them

into a single heterogeneous sequence whose type is the union type of all operands’ object types. Each

element of any of the operand sequences occurs exactly once in the result sequence. For example, we

can easily form the collection of all highways, rivers, and lakes:

Highway River Lake

union

The

one_of

 operation is needed to access the elements of such a heterogeneous sequence. It allows

selective application of different functions to different objects of the sequence.

One_of

 takes as a

parameter a list of functions that map object types into data types and returns a single function from

the union object type to the union data type. So in some sense

one_of

 is a “function generalization”

operator. For example, consider the application of

one_of

 to the functions

route: Highway

→

 LINE

flow: River

→

LINE

surface: Lake

→

 REG

denoted by

one_of

[route, flow, surface]

The returned function has functionality Highway

⊕

 River

⊕

Lake

→

 LINE

⊕

 LINE

⊕

REG. The

range type evaluates to EXT. We might use this function as a parameter to

map

:

Highway River Lake

union map

[

one_of

[route, flow, surface]]

After the application of

union

 we have a sequence of type seq(Highway

⊕

 River

⊕

Lake) which

map

transforms into a sequence of type seq(EXT).

One_of

 allows also to select elements from a heteroge-

neous sequence. We can find all highways, rivers, and lakes in or passing through Germany:

– 23 –

Highway River Lake

union select

[

one_of

[route, flow, surface]

intersects

 (

the

(State

select

[name ='Germany'])

region

)]

The

select

 operation applies the function constructed by

one_of

 to each element of the heterogeneous

operand sequence. This function in turn selects the “right one” of its component functions and applies

it to the object, namely, to a Highway object the “route” function, and so on. In any case, the result

returned is of type EXT and so fits with the functionality of the

intersects

 operator.

Note that in general

one_of

 can be applied to objects whose type is given by an arbitrary expression

built from base object types through the

⊕

 and

 ⊗

 constructors. The question arises under which con-

ditions

one_of

 is well-defined. First, we observe that with each object function

f

, in general, a large

number of functionalities is associated which happens through inheritance, overloading and the con-

struction of product types. That means, when we write

one_of

[

f

1

, …,

f

n

]

it is not at all clear which of the functions associated with the name

f

j

 is meant. Of course, one might

use type annotations, as in:

one_of

[name: River

→

 STR, …]

but that appears very uncomfortable in queries. Instead, we disambiguate by considering the object

type

s

 to which the function constructed by

one_of

 is to be applied. Let

dom

(

f

) denote all valid argu-

ment types of

f

. For example, we have

dom

(pos) = {Location, City, Location

⊗

 State, City

⊗

 State, …}.

We proceed as follows:

(1) The operand type

s

 is brought into disjunctive normal form (as discussed in Section 4) and hence

represented as

s

1

 ⊕

…

⊕

s

n

. (The typing of

one_of

 requires that the number of functions being

arguments for

one_of

 and the number of types in the union type match.)

(2) Define the

compatibility relation

 as

C

 = {(

s

i

,

f

j

) |

s

i

∈

dom

(

f

j

), 1

≤

i

,

j

≤

n

}. Then

one_of

 is well-

defined if

C

 is a (total) function, that is, if each

s

i

 occurs in exactly one of the sets

dom

(

f

j

). (Since

the number of parameter functions and the number of types in the union are the same

C

 is sur-

jective. Moreover, since for each

s

i

 there has to be a parameter function

C

 is also injective.)

(3) Now, if

one_of

 is to be applied to an object of type

s

i

,

one_of

 chooses the function

C

(

s

i

).

Consider the query

Highway (River Lake

union

)

select

[route

intersects

one_of

[flow, surface]]

Here the operand type for the result function of

one_of

 is Highway

⊗

 (River

⊕

Lake). Suppose we

had another object type Cube on which “surface” was also defined,

surface: Cube

→

 REAL.

Then the domains of function names “flow” and “surface” would be:

dom

(flow) = {River, River

⊗

State, River

⊗

Highway, …}

dom

(surface) = {Lake, Cube, Lake

⊗

State, Cube

⊗

State, Lake

⊗

Highway, …}

– 24 –

Step 1. For the example above, the operand type in disjunctive normal form is: (Highway

⊗

River)

⊕
(

Highway

⊗

 Lake).

Step 2. We observe that Highway

⊗

River

∈

dom

(flow) and Highway

⊗

 Lake

∈

dom

(surface), so

one_of

 is well-defined.

Step 3. The parameter functions of

one_of

 are flow: Highway

⊗

River

→

 LINE and surface: Highway

⊗

 Lake

→

 REG. Hence it constructs a function of type (Highway

⊗

River)

⊕ (

Highway

⊗

 Lake)

→

EXT.

Note that it is possible to do full static type checking at query compile time, so we have to look at the

actual objects in the sequence at runtime only to select the right function to apply, and type correctness

ensures that we will never miss one.

We can provide the precise types for

union

 and

one_of

 as done for

select

. For this we need another

auxiliary function,

shuffle

, which takes two sequences of equal length, say,

〈

x

1

,

x

2

, …,

x

n

〉

 and

〈

y

1

,

y

2

,

…,

y

n

〉

 and a binary type constructor,

γ

, and produces the sequence

〈

x

1

γ

y

1

,

x

2

γ

y

2

, …,

x

n

γ

y

n

〉

.

union

:

 fold

(

×

,

map

(seq, list(

OBJ

)

i

))

→

seq(

fold

(

⊕

, list(

OBJ

)

i

))

one_of

:

shuffle

(list(

OBJ

)

i

, list(

DATA

)

j

,

→

)

→

(

fold

(

⊕

, list(

OBJ

)

i

)

→

 fold

(

⊕

, list(

DATA

)

j

))

Note that the type for

one_of

 could be defined even more flexible: When working on a union of types

some which share an overloaded operation symbol, this operation need to be given only once. For

example, in the query

City State Highway

union map

[

one_of

[name, hno]]

“name” can be used for objects of type City and State. Unfortunately, this typing is not expressible by

multi-level algebra since there is no concept to say that one name represents a set of functions. (Here

we have a problem with signatures mixing up syntax and type descriptions: The above signature entry

when viewed only as a type specification still covers this extended meaning; read as a syntax specifi-

cation, however, it requires the same number of parameter functions as the number of types in the

union.)

6.3 Graphs

So far, a database could be modeled as an object type hierarchy together with functions applicable to

objects, describing their attributes and relationships. We now introduce

graphs

 as another modeling

tool which means a user can define some part of the database explicitly as a graph structure. Associ-

ated with graphs are specific graph operations in the query language algebra such as finding shortest

paths, determining certain subgraphs, and so forth. As far as modeling is concerned, explicit graphs

and graph operations allow a user to express a query at a very high level. To some extent this is in

contrast to graph manipulation in deductive databases where often fairly complex rule programs need

to be written. As far as implementation is concerned, the idea is to provide special storage structures

for the representation of graphs and the most efficient graph algorithms available for realizing specific

operations. We believe that this approach will result in better performance than can be achieved by

optimization of arbitrary rule based programs.

– 25 –

There is a difficulty with our strategy, however: It is not easy to come up with a small collection of

graph operations that cover all interesting queries. In that respect, rule-based manipulation, offering

more primitive operations that can be combined with a powerful paradigm, has an advantage. Our

answer to this problem is that the whole approach needs to be understood within the context of an

extensible system: For a given application one should be able to determine the graph operations fre-

quently needed and extend the system by efficient implementations for them. One might also think of

adding facilities for rule-based manipulation for those ad-hoc queries that cannot be formulated with

the given collection of graph operations, for example, through an algebra operation that takes a collec-

tion of rules as a parameter. Still another approach is proposed in [21]: Identify the basic building

blocks of a reasonable class of graph algorithms and provide a small set of programming facilities

(basically, an iteration operator that can be combined with data structures) so that new algorithms can

be expressed in a very compact way. In [21] it is shown how to integrate these ideas into a functional

language where the resulting algorithms are as efficient as their imperative counterparts.

In this subsection, we first introduce the part of the type system relevant to graphs. Based on this, we

then define a set of operations for graph manipulation. Their use is illustrated by some example que-

ries.

Types

The part of the kind signature relevant to graphs is shown in Figure 8. We have constructors graph,

node, edge, xpath, and path with the shown functionalities.

We can pick up any three object sorts

s

,

t

,

u

 of kind

BASEOBJ

 and form, by application of the graph

constructor, a type of graphs over

s

,

t

,

u

 denoted by graph(

s

,

t

,

u

). For example, graph(HLocation,

Section, Highway) is such a graph type; this sort is of kind

GRAPH

. The constructor semantics of the

graph constructor is defined as follows:

∀

s

,

t

,

u

∈

 «

BASEOBJ

»: ‹graph(

s

,

t

,

u

)› = graph(‹

s

›, ‹

t

›, ‹

u

›) :=

{ (

N

,

E

,

XP

,

ε

,

π

) |

(i)

N

⊆

‹

s

›,

E

⊆

 ‹

t

›,

XP

⊆

 ‹

u

›,

(ii)

ε

:

E

→

N

×

N

 is total and injective (no two edges between the same nodes),

(iii)

π

:

XP

→

E

* is total, its range contains only simple paths of the graph (

N

,

ε

(

E

)).

}

The idea is that in a given graph of type graph(HLocation, Section, Highway) a HLocation object is

associated with each node and a Section object with each edge. For each Highway in

XP

, there is a

Figure 8

.

BASEOBJ

COMPOBJ

GRAPH
graph

node edge xpath

PATH

path

– 26 –

path in this graph associated to it by

π

.

The constructors node, edge, and xpath are in fact selectors, they extract from a graph sort the sorts it

was constructed from. Thus, they can be defined by equations on the type level.

eq

node(graph(

s

,

t

,

u

)) =

s

edge(graph(

s

,

t

,

u

)) =

t

xpath(graph(

s

,

t

,

u

)) =

u

Now, the constructor semantics are very simple: node(‹graph(

s

,

t

,

u

)›) := ‹

s

›, edge(‹graph(

s

,

t

,

u

)›) :=

‹

t

›, and xpath(‹graph(

s

,

t

,

u

)›) := ‹

u

›. These constructors map to the kind

COMPOBJ

 (graph compo-

nent objects) whose elements can be treated like any other object sort; it is therefore a subkind of

BASEOBJ

. The last constructor is path, defined as:

∀

 graph(

s

,

t

,

u

)

∈

 «

GRAPH

»: ‹path(graph(

s

,

t

,

u

))› = path(‹graph(

s

,

t

,

u

)›) :=

{ (

N

,

E

,

XP

,

ε

,

π

) |

(i) – (iii) as in the definition of ‹graph(

s

,

t

,

u

)›

(iv) the graph (

N

,

ε

(

E

))

must be a simple path

}

One recognizes that application of the path constructor just restricts the carrier of a given graph type.

Hence for any

G

∈

 «

GRAPH

», we have ‹path(

G

)›

⊆

‹

G

› which allows us to define a subsort relation-

ship in the sort hierarchy:

∀

 graph(

s

,

t

,

u

)

∈

 «

GRAPH

»: path(graph(

s

,

t

,

u

))

≤

 graph(

s

,

t

,

u

)

In other words, any path can also be viewed as a graph and inherits all operations defined for graphs.

So far, we have just introduced types associated with graphs but no instance yet. We assume that a

user can define several object types and then create a graph instance by a data definition command,

for example:

create graph

 Hnet

of type

 HLocation, Section, Highway

“Hnet” is now the name of one specific graph in the carrier of graph(HLocation, Section, Highway);

right after this command, it is a completely empty graph. We assume that an object type used in such

a graph definition is “devoted to” this graph instance.

5

 By that we mean that every object in the object

type used for nodes is automatically also a node of this graph instance. When an edge object is created,

one has at the same time to specify which nodes it connects. Similarly, when an explicit path object

is created, the edges of which it is composed need to be given by the user. Hence for the specific graph

Hnet = (

N

,

E

,

XP

,

ε

,

π

), we have

N

 = ‹HLocation›,

E

 = ‹Section›, and

XP

 = ‹Highway›. However, the

carrier containing Hnet is more general, for example, it also contains all subgraphs of Hnet.

 “Hnet” can now be used in a query to refer to one particular (structured) object, just as “River” refers

to one particular element in the carrier of seq(River).

5

 This is not a restriction: If an object type is needed of which only some elements participate in a graph structure,
simply define a subtype for those in the graph, as we have done with HLocation and HCity.

– 27 –

Operations

We now introduce a collection of graph operations for use in queries. As explained in the introduction

to this subsection, this collection is not meant to be complete. It just illustrates our approach.

In this signature specification we use

NODE

i

,

EDGE

i

,

XPATH

i

, and

PATH

i

 as abbreviations for

node(

GRAPH

i

), edge(

GRAPH

i

), xpath(

GRAPH

i

), and path(

GRAPH

i

), respectively. The opera-

tions have the following meaning. Given a graph

G

 and a collection of nodes

N

 in it,

subgraph

 con-

structs a subgraph of

G

 consisting of the nodes in

N

 and the edges incident with such nodes; of the

explicit paths only those remain whose edges occur in the subgraph. Applied to a graph and a list of

edges

E

, subgraph leaves the nodes alone but in the result graph reduces edges and explicit paths to

those in

E

.

Remove

 works in the opposite way: Given a list of nodes it eliminates those nodes as well

as all dependent edges and xpaths; given a list of edges, it eliminates these edges and the dependent

explicit paths. The operations

nodes

 and

edges

 return all the nodes or edges, respectively, of a given

graph; note that they can also be applied to paths in

PATH

i

 due to the subsort relationship mentioned

above. If these operations are applied to a path, the result sequence contains the nodes or edges in the

order of the path.

From

 and

to

 return the source and target nodes of a given edge. For an explicit path

object we can access its path in the graph through the

path

 operation which allows to apply path or

graph operations to it.

Some special graph operations are

shortest_path

,

circle

, and

voronoi_node

/

voronoi_dist

. Given a

graph

G

 and nodes

v

 and

w

 in it,

shortest_path

 returns (one of) the shortest path(s) from

v

 to

w

. The

operation is parameterized by a function assigning a numeric value to an edge. So one can determine

shortest paths with respect to the number of edges in a path, the geometric distance or the traveling

time in a highway network, or some function combining distance and slope of street sections when

planning a bicycle trip. The

circle

 operation, applied to a graph

G

, a node

v

 in it, and some number

d

determines a subgraph in a “circle of radius

d

” around

v

 where the radius is measured in terms of dis-

tance on the network which is again determined by a parameter function assigning values to edges.

One can, for example, determine a part of a street network that can be reached from a given city within

a specified traveling time, or just retrieve all the neighbours of a node in a graph (by assigning 1 to

each edge and giving a radius of 1). The operations

voronoi_node

 and

voronoi_dist

 realize two

aspects of the

graph Voronoi diagram

 defined in [22]: The graph voronoi diagram w.r.t. to a set of

op subgraph

,

remove

:

GRAPH

i

×

 seq(

NODE

i

)

→

GRAPH

i

subgraph

,

remove

:

GRAPH

i

×

 seq(

EDGE

i

)

→

GRAPH

i

nodes

:

GRAPH

i

→

seq(

NODE

i

)

edges

:

GRAPH

i

→

seq(

EDGE

i

)

from

,

to

:

EDGE

i

→

NODE

i

path

:

XPATH

i

→

PATH

i

shortest_path

:

GRAPH

i

×

NODE

i

×

NODE

i

×

 [

EDGE

i

→

NUM

]

→

PATH

i

circle

:

GRAPH

i

×

NODE

i

×

NUM

j

×

[

EDGE

i

→

NUM

j

]

→

GRAPH

i

voronoi_node

:

GRAPH

i

×

 seq(

NODE

i

)

×

[

EDGE

i

→

NUM

j

]

→

(

NODE

i

→

NODE

i

)

voronoi_dist

:

GRAPH

i

×

 seq(

NODE

i

)

×

[

EDGE

i

→

NUM

j

]

→

(

NODE

i

→

NUM

j

)

– 28 –

nodes

K

 = {

v

1

, …,

v

k

}

⊆

N

(called

voronoi nodes

) can be viewed as a mapping

V

:

N

→

K

, such that

all nodes

w

 in

N

 (that are reachable from any node

v

i

) are nearer to

V

(

w

) than to any other node in

K

.

Here, “nearer” is meant with respect to the distance of the shortest paths defined by the parameter

function on edges. The operation

voronoi_node

 computes just this mapping, and

voronoi_dist

 yields

a mapping recording for each node

w

 the length of the shortest path to

V

(

w

). The graph Voronoi dia-

gram supports a great many queries, including nearest facilities, closest pairs, collision-free moving,

anti-centers, and furthest points (examples will be given shortly). Note that there are efficient imple-

mentations for all of these operations; they are sketched below.

Queries

A highway route from Dortmund to Munich is found by:

fun

 theCity(

s

:STR):HCity=

the

(HCity

select

[name =

s

])

DoMunich = Hnet theCity('Dortmund') theCity('Munich')

shortest_path

[way

length

]

In order to actually display the path we have to apply a

Show

 command with functions returning print-

able data values, for example,

DoMunich

edges

Show

 way

Of course, we can imagine a more sophisticated user interface having available standard display rou-

tines for graph/path objects, so that a graph/path object returned by a query would be automatically

displayed as is assumed for values of type INT or LINE.

“How far is Munich from Dortmund?”

DoMunich

edges map

[way

length

]

sum

“Are there any rivers traversed on this trip?”

River

select

[flow

intersects

 (DoMunich

edges map

[way]

agg

[

concat

])]

or, alternatively,

River DoMunich

edges select

[flow

intersects

 way]

“Which big cities lie on highway 1?”

the

(Highway

select

[hno = 1])

path nodes select

[pop > 500000]

Note that this query works because of the semantics of

select

 defined above: First,

path

 expands the

path associated with the object highway 1 and returns a subgraph (path) of Hnet; then

nodes

 returns

the list of nodes on this path, of type seq(Location);

select

 omits all Location objects for which the

function “pop” is undefined, that is, all locations that are not cities. We might also have used the func-

tion “restrictCity” as in an example below.

“Show the part of the highway network that can be reached within half an hour from Hagen!”

Hnet theCity('Hagen') 0.5

circle

[duration]

– 29 –

“What is the total population of cities whose distance from Düsseldorf on the highway network is at

most 50 kms?”

Hnet theCity('Düsseldorf') 50

circle

[way

length

]

nodes

 restrictCity

map

[pop]

sum

Again,

nodes

 returns all Location objects in the subgraph constructed by

circle

. Here it is necessary

to use the type restriction function “restrictCity” to filter out the City objects and to prevent a type

error when

map

 is applied.

Sometimes graph operations are not needed for a particular query about the network: “How many cit-

ies in Germany with more than 100000 inhabitants are not on the highway network”:

(

the

(State

select

[name = 'Germany']) cities)

select

[(pop > 100000)

and

 (

in

(HCity)

not

)]

count

Suppose a fog area given by a region (polygon) called “Fog” blocks some part of the highway net-

work. “What is the remaining part of the network?”

Clear = Hnet Section

select

[way

intersects

 Fog]

remove

Extending this query, we can ask: “What route avoiding the fog area can be recommended from Dort-

mund to Frankfurt with respect to traveling time?”

Clear theCity('Dortmund') theCity('Frankfurt')

shortest_path

[duration]

“How can one get from Dortmund to Düsseldorf if the piece of highway between Bochum and Essen

is blocked (say, by an accident)?”

Hnet Section

select

[(

from

 name = 'Bochum')

and

 (

to

 name = 'Essen')]

remove

theCity('Dortmund') theCity('Düsseldorf')

shortest_path

[duration]

Note that the “name” function is defined only for City objects; we need the extended semantics of

select

 mentioned above to allow this short formulation without a type error.

Maps recording nearest facilities are very useful in geographic networks. Continuing the previous

example, assume people got injured by the acciddent, and we seek the nearest hospital. We first con-

struct the voronoi diagram with respect to a sequence of nodes where hospitals are located:

fun

has(

s

:STR):(City

→

 BOOL) =

 fun

 (

c

:City)

⇒

s

in

(facilities(

c

))

hospitals = HCity

select

[has('Hospital')]

hnode = Hnet hospitals

voronoi_node

[duration]

hdist = Hnet hospitals

voronoi_dist

[duration]

Then, we can simply look up the nearest hospital, and the time required to reach it:

theCity('Bochum') hnode

theCity('Bochum') hdist

For another application, assume that we are planning a money transport from Dortmund to Berlin. In

order to get help from the police quickly enough in case of a hold up we should always keep a distance

of less than 8 km to the next police station. This query can be formulated by searching a path in an

– 30 –

appropriate subgraph:

pdist = Hnet (HCity

select

[has('Police Station')])

voronoi_dist

[way

length

]

Hnet HLocation

select

[pdist < 8]

subgraph

theCity('Dortmund') theCity('Berlin')

shortest_path

[way

length

]

In our final example we consider a chain of stores which wants to build a new shopping mall. To min-

imize competition a node is sought which is located as far as possible from the already existing shop-

ping malls.

sdist = Hnet (HLocation

select

[has('Shopping Mall')])

voronoi_dist

[way

length

]

maxdist = HLocation

map

[sdist]

max

HLocation

select

[sdist = maxdist]

Clearly, the set of graph operations offered is still limited; many interesting queries cannot yet be for-

mulated. The design of a reasonably complete collection of graph operations is a subject of further

research. In this paper we just intended to show how graph operations can be integrated into a general

querying environment.

Implementation of Graph Operations

Let us briefly give an idea about the assumed implementation of the operations offered so far. The

subgraph

 and

remove

 operations should certainly not produce a copy of the given operand graph.

Instead, the sequence given as a second operand is scanned and the corresponding elements of the

graph are accessed and marked as valid or invalid for the remaining operations of this query. For

example, to implement the query

Hnet Section

select

[way

intersects

 Fog]

remove

the collection of Section objects is accessed, hopefully through a geometric index on the “way”

attribute, and a sequence of sections intersecting the fog area is formed. For each of those sections its

representation within the graph structure is accessed and marked as invalid for any remaining opera-

tions of the query. In [33] it is described how this marking of graph components can be implemented

with a time stamp technique.

The

shortest_path

 operation is to be implemented by the A* algorithm [49] which is guided by a heu-

ristic function that estimates the distance from a node encountered during the search to the target

node.

6

 In spatially embedded networks one can often use the Euclidean distance as a very good esti-

mator. Hence a shortest path search will be focused well on the target and run quite fast. An even faster

algorithm, which makes use of a geometric index, is described in [20]: For each edge

(

v

,

w

), the set

of nodes to which the shortest path from

v

 leads via

w

 is represented by a polygon with hopefully few

bordering edges. Then a shortest path can be reconstructed in linear time (in the number of edges in

the path to be found) plus the time to perform point location in the polygons for the successors along

6

 Unfortunately, it is necessary to ask the user to specify such a heuristic function, for example, as

fun

 distance(

x

:Location,

y

:Location):REAL =

x

 pos

y

 pos

mindist

The function “distance” can then be given as another parameter function to the

shortest_path

 operation. This parame-
ter was omitted above to keep the presentation simple. It is unfortunate, because the implementation should in prin-
ciple not affect the query language, but here in the interest of efficiency it cannot be avoided.

– 31 –

the path. Of course, this requires additional storage for the index (ranging from O(

n

) for Manhattan-

like networks to O() for most networks found in “real life”). On the other hand it outperforms A*,

and the user need not be concerned about heuristics. In general, a

shortest_path

 implementation will

check the marks of objects encountered and can therefore be restricted to edges marked as valid in

this query (by a preceding

subgraph

 operation) or avoid edges marked as invalid (by

remove

).

The

circle

 operation explores the environment of the given operand node and will be implemented by

Dijkstra’s single source shortest paths algorithm (see [3]). The

nodes

 and

edges

 operations should

generally only be applied to a subgraph (in particular, path) obtained as the result of a subquery; if the

user applies them to the whole graph, the optimizer should replace this by a reference to the corre-

sponding node or edge object type.

An easy way of computing voronoi diagrams is to use a modification of Dijkstra’s algorithm starting

node expansion “simultanously” from all voronoi nodes [22]. The nice thing about the algorithm is

that it runs as fast as Dijkstra’s algorithm (in fact, in many cases even faster) and that it can be easily

implemented. Note that the algorithm computes information for both operators

voronoi_node

 and

voronoi_dist

 in one run.

7 Related Work

In the description of our data model we touched quite different areas of database research. So the com-

parison with other work is divided into several parts: We first look at the underlying functional data

model and then discuss the treatment of graphs and heterogeneous collections in other data models.

After that, we focus on the specific area of application, spatial data models, and finally, we comment

upon the use of multi-level algebra.

Data Modeling in general

The data model described is essentially a functional data model in the spirit of DAPLEX [64] or FQL

[10]. This base model is extended by complex objects which can be defined through the use of type

constructors. This is similar to FDL [57] or the model presented in [19] in the sense that the model

provides a fixed set of type constructors, although the constructors differ significantly: Whereas [57,

19] offer the usual tuple, variant, and sequence constructors we have special sequence, product (

⊗

),

union (

⊕

), and, of course, graph type construcors. In PROBE [17], complex objects are modeled by

the basic facilities of the functional model itself, that is, entity types and functions, and in GENESIS

[5] compound structures are represented by (nested) streams. Concerning the query language, FDL

provides the full computational power of the

λ

-calculus. In contrast, we have deliberately chosen a

limited functional language since we advocate the use of explicit graphs for the modeling of complex,

recursive relationships. In DAPLEX and PROBE, a limited imperative language is used. This imper-

ative style of PROBE is carried over to the language proposed in [58] which meets the traditional view

of graph iterations; in [21] it is demonstrated that traversals can also be formulated declaratively and

that they can be definitely integrated into a functional language. The supposed lack of completeness

concerning types and language of our approach and also of GENESIS must be seen from the view-

point of extensibility, see below.

n n

– 32 –

The algebraic view of the functional model integrates data model and schema description in a uniform

framework. Extending a schema by a new function amounts to simply adding an entry to the signature

(and giving a defining expression in case of derived functions). By using the algebraic methodology

on a second level the same applies to extensions of the data model (or type system). In GENESIS,

structured types are mapped to a collection of streams related by functions (viewed as stream gener-

ators), which, as the authors admit, is in some cases not very fortunate. In particular, this applies to

the extension by graph structures, where it is suggested to load a graph entirely into main memory

before executing queries. Instead, we propose to provide special storage structures for newly added

types, such as graphs [33]. Certainly, this approach requires more implementation efforts but results

in higher performance.

From the semantic data modeling point of view, the functional data model provides objects, attributes,

type hierarchies and derived data. Aggregation is possible by associating to an entity each item to be

aggregated by a function (or by the explicit use of type constructors as in FDL). Association is realized

in DAPLEX by multi-valued functions; we use the seq constructor, which must not be nested as is

possible in FDL or GENESIS. In particular, some of the essential features of object-oriented

languages, such as object identity, subtyping, and inheritance are covered by the functional data

model. Beeri [8] describes in detail how object-oriented features are captured by the algebraic view

of databases, and he stresses the strong relationship to functional data models. Comparing the func-

tional model to other semantic data models was done elsewhere [38].

Graphs in Databases

Each data model has its own facilities to represent relationships among objects. Since graphs are a

special concept for representing such relationships many data models do not worry about graphs at

all. There are, however, at least two reasons for considering graphs additionally (or instead): The first

is, that many “real-life” problems can be directly expressed in terms of graph concepts (paths, span-

ning trees, matchings, and so on) that are well understood and thus easy to deal with (compared with

reinventing representations in special data model structures). The second observation is that for most

of these problems efficient algorithms are available which can be used if the application problem is

formulated as a graph problem.

A first step for taking graphs into account is to regard certain structures of the data model as a graph

(in the relational model, for example, a relation with two attributes, say, “from” and “to”) and define

graph operations which are only applicable to such structures. Concerning the relational data model,

this line is followed by [2] defining a general transitive closure operator and by [11] describing an

extension of SQL. In [58] a method for traversing graphs is proposed in the context of the functional

data model.

Proposals to use graphs directly for data modeling and to define query languages in terms of graphs

are made by [14, 15, 28, 29]. In the work of Cruz et al. the intention is to focus on the underlying graph

structure of a database and also to employ efficient graph algorithms [16]. In [28, 29] the main pur-

pose is the modeling of end user interfaces. In these proposals

only

 graphs are visible for data mode-

ling and querying. In contrast, our approach is to offer graphs as a separate, “first-class” concept

– 33 –

besides other facilities of the functional model. An approach for viewing graphs as an additional fea-

ture in a relational system is sketched in [33].

Heterogeneous Collections

Let us briefly consider the facilities provided for this in some object-oriented models and systems. In

Orion [41] and Iris [7] it is not at all possible to form a union of differently typed objects. In Orion the

need to query more than one object class is recognized but not yet incorporated into the model. In Iris

there are object class hierarchies, but no means to build the union of differently typed objects is

described (at least in [7]). In O

2

 [13] it is possible to form the union of types

s

 and

t

 if there is an appro-

priate schema definition relating

s

 and

t

 as (possibly indirect) subtypes of another type

u

. Assuming

that

u

 is the smallest common supertype of

s

 and

t

, the result of the union is of type

u

 which means

that only attributes defined on

u

 may be applied in later steps of the query. In Machiavelli [9, 52] it is

possible to form the union of types

s

 and

t

 even if there is no schema definition as described above for

O

2

. The types of

s

 and

t

 are assumed to be tuples of data types. The same holds for the model presented

in [33] where the data types are additionally arranged into a hierarchy and the result type is obtained

by taking least upper bounds with respect to the data type hierarchy for any two matching tuple com-

ponents in the types

s

 and

t

. However, attributes that do not match cannot be accessed any more after

forming the union. In the model presented here it is possible to form the union of types

s

 and

t

 with

no restriction and all attributes are preserved for later use in the query. This is also possible in FAD

[4]. However, in FAD the union of two types

s

 and

t

 is simply of type

set

. Attributes can selectively

be accessed by means of an

if-then-else

 function. But FAD is not strongly typed and erroneous

attempts to access attributes in such a set cannot always be ruled out. Thus, our proposal seems to be

the most general treatment of heterogeneous collections allowing for static type checking.

Data Models for Spatial Databases

In the development of spatial database systems, on the modeling side the main focus has been on the

definition of spatial data types and operations and their integration as “abstract data types” into data-

base models. Most often, the relational model was used as a basis (for example, [24, 59, 39, 18]), but

there are also approaches based on the functional model [46, 55] or on an extended ER-model [43].

Another important issue has been the handling of partitions of the plane, sometimes called maps,

including map operations such as overlay [47, 62]. On the implementation side, a lot of effort has been

spent to devise efficient spatial access structures (for example, [36, 37, 61]) and to support efficient

processing of geometric queries [53, 54, 63]. The need of treating graphs in geographic applications

has also been observed in [45].

Concerning heterogeneous collections, current prototype systems and query language proposals offer

only superficial support for this such as syntactic constructs to formulate the request in a single query

[1, 24] and output facilities to overlay the results obtained from the different object classes. At the

implementation level, the query is decomposed into distinct queries on all involved object classes

which results in a lot of overhead. Generally, there are no clean modeling concepts to deal with such

heterogeneous collections of objects. The model of [43] provides a partial solution by organizing spa-

tial object classes into a generalization hierarchy, but one cannot query together object classes unre-

– 34 –

lated in the hierarchy.

Multi-Level Algebra

In this paper, we have used multi-level algebra for the description of our data model. Multi-level alge-

bra itself is described and discussed thoroughly in [23]. In particular, its use for specifying various

aspects of type systems is illustrated by many examples, including a specification of the relational

model and an NF

2

 model.

In fact, two-level algebras were already used in [56] to specify categories with certain properties for

theoretical investigation and in [42] for the formalization of the composition of specifications. In con-

trast, our concern is the formal description of a concrete data model. In that respect the approach pre-

sented in [34] is very similar, although directed more towards describing different levels of a system

architecture. Unlike [56, 42, 34] our approach is not limited to two levels, and it is shown in [23] that

especially a third level can be extremely helpful: One usage is to describe overloading of operations

with functions on different numbers of parameters (which is needed in our model, for example, to for-

mally describe the

select

 or

union

 operation).

8 Conclusions

Within the formal framework of a multi-level order-sorted algebra we have presented a data model

that employs functional modeling concepts to describe properties of objects and relationships between

objects. The main purpose in developing the model was the integration of graphs and graph operations

into a general modeling and querying environment. In contrast to earlier work such as [2, 58] graphs

are not modeled through the standard facilities of a given data model (for example, relations of a spe-

cial form) but explicitly. In contrast to work focusing on the graph structure and graph operations as

such, like [15, 28], graphs are not the only tool, but are part of a more general environment. We have

shown that explicit graphs facilitate the clear and direct modeling of graph structures and that queries

can be formulated in a very intuitive way. At the same time, by choosing appropriate operations, effi-

cient implementations can be provided.

Through the introduction of union type constructors on data and object types together with

union

 and

one_of

 operations in the query language a flexible treatment of heterogeneous collections of objects

was achieved within the realm of static type checking.

Some details in the model deserve to be highlighted. The view of kernel operations, for example,

select

,

asc

, as higher order functions offers a clean formalization; this is an improvement over other

approaches, for example “parameter expressions” in the NST-algebra [35]. The multi-level order-

sorted algebra in connection with the seq constructor and higher order functions makes it possible to

define operations in the most general and powerful way, for example, to capture the essence of

sequence operations by making them applicable to seq(

ANY

). For instance, the

asc

/

desc

 operators

can sort any kind of sequence by the values of functions applicable to the elements of the sequence.

We have introduced operators with a variable number of operands. This is generally useful when oper-

ators are needed in a query language that are originally binary and associative (join, cartesian product,

– 35 –

union). The well-known problem in algebraic query languages that the order of operations is over-

specified (in particular, join order) can so be eliminated. The

select

 operator that we have introduced

can be used as comfortably as the select-from-where construct in SQL dialects; it does not specify join

order nor whether a selection, join or cartesian product is desired.

An implementation of at least parts of the model presented here is underway using the extensible data-

base system Gral [32, 6] as a basis. A special storage structure for graphs decribed in [33] has already

been implemented; it clusters and links node, edge, and explicit path objects in such a way that con-

nections between any of these objects can be followed efficiently. For the implementation of graph

operations efficient graph algorithms, as indicated in Section 6.3, are to be used; here A* has so far

been realized. The functional, or algebraic, structure of the query language is particularly suitable for

optimization, a rule-based paradigm as in [44, 6] can be used, and the special optimization opportu-

nities offered by the functional data model can be exploited [19] (in particular, access path optimiza-

tion can be carried out already on the algebraic level).

Acknowledgements

We would like to thank the referees for their detailed comments and suggestions that helped to

improve the paper.

References

[1] D.J. Abel: SIRO-DBMS: A Database Tool Kit for Geographical Information Systems,

Int. Journal of Geographical
Information Systems 3

, 1989, pp. 103-116.

[2] R. Agrawal: Alpha: An Extension of Relational Algebra to Express a Class of Recursive Queries,

3rd IEEE Int.
Conf. on Data Engineering

, 1987, pp. 580-590.

[3] A.V. Aho, J.E. Hopcroft & J.D. Ullman:

Data Structures and Algorithms

, Addison-Wesley, 1983.

[4] F. Bancilhon, T. Briggs, S. Khoshafian & P. Valduriez: FAD, a Powerful and Simple Database Language,

13th Int.
Conf. on Very Large Data Bases

, 1987, pp. 97-105.

[5] D.S. Batory, T.Y. Leung & T.E. Wise: Implementation Concepts for an Extensible Data Model and Data Language,

ACM Transactions on Database Systems Vol. 13

, No. 3, 1988, pp. 231-262.

[6] L. Becker & R.H. Güting: Rule-Based Optimization and Query Processing in an Extensible Geometric Database
System,

ACM Transactions on Database Systems Vol. 17

, No. 2, 1992, pp. 247-303.

[7] D. Beech: A Foundation for Evolution from Relational to Object Databases,

Int. Conf. on Extending Database
Technology

, 1988, pp. 251-270.

[8] C. Beeri: New Data Models and Languages – The Challenge,

ACM Conf. on Principles of Database Systems

, 1992,
pp. 1-15.

[9] V. Breazu-Tannen, P. Buneman, & A. Ohori: Static Type Checking in Object-Oriented Databases,

Data Engineer-
ing Vol. 12

, No. 3, 1989, pp. 5-12.

[10] P. Buneman, & R.E. Frankel: FQL – A Functional Query Language,

 ACM SIGMOD Conf. on Management of Data

,
1979, pp. 52-58.

[11] J. Biskup, U. Räsch, & H. Stiefeling: An Extension of SQL for Querying Graph Relations,

Computer Languages 15

,
1990, pp. 65-82.

[12] L. Cardelli: Types for Data Oriented Languages,

Int. Conf. on Extending Database Technology

, 1988, pp. 1-15.

[13] S. Cluet, C. Delobel, C. Lécluse & P. Richard: Reloop, an Algebra Based Query Language for an Object-Oriented
Database System,

1st Int. Conf. on Deductive and Object-Oriented Databases

, 1989, pp. 294-313.

[14] I.F. Cruz, A.O. Mendelzon & P.T. Wood: A Graphical Query Language Supporting Recursion,

ACM SIGMOD
Conf. on Management of Data

, 1987, pp. 323-330.

[15] I.F. Cruz, A.O. Mendelzon & P.T. Wood: G

+

: Recursive Queries Without Recursion,

2nd Int. Conf. on Expert Da-
tabase Systems

, 1988, pp. 645-666.

– 36 –

[16] I.F. Cruz, & T.S. Norvell: Aggregative Closure: An Extension of Transitive Closure,

5th IEEE Int. Conf. on Data
Engineering

, 1989, pp. 384-391.

[17] U. Dayal & J.M. Smith: PROBE: A Knwoledge-Oriented Database Management System, in M.L. Brodie & J. My-
lopoulos (eds.):

On Knowledge Base Management Systems: Integrating Artificial Intelligence and Database Tech-
nologies

, Springer-Verlag, 1986.

[18] M.J. Egenhofer: Spatial SQL: A Query and Presentation Language, Technical Report 103, Department of Surveying
Engineering, University of Maine, 1989, to appear in:

IEEE Transactions on Knowledge and Data Engineering

.

[19] M. Erwig & U.W. Lipeck: A Functional DBPL Revealing High Level Optimizations,

3rd Int. Workshop on Data-
base Programming Languages

, 1991, pp. 306–321.

[20] M. Erwig: Encoding Shortest Paths in Spatial Networks, Report 110, FernUniversität Hagen, 1991.

[21] M. Erwig: Graph Algorithms = Iteration + Data Structures ? The Structure of Graph Algorithms and a Correspond-
ing Style of Programming,

18th Int. Workshop on Graph-Theoretic Concepts in Computer Science

, LNCS 657,
1992, pp. 277–292.

[22] M. Erwig: The Graph Voronoi Diagram and its Application to Network Queries, Draft Paper, 1992.

[23] M. Erwig: Specifying Type Systems with Multi-Level Order-Sorted Algebra,

3rd Conf. on Algebraic Methodology
and Software Technology

, 1993, pp. 179-188.

[24] A. Frank: MAPQUERY: Data Base Query Language for Retrieval of Geometric Data and their Graphical Represen-
tation,

Computer Graphics 16

, 1982, pp. 199-207.

[25] M. Gogolla: Partially Ordered Sorts in Algebraic Specifications,

9th Colloquium on Trees in Algebra and Program-
ming

, 1984, pp. 139-153.

[26] J.A. Goguen: Higher-Order Functions Considered Unnecessary for Higher-Order Programming, in: D. Turner (ed.)

Research Topics in Functional Programming

, 1990, pp. 309-352.

[27] J.A. Goguen & J. Meseguer: Order-Sorted Algebra I: Partial and Overloaded Operations, Errors and Inheritance,
Report, SRI International, 1989.

[28] M. Gyssens, J. Paredaens & D. van Gucht: A Graph-Oriented Object Database Model,

ACM Conf. on Principles of
Database Systems

, 1990, pp. 417-424.

[29] M. Gyssens, J. Paredaens & D. van Gucht: A Graph-Oriented Object Model for Database End-User Interfaces,

ACM
SIGMOD Conf. on Management of Data

, 1990, pp. 24-33.

[30] R.H. Güting: Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems,

Int. Conf.
on Extending Database Technology

, 1988, pp. 506-527.

[31] R.H. Güting: Modeling Non-Standard Database Systems by Many-Sorted Algebras, Technical Report 255, Fachbe-
reich Informatik, Universität Dortmund, 1988.

[32] R.H. Güting: Gral: An Extensible Relational Database System for Geometric Applications,

15th Int. Conf. on Very
Large Data Bases

, 1989, pp. 33-44.

[33] R.H. Güting: Extending a Spatial Database System by Graphs and Object Class Hierarchies, in G. Gambosi, H. Six,
and M. Scholl (eds.):

Int. Workshop on Database Management Systems for Geographical Applications

, Capri, 1991.

[34] R.H. Güting: Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and Optimization,

ACM SIGMOD Conf. on Management of Data

, 1993, pp. 277-286.

[35] R.H. Güting, R. Zicari & D.M. Choy: An Algebra for Structured Office Documents,

ACM Transactions on Office
Information Systems Vol. 7

, No. 4, 1989, pp. 123-157.

[36] A. Guttman: R-Trees: A Dynamic Index Structure for Spatial Searching,

ACM SIGMOD Conf. on Management of
Data

, 1984, pp. 47-57.

[37] A. Henrich, H.-W. Six & P. Widmayer: The LSD Tree: Spatial Access to Multidimensional Point- and Non-Point-
Objects,

15th Int. Conf. on Very Large Data Bases

, 1989, pp. 45-53.

[38] R. Hull & R. King: Semantic Database Modelling: Survey, Applications, and Research Issues,

ACM Computing Sur-
veys Vol. 19

, No. 3, 1987, pp. 201-260.

[39] T. Joseph & A. Cardenas: PICQUERY: A High Level Query Language for Pictorial Database Management,

IEEE
Transactions on Software Engineering 14

, 1988, pp. 630-638.

[40] S. Kaes: Type Inference in the Presence of Overloading, Subtyping and Recursive Types,

ACM Conf. on Lisp and
Functional Programming

, 1992, pp. 193-204.

[41] W. Kim: A Model of Queries for Object-Oriented Databases,

15th Int. Conf. on Very Large Data Bases

, 1989, pp.
423-432.

[42] J. Leszczylowski & M. Wirsing: Polymorphism, Parameterization and Typing: An Algebraic Specification Perspec-
tive,

Symp. on Theoretical Aspects of Computer Science

, 1991, pp. 1-15.

[43] U. Lipeck & K. Neumann: Modelling and Manipulating Objects in Geoscientific Databases,

5th Int. Conf. on the
Entity-Relationship Approach

, 1987, pp. 67-86.

[44] G.M. Lohman: Grammar-like Functional Rules for Representing Query Optimization Alternatives,

ACM SIGMOD
Conf. on Management of Data

, 1988, pp. 18-27.

– 37 –

[45] M. Mainguenaud: GROG: Geographical Queries Using Graphs,

Advanced Database System Symposium

, 1989.

[46] F. Manola, & J.A. Orenstein: Toward a General Spatial Data Model for an Object-Oriented DBMS,

12th Int. Conf.
on Very Large Data Bases

, 1986, pp. 328-335.

[47] P.E. Mantey & E.D. Carlson: Integrated Geographic Data Bases: The GADS Experience, in: A. Blaser (ed.)

Data
Base Techniques for Pictorial Applications

, Springer, 1980, pp. 173-198.

[48] K. Meinke: Universal Algebra in Higher Types,

Workshop on Specification of Abstract Data Types

, LNCS 534,
1990, pp. 185-203.

[49] N.J. Nilsson:

Principles of Artificial Intelligence

, Springer, 1982.

[50] T. Nipkow & C. Prehofer: Type Checking Type Classes,

20th Symp. on Principles of Programming Languages

,
1993, pp. 409-418.

[51] T. Nipkow & G. Snelting: Type Classes and Overloading Resolution via Order-Sorted Unification.

Conf. on Func-
tional Programming and Computer Architecture

, LNCS 523, 1991, pp. 1-14.

[52] A. Ohori, P. Buneman & V. Breazu-Tannen: Database Programming in Machiavelli – a Polymorphic Language with
Static Type Inference,

ACM SIGMOD Conf. on Management of Data

, 1989, pp. 46-57.

[53] J.A. Orenstein: Spatial Query Processing in an Object-Oriented Database System,

ACM SIGMOD Conf. on Man-
agement of Data

, 1986, pp. 326-336.

[54] J.A. Orenstein: A Comparison of Spatial Query Processing Techniques for Native and Parameter Spaces,

ACM SIG-
MOD Conf. on Management of Data

, 1990, pp. 343-352.

[55] J.A. Orenstein & F. Manola: PROBE: Spatial Data Modeling and Query Processing in an Image Database Applica-
tion,

IEEE Transactions on Software Engineering 14

, 1988, pp. 611-629.

[56] A. Poigné: On Specifications, Theories, and Models with Higher Types,

Information and Control 68

, 1986, pp. 1-46.

[57] A. Poulovassilis & P. King: Extending the Functional Data Model to Computational Completeness,

Int. Conf. on
Extending Database Technology

, 1990, pp. 75-91.

[58] A. Rosenthal, S. Heiler, U. Dayal & F. Manola: Traversal Recursion: A Practical Approach to Supporting Recursive
Applications,

ACM SIGMOD Conf. on Management of Data

, 1986, pp. 166-176.

[59] N. Rossopoulos, F. Faloutsos & T. Sellis: An Efficient Pictorial Database System for PSQL,

IEEE Transactions on
Software Engineering 14

, 1988, pp. 639-650.

[60] G. Saake, R. Jungclaus & C. Sernadas: Abstract Data Type Semantics for Many-Sorted Object Query Algebras,

3rd
Symp. on Mathematical Fundamentals of Database and Knowledge Base Systems

, 1991.

[61] B. Seeger & H.P. Kriegel: The Buddy Tree: An Efficient and Robust Access Method for Spatial Data Base Systems,

16th Int. Conf. on Very Large Data Bases

, 1990, pp. 590-601.

[62] M. Scholl & A. Voisard: Thematic Map Modeling,

1st Int. Symp. on Large Spatial Databases

, 1989, pp. 167-190.

[63] C. Shaffer, H. Samet & R.C. Nelson: QUILT: A Geographic Information System Based on Quadtrees,

Int. Journal
on Geographical Information Systems 4

, 1990, pp. 103-131.

[64] D.W. Shipman: The Functional Data Model and the Data Language DAPLEX,

ACM Transactions on Database Sys-
tems Vol. 6

, No. 1, 1981, pp. 140-173.

[65] S.L. Vandenberg & D.J. DeWitt: Algebraic Support for Complex Objects with Arrays, Identity, and Inheritance,

ACM SIGMOD Conf. on Management of Data

, 1991.

– 38 –

Appendix I Type System: Kinds and Type Constructors

ki NUM

,

 ORD

,

EXT

,

 GEO

,

 DATA

,

COMPOBJ

,

 BASEOBJ

,

 OBJ

,

ANY

,

SEQ

,

PATH

,

GRAPH

,

FUNARG

,

FUN

ord NUM

≤

 ORD

;

EXT

≤

 GEO

;

ORD

,

GEO

≤

 DATA

;

COMPOBJ

≤

 BASEOBJ

≤

 OBJ

;

PATH

≤

GRAPH

;

DATA

,

OBJ

≤

 ANY

;

ANY

,

SEQ

,

GRAPH

≤

FUNARG

tc

INT, REAL, NUM:

→

NUM

BOOL, STR:

→

ORD

LINE, REG, EXT:

→

EXT

POINT, GEO:

→

GEO

DATA:

→

DATA

seq:

ANY

→

SEQ

⊕

:

DATA

×

DATA

→

DATA

⊕

,

⊗

:

OBJ

×

OBJ

→

OBJ

→

:

FUNARG

×

 …

×

FUNARG

→

FUN

graph:

BASEOBJ

×

BASEOBJ

 ×

BASEOBJ

→

GRAPH

node, edge, xpath:

GRAPH

→

COMPOBJ

path:

GRAPH

→

PATH

eq

s

⊕

s

 =

s

s

⊕

t

 =

t

⊕

s

s

⊕

(

t

⊕

u

) = (

s

⊕

t

)

⊕

u

s

⊗

t

 =

t

⊗

s

s

⊗

(

t

⊗

u

) = (

s

⊗

t

)

⊗

u

s

⊗

(

t

⊕

u

) = (

s

⊗

t

)

⊕

 (

s

⊗

u

)

node(graph(

s

,

t

,

u

)) =

s

edge(graph(

s

,

t

,

u

)) =

t

xpath(graph(

s

,

t

,

u

)) =

u

Appendix II Type System: Constructor Semantics

∀

s

∈

 «

ANY

»: seq(‹

s

›) := ‹

s

›*

∀

s

,

 t

∈

 «

DATA

»: ‹

s

›

⊕

 ‹

t

› := ‹

s

›

∪

 ‹

t

›

∀

s

,

 t

∈

 «

OBJ

»: ‹

s

›

⊕

 ‹

t

› := ‹

s

›

∪

 ‹

t

›

∀

s

,

t

∈

 «

OBJ

»: ‹

s

›

⊗

 ‹

t

› := {

merge

(

s

',

t

') |

s

'

∈

 ‹

s

›,

t

'

∈

 ‹

t

›}

∀

s

1

, …,

s

n

,

t

∈

 «

FUNARG

»:

→

(‹

s

1

›, …, ‹

s

n

›, ‹

t

›) :=

{

f

 |

f

 is a function with domain ‹

s

1

›

×

 …

 ×

 ‹

s

n

› and range ‹

t

›}

∀

s

,

t

,

u

∈

 «

BASEOBJ

»: graph(‹

s

›, ‹

t

›, ‹

u

›) :=

{(

N

,

E

,

XP

,

ε

,

π

) | (i)

N

⊆

‹

s

›,

E

⊆

 ‹

t

›,

XP

⊆

 ‹

u

›, (ii)

ε

:

E

→

N

×

N

 is total and injective,

 (iii)

π

:

XP

→

E

* is total, its range contains only simple paths of the graph (

N

,

ε

(

E

)).}

– 39 –

∀

s

,

t

,

u

∈

 «

BASEOBJ

»: path(‹graph(

s

,

t

,

u

)›) :=

{(

N

,

E

,

XP

,

ε

,

π

)

 ∈

 ‹graph(

s

,

t

,

u

)› | the graph (

N

,

ε

(

E

))

must be a simple path}

∀

s

,

t

,

u

∈

 «

BASEOBJ

»: node(‹graph(

s

,

t

,

u

)›) := ‹

s

›

∀

s

,

t

,

u

∈

 «

BASEOBJ

»: edge(‹graph(

s

,

t

,

u

)›) := ‹

t

›

∀

s

,

t

,

u

∈

 «

BASEOBJ

»: xpath(‹graph(

s

,

t

,

u

)›) := ‹

u

›

Appendix III Query Language: Types and Operations

ty

BOOL, STR, INT, REAL, NUM, POINT, LINE, REG, EXT, GEO, DATA

ord

INT, REAL

≤

 NUM;

LINE, REG

≤

 EXT; POINT, EXT

≤

 GEO;

BOOL, STR, NUM, GEO

≤

 DATA

∀

s

,

 t

∈

 «

DATA

»:

s

≤

s

⊕

t

∧

t

≤

s

⊕

t

∀

s

,

 t

∈

 «

OBJ

»:

s

⊗

t

≤

s

∧

s

⊗

t

≤

t

∧

s

≤

s

⊕

t

∧

t

≤

s

⊕

t

∀

g

∈

 «

GRAPH

»: path(

g

)

≤

g

Data Types

Sequences

op and

,

or

: BOOL

×

 BOOL

→

BOOL

not

: BOOL

→

BOOL

+, -, *,

div

,

mod

: INT

×

 INT

→

INT

/: INT

×

 INT

→

REAL

+, -, *, /: REAL

×

NUM

→

REAL

+, -, *, /:

NUM

×

 REAL

→

REAL

=,

≠

:

DATA

i

×

DATA

i

→

BOOL

<,

≤

,

≥

, >:

ORD

i

×

ORD

i

→

BOOL

inside

:

GEO

×

 REG

→

BOOL

intersects

:

EXT

×

EXT

→

BOOL

intersection

: LINE

×

 LINE

→

seq(POINT)

intersection

: LINE

×

 REG

→

seq(LINE)

intersection

: REG

×

 LINE

→

seq(LINE)

intersection

: REG

×

 REG

→

seq(REG)

closest

: seq(POINT)

×

 POINT

→

POINT

concat

: LINE

×

 LINE

→

LINE

mindist

:

GEO

 ×

GEO

→

REAL

length

: LINE

→

REAL

area

: REG

→

REAL

op select

: seq(

OBJ

1

)

×

 …

 ×

 seq(

OBJ

k

)

×

[

OBJ

1

⊗

 …

 ⊗

OBJ

k

→

BOOL]

→

seq(

OBJ

1

⊗

 …

 ⊗

OBJ

k

)

map

: seq(

ANY

i

)

×

[

ANY

i

→

ANY

j

]

→

seq(

ANY

j

)

map

: seq(

ANY

i

)

×

[

ANY

i

→

seq(

ANY

j

)]

→

seq(

ANY

j

)

asc

,

desc

: seq(

ANY

i

)

×

[

ANY

i

→

ORD

]

→

seq(

ANY

i

)

– 40 –

Graphs

Appendix IV Example Schema

head

,

tail

: seq(

ANY

i

)

×

[INT]

→

seq(

ANY

i

)

rdup

: seq(

ANY

i

)

→

seq(

ANY

i

)

agg

: seq(

ANY

i

)

×

[

ANY

i

×

ANY

i

→

ANY

i

]

→

ANY

i

sum

: seq(

NUM

i

)

→

NUM

i

min

,

max

: seq(

ORD

i

)

→

ORD

i

count

: seq(

ANY

)

→

INT

exists

,

forall

: seq(

ANY

i

)

×

[

ANY

i

→

BOOL]

→

BOOL

the

: seq(

ANY

i

)

→

ANY

i

in

: seq(

ANY

i

)

→

(

ANY

i

→

BOOL)

inv

: [

OBJ

i

→

ANY

j

]

→

(

ANY

j

→

seq(

OBJ

i

))

union

: seq(

OBJ

1

)

×

 …

 ×

 seq(

OBJ

k

)

→

seq(

OBJ

1

⊕

 …

 ⊕

OBJ

k

)

one_of

: [(

OBJ

1

→

DATA

1

)

×

 …

 ×

 (

OBJ

k

→

DATA

k

)]

→

(

OBJ

1

⊕

 …

 ⊕

OBJ

k

→

DATA

1

⊕

 …

 ⊕

DATA

k

)

op subgraph

,

remove

:

GRAPH

i

×

 seq(

NODE

i

)

→

GRAPH

i

subgraph

,

remove

:

GRAPH

i

×

 seq(

EDGE

i

)

→

GRAPH

i

nodes

:

GRAPH

i

→

seq(

NODE

i

)

edges

:

GRAPH

i

→

seq(

EDGE

i

)

from

,

to

:

EDGE

i

→

NODE

i

path

:

XPATH

i

→

PATH

i

shortest_path

:

GRAPH

i

×

NODE

i

×

NODE

i

×

 [

EDGE

i

→

NUM

]

→

PATH

i

circle

:

GRAPH

i

×

NODE

i

×

NUM

j

×

[

EDGE

i

→

NUM

j

]

→

GRAPH

i

voronoi_node

:

GRAPH

i

×

 seq(

NODE

i

)

×

[

EDGE

i

→

NUM

j

]

→

(

NODE

i

→

NODE

i

)

voronoi_dist

:

GRAPH

i

×

 seq(

NODE

i

)

×

[

EDGE

i

→

NUM

j

]

→

(

NODE

i

→

NUM

j

)

ty

State, Water, Lake, River, Location, HLocation, City, HCity, Section, Highway

ord

Lake, River

≤

 Water; HCity

≤

 HLocation, City

≤

 Location

op

name: Water

→

STR name: State

→

STR

surface: Lake

→

REG region: State

→

REG

flow: River

→

LINE way: Section

→

 LINE

pos: Location

→

POINT limit: Section

→

INT

name: City

→

STR duration: Section

→

REAL

pop: City

→

INT hno: Highway

→

INT

facilities: City

→

seq(STR) route: Highway

→

LINE

lies_in: City

→

State visits: Highway

→

seq(State)

