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Abstract. Observing that networks are ubiquitous in applications for spatial databases, we define
new data model and query language that especially supports graph structures. This model integra
concepts of functional data modeling with order-sorted algebra. Besides object and data type hiere
chies graphs are avalile as an explicit modeling tool, and graph operations are part of the query lan-
guage. Graphs have three classes of components, namely nodes, edges, and explicit paths. Thes:
at the same time object types within the object type hierarchy and can be used like any other tyg
Explicit paths are useful because “real worldjeaits often correspond to paths in a network. Further-
more, a dynamic gemlization concept is introduced to handle heterogeneous collections of objects
in a query. In connection with spatial data types this leads to powerful modeling and querying caps
bilities for spatial databases, in particular for spatially embedded networks suchvesysighivers,
public transport, and so forth. We use multi-level order-sorted algebra as a formal framework for th
specification of our model. Roughly spoken, the first level algebra defines types and operations of tt
guery language whereas the second level algebra defines kinds (collections of types) and type cc
structors as functions between kinds and so provides the types that can be used at the first level.



1 Introduction

We describe a new data model that can be seen from the following two perspectives:

(1) From an application point of view, it isvaodel for spatial databases. Its novel apects are sup-
port for the modeling and queryingratworks (highways, rivers, power lines, and so forth) and
for queries orheterogeneous collections of spatial objects.

(2) From a general data modeling point of view, we proegicit graphs as a modeling caept
and integrate them into data model and query language. Also, heterogeneous collections of o
jects are cleanly modeled bydgnamic generalization concept.

The main emphasis lies on the first point. However, since we provide these features by introducin
new concepts we also have to discuss data model aspects on a more general level. Let us briefly ¢
sider each perspective in turn.

Graphs and Heterogeneous Collections
We address two issues that have not been solved satisfactorily. The first is the modeling and queryi
of networks. Networks are a ubiquitous part of geograplaecrimation, for example,

— highways, roads, pedestrian ways, bicycle routes, trails, ...
— rivers, lakes, canals, ...

— trains, buses, underground, air planes, ...

— electricity, telephone, gas, water, sewage, ...

Current spatial database systems support well enough the handling of the geometry of such networ
That is, we may ask queries with respect to the spatial positiopeat®n a network, such as “Find
roads intersecting a given region”. What is missing, is an adequate treatment of the connectivity,
graph structure, of the medrk. This is needed to support queries such as “Which parts of a river net-
work are downstream from a pollution site and would be affected?” Other examples, thatecom
geometric and connectivity aspects, are “A fog region blocks part of the highway network. Which
alternative routes should becomerded?” and “How many people live in the area affected by the
failure of a power plant?”

The second issue concerns queries on distinct classes of objects that are in the query viewed un
some common geometric aspect, like “Show everything within 50 kms from Munich” or “Which
roads and supply lines (electricity, phone, ...) intersect a planned highway section?” Current spati
data models support such queries — if at all — only by, for example, overlaying different query result
on display devices. Generally, there are no clean modeling concepts for spatial data models to de
with heterogeneous collections of objects.

Data Modeling Aspects

Data models have to provide facilities to represent relationships among objects. In many cases it
helpful to view such relationships as graphs structures: Then many queries can directly be mapped
well-known graph problems for which efficient algorithms exist (for example, route finding is solved
by shortest paths). One approach is to consider certain structures of the data model as a graph (in
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relational model, for example, a relation with two attributes, say, “from” and “to”) and define graph
operations which are only applicable to such structures [2, 11, 58]. We believe that this does not me
the importance of graphs in applications as sketched above. On the other hand, there are proposal
use explicit graph structures as the only modeling concept [15, 28]. However, this forces the user
re-model all other (“non-graph”) relationships with graphs (this would be like forcing the user to
encode spatial data types in relations).

In contrast, our approach is to offer graphs as a separate, “first-class” concept besides other faciliti
of a data model. Graphs are defined as explicit structures within a functional data model with an obje
class hierarchy. (Disregarding graphs, the functional model is similar to those of [64, 10].) Spatial ne’
works can be modeled in terms of graphs. Nodes and edges may carry geometric information, f
example, a POINT value may be associated with a node and a polygonal LINE with an edge. Furthe
more, explicit paths are available as entities in a graph. This is important since objects often co
respond to paths in a network. For example, highways and rivers are naturally modeled as paths o
the corresponding networks. Nodes, edges, and explicit paths are at the same time object classe:
the hierarchy.

The implementation strategy behind this is to offer special data structures fopribsergation of
graphs [33] that allow efficient traversal. Graph operations are to be implemented on the basis of efi
cient graph algorithms. The properties of spatially embedded networks can be used to obtain mo
efficient algorithms than is possible in the general case [49, 20]. Also, specific applications are sug
ported by special-tailored graph structures and algorithms [22].

Framework for Data Model Definitions
Since the model to be described has a sophisticated type system we find it convenienutt-use
level order-sorted algebra [23] as the formal basis to define all concepts within a common formalism.

Many-sorted algebra was introduced in [35] as a query language framework and further used in [3
32, 6, 60], also in [65] to define a complex object algebra. The description of a query as a nested apy.
cation of functions is common to both algebra and functional modeling. Many-sorted algebra provide
in addition a well-structured type system. Order-sorted algebra [27] allows for subtype hierarchie
and inheritance. Furthermore we can add a second level of order-sorted algebra to describe the ap
cability of type constructors to kinds, which are sets of sorts of the first level algebra, and a third alge
bra level formally accounts for operations with a variable number of arguments [23]. As a result on
can model in a uniform framework a type system as well as a query algebra based on that type syste
A similar framework with two levels is used in [34]. Order-sorted algebra allows one to represent dat.
type as well as the object type hierarchies that are also part of functional modeling. Remaining ke
aspects of the functional model are the use of higher order functions and the modeling of obje:
attributes and relationships between objects by functions including multi-valued functions. It turns ou
that these concepts fit very well with the order-sorted algebra framework, see also [8].

The paper is structured as follows:3ection 2a short description of the framework of multi-level
order-sorted algebra is given. The data model is then built along the concepts of data jgges, ob
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types, and constructed types. Data and object type hierarchies and algebras are defined i Sectior
and4, respectivelySection 5introduces derived functions. Bection 6constructed types and the
central operations of the query language are described. The constructed types available are essenti
sequencesSection 6.) and graphsSection 6.3 Operations to handle heterogeneous sequences of
objects are defined iBection 6.2After considering related worlSéction § a brief discussion com-
pletes the pape6ection §. Note that type system, query language and example schema are summa
rized in Appendices |-IV.

2 TheFormal Framework: Multi-Level Algebra

We shall model a database system and its query language together with one specific database as a
tem of sets (representing data and object types) and functions (representing attributes and relatic
ships) between these sets, that is, an algebra. This view is almost identical to that of the function
data model as described by [é4We will use the facilities of multi-level order-sorted algebra to
describe our data model and also specific schemas. In this section we briefly review the releva
notions and motivate the use of this formal system.

The classical relational algebra israversal or one-sorted algebra: it has a single domain whose ele-
ments are relations and a collection of functions (such as join) on this domain. It has been recogniz
that it is advantageous for the definition of database query languages to monantesarted alge-

bra; for example, it is then possible to integrate arithmetic, aggregate functions and generally AD
functions into such an algebra [35, 30]. Furthermore, it would be nice to add the concepts of subtyy
and inheritance. From the algebra point of view, this means to define a (partial) subset order on alg
bra sets, which implies that functions defined on one set can be applied to elements of a subset. T
is achieved byrder-sorted algebra [27, 25]. Complex object types are built from simpler ones by
means of type constructors. The functions associated with generic type constructors are applicable
a large class of types, and theimgtures typically contain type expressions in which constructors are
applied to variables ranging over a set of type names. Such functions are said to be polymorphic. Sin
it is not possible, in general, to model parametric polymorphism by only one level of 5I@l®me

can use a signature on a second level describing types and type constructors. The values of an alge
for such a signature are then considered as sort names on the first level. This idea, generalized to
arbitrary number of levels, is formalized bwlti-level algebra [23]. A two-level algebra is used in
[34] to describe a setting in which extensible database systems can be defined.

2.1 Modeling Subtypes and Inheritance with Order-Sorted Algebra
Let (S Z) be a partially ordered set. We assume that the order retasoextended in the canonical
way to strings of equal length ov@rThe empty string is denoted by

Definition 1. A many-sorted signature is a pair § Z), whereSis a set oborts and is anS* x S-

1 When we speak dhe functional data model we mean just these basic features.

2 Parametric ordesorted algebra [26] tdrs a partial solution, but there are still dependencies that cannot be expressed.
For example, it is not cleain general, how to defe a parametric module that is not allowed to accept an instance of
itself as parametefs shown below this is needed, for instance, tandedi sequence type constructor that is not allo-
wed to be nested.
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sorted family {ZW, ¢ IwQ S andsU S of operations. An operationo [J Zs is said to havarity w
andrank ws. An order-sorted signature is a triple § <, Z) such that$, %) is a many-sorted signature,
(S =) is a partially ordered set, and the operations ditisfy a monotonicity condition:
(o0 ZusN 2y ¢ Owsw Ow' Z €) O s<s

An (S <, X)-algebra A contains for each sostd Sa sets” (thecarrier of s) and for each operation
symbolo,, ; a functionaf, ;: w* — s* where @wg)* =w” x s* ande” ={J}. Algebra A must satisfy
the following conditions:

(i) s<s O S O0sA

(i) 0%, nZ, sO0a0w nwhO ol (a) = ah () n
Example. A many-sorted signature might have a sorSsefREL, INT, LINE, ...} and include oper-

ations

count: REL - INT
inter sects: LINE x LINE - BOOL

An algebra for this signature would have a carrier set’Ribhtaining all possible relation instances,

a carrier INT'={... -2, -1, 0, 1, 2, ...}, and a functiotount® mapping a relation to the number of
tuples in it. In the sequel we shall use a function < - > to refer to the meaning of a sort or operation, fi
example, INT will be denoted by <INT>. m

Data type and object type hierarchies can be defined by a partial order on sdéigp e

GEO Water
\ \
EXT River Lake
POINT LINE RECG BOOL STR
Figurel

Operations are, for example,

inside: POINTxREG - BOOL (1)
inside: GEOx REG - BOOL (2)
name: Water - STR (3)
name: River - STR 4)
Rhine: - River

The conditions above state, for example, that since PRISEO we have <POINT: <GEO»> and

that the twoinside functions agree on the <POINT>-subset of <GEO> (similarly for the function
“name” on Water and River). Note that the definition of order-sorted algebra does not by itself specif
that functions are inherited. Therefore we introduce signature specifications:

Definition 2. Any order-sorted signatur§(<, %) is at the same timesignature specification. The
induced signature (S <, IND(Z)) is defined by
IND(2) =20 {0, (|o0Z, J(WswlUoUZ,, . wswlw<w')} |
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This definition describes inheritance of functions downwards: It says that veeaadsiubtypes/" of
w with the same result typeas long as there is not already an overloaded definitioroofw".

From now on we shall interpret each signature as a signature specification. With regard to the abo
example this means that line (2) specifies five different functionalities (or, ranks) (including the one
in line (1)) forinside. Likewise, we could have omitted line (4) since this signature entry is covered
by line (3).

Note that terms, equations, congruence, and so on, are defined in the usual way. Equations will
used later to define abstract properties (such as associativity) of type constructors.

2.2 Decribing Parametric Polymorphism by a Second Algebra L evel

A function having different types of a similar structure is said tpabsametric polymorphic. This

name reflects the fact that the ranks for this function are specified by one entry containing variable
describing type parameters. In general, type variables range over a subset of all type names (for exe
ple, weak and equality variables in ML). Therefore, it is helpful to identify useful sets of type names
and assign names to them. This can be done by defining aksad<f12].

Kinds are in fact sorts of another signature (on a second level), and their carrgets @frsorts of

the first level. Operations of the second level are called (tgpastructors,; the associated functions

are mappings between kinds, that is, they map one or more sorts of one kind to a sort of another kir
Therefore we call this second level thad signature/algebra. In addition, we need to specify the
behaviour of constructors on the carriers of sorts. To see this, consider, for example, a cartesian pr¢
uct constructor which maps two sostandt to their product sort, prosl(t). A reasonable property of

the function prof (let B denote the corresponding kind algebra) would be, for instance, associativity,
that is, the sorts prosl(prod¢, u)) and prod(prod t), u) are considered to be equal. This can be con-
veniently stated as a law/equation of the second level. In contrast, the intended mapping of the carrie
is yet to be described by another function, gag¢d and could be defined bprods?, t4) = s* x tA,

(Note that the carrier mapping must be compatible with the properties 8j.drothe following def-

inition we denote the individual algebra levels of a multi-level algebra by counting backwards (with
regard to the construction history). That isnatStlevel algebra (or,Aq) depending on theiN-level
algebraB (or, Ay) is said to be on the first level wherdis said to be on second level, and so on.

Definition 3. An order-sorted signature is 8-level signature, and an order-sorted algebra ish 1
level algebra. Given am-level signature§ <, 2) and amt-level S <, 2)-algebraB, an order sort-
ed siqature 8, <', ') is ann+15t|evel signature depending on§ <, =) andBif S = [] . An
(S, <, £)-algebraA is ann+15t|evel algebra if for each operatiomrw, ;2 thereis a fus'nmc%"iorﬁ’S
(type constructor of Oy, g and if for each U S such that = 0\',3% S(ty o ty) (withw=s; ... s, and
t 0sBfor1<i<n)we havet" = m(tf, tﬁ) . The functions;zﬁ,S define theconstructor se-
mantics for %, and we say thak depends on B and the constructor semantics Xor ]

We extend the previous example by adding the data sorts INT and REAL and introduce at the seco
level the set of kindS={NUM, ORD, GEO, DATA, OBJ, ANY, SEQ} and a sequence constructor
“seq” which is used to build sorts of kifREQ. The elements of the remaining kinds are given by
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(sort) constants. This is summarized in the following second-level sigrfature.

ord NUM < ORD; ORD, GEO < DATA,; DATA, OBJ < ANY

tc INT, REAL: - NUM
BOOL, STR: - ORD
POINT, LINE, REG, EXT, GEO: - GEO
Water, River, Lake: - OBJ
seq: ANY - SEQ

The subtype hierarchy is also showrFigure 2

@ T =Cs)

<D

Figure2

Since the term algebra is initial in the category of algebras we can use terms as representatives of \
ues of an algebra for this signature, that is, we have (at the second level we use double angle bracl
to denote interpretation in an algebra):

«NUM>» = {INT, REAL}
«ORD» ={BOOL, STR, INT, REAL}

«SEQ» is the set of sorts that can be obtained by applying the seq constructor to SoINY i) the
sorts inSEQ are denoted by the corresponding terms of this algebra, hence we have

«SEQ» = {seq(BOOL), seq(INT), ..., seq(Water), seq(River), seq(Lake)}

The constructor sem#es for the seq is defined as:

O s «ANY»: seq«®) = «<* (= <seqé)>)

Since the kindSEQ contains just the sorts obtained by applying seq to soAdN¥ we also use
se)(ANY) to denoteSEQ. Furthermore, kinds that are subsetSBQ can be specified by applying
seq to subsets &NY, such as seATA), seqOBJ), and so forth.

The types of polymorphic functions are usually describetyt®/schemes, for example, the type of

3 The key wordrd precedes an order specd#iion wheres, t, ... <v,w, ... is a shortcut fos<v;t<v;s<w; t<w, ...
tc introduces type constructors; on thastfievel, operations are introduced dyy Below we will also use equations
which are preceded ley).
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the operatiorcount could now be specified by:
Oa O «ANY». count: seqf) — INT

As an abbreviation for this we replace occurences of the variable by the quantifying term, that is:
count: seqANY) - INT

(Recall that the type is the sameSES) - INT.) The idea behind is to expand kinds in such a type
specification by all sorts contained in the kind. When a kind appears more than once in such a spe
fication, each occurence is interpreted as a new variable quantification, for example,

I NUM x NUM - REAL

defines one division operator for any combination of INT and REAL operands. Here we can observ
that since we are dealing with bounded type variables this notation is not only capable of describir
parametric polymorphism but alsd hoc polymorphism (also often calledverloading). We find it

very convenient to use one notation for expressing these different aspects of overloading.

It is often desirable to specify that from a given kind always the same element is chosen in differer
positions of a signature specification; we denote this by indexing the kinds with the same index. Fc
example, comparison operators can be applied to any two objects of the same sort within the kir
ORD (which describes data types with a total order):

<, g, 2, > ORDi X ORDi - BOOL

With regard to variable quantification this means only the first occurrence of a specific indexed kinc
introduces a new variable, the remaining only refer to one. An operation that concatenates any tv
sequenes of the same type could be defined as follows.

concat: SEQi X SEQi - SEQi

which could equivalently be denoted as
concat: seq(ANYi) X seq(ANYi) - seq(ANYi)

But one may also restrict to specific types of sequences, as in
sum, min: seq(\IUMi) - NUMi

The example given in this section is in fact part of the type system, or kind algebra, that we develc
in this paper. To give an impression and survey of what is to déiguere 3shows the actual type
system to be defined. The parts of this diagram will be explained in the following sections.

With multi-level algebra we have a fairly general tool to define languages with heavily overloaded
operation symbols. So a few remarks on type checking are in order: Since in two-level signature
types are given by expressions containing bounded variables type checking can in principle be do
by order-sorted unification [51] (a simplified setting is described in [50]). Viewing variable quantifi-

cation and subtype definitions as constraints/predicates, [40] presents a very general framework f
type checking in two-level signatures. In our application we only have to check expressions of a quel
language, which means that signatures on both levels are fixed. Therefore we get along with a sm
subset of inference rules (in fact, we only need abstraction and application rules). Morevover, sinc
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we will require lambda-abstractions to be explicitly typed &=aion  the type checker only needs
pattern matching and not unification.

To close this section, let us summarize some points in favour of multi-level algebra. The use of mult
level algebra for the definition of our data model is motivated by:

— the ability to express parametric polymorphism,

— the convenient specification of all types of polymorphism (subtype, ad hoc, and parametric),

— a common framework for extending a data model with new structures (for instance, graphs, he
terogeneous sequences),

— the ability to express subtle details for type constructors (for example, prevent nested applice
tions of a sequence constructor),

— separating abstract properties of type constructors (such as, associativity) from constructor s
mantics,

— having available standard methods for static type checking.

3 DataTypes

We shall develop the data model in three steps by introducing data types, then object types, and fina
structures (or constructed types), which are sequences and graphs.

The data types used depend in general on the application to be supported. For our specific exam
application we introduce a collection of “standard” data types that are useful in many applications
and some geometric types. The sort hierarchy is showigure 4together with the part of the kind
hierarchy (repeated froffigure J that is relevant here.

Let us first consider the sort hierarchy. The leaves of this tree show sorts for basic data types; v
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assume that for each of them the carrier i1s defined somewhere (for geometric types in [31]), but fc
this paper the precise definition is not relevant. An element of <LINE> is a polygonal line, an elemen
of <REG> a simple polygon. The carrier of an internal node of the soatr¢igris defined to be the
union of the carriers of the children, for instance, <NUM> = «NTREAL>. This meets the subtype
constraint of order-sorted algebra.

For the kind hierarchy, we assume that the carriers contain just the sorts that are descendants in
sort hierarchy, for exampleNdM» = {NUM, INT, REAL}, and for ORD, which is not a sort, that
«ORD» = {BOOL, STR, INT, REAL}. Note, that the distinction between sort and kind hierarchy
allows us to express rather subtle differences in the definition of operations. The definition

+: NUM x NUM - NUM

specifies an addition operation that takes elements of the carrier of NUM and returns an element
this carrier; due to the sort hierarchy, this is also applicable to integers and reals. But the result ty)
of this operation is NUM, even if it is applied to two integers. In contrast, the definition

+: NUMiXNUMi - NUMi

specifies three addition operations with functionalities ™NNT — INT, REAL x REAL — REAL,
and also the one above, NUMNUM - NUM. Hence with this definition we know that “+” returns
an integer if it is applied to two integers.

The following operations are defined for standard types.

op and,or: BOOL x BOOL - BOOL
not: BOOL - BOOL
+, -, %, div,mod: INT % INT —~ INT
[ INT x INT - REAL
+, -, %5 0 REAL x NUM - REAL
+, -5 0 NUM x REAL - REAL
=, £ DATAi X DATAi -~ BOOL
< <

2, > ORDi X ORDi - BOOL

For our example spatial application, we define the following operations (a more complete collectior
can be found in [30]):
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op inside GEO x REG - BOOL
inter sects: EXT x EXT - BOOL
inter section: LINE x LINE - seq(POINT)
inter section: LINE x REG - seq(LINE)
inter section: REGx LINE - seq(LINE)
inter section: REGx REG - seq(REG)
closest: seq(POINTx POINT - POINT
concat: LINE x LINE - LINE
mindist: GEO x GEO - REAL
length: LINE - REAL
area: REG - REAL

Theinter section operator returns a set of intersection objects in the form of a sequence (the seq cor
structor is defined as Bection 2. Given a sequence of poir8and another poirR, theclosest oper-

ator returns the point i8that is closest t&. (Usually, we will expect only one closest point; when
there are more than one, one point is chosen non-deterministically.) The remaining operations a
mostly self-explaning.

In the first place, the signature entries specify the typing of operations and not their syntax. In the fo
lowing we will use the convention that binary predicates as well as arithmetic operations are writte|
infix and that all other operations are written postfix. In addition, we allow any unary function to be
used in prefix notation with its argument following in parentheses. Thus, given twad {iaeslL,

their intersection points are determined by

L, L, intersection
and testing whethdyr, is longer thark, is done by
(L4 length) > (L, length)

If we look carefully at the signature specification, it seems that the sort hierarchy is not really neede«
the definitions just rely on the specification of kinds to achieve the desired form of overloading. Coulc
we not omit the sort hierarchy?

Indeed, the sort hierarchy has another purpose, which is related to “dynamic generalization” discuss
in the introduction and thie constructor in the kind algebra. If the sort hierarchy were omitted, then
there would be a kinGEO but no sort GEO (there would be no carrier for GEO) and not a sort
seqGEO) either. However, we are interested in thesemgération data types in connection with the
handling of heterogeneous sequences andrglezation of object types (se®ection 6.2 For this
purpose, thél constructor (union) on data types with ftionality

a: DATA xDATA - DATA

is defined to return for any two sorts IDAT A» their smallest common supersort, foaewle, LINE
[0 REG = EXT and POINTI LINE = GEO. Introducind®ATA not only as a kind but also as a sort
makes] total onDATA.
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4 Object Types
The part of the order-sorted algebra that we have seen so far, concerned with data types, models r
resentation and querying facilities aflaabase system. The same holds for the structures, sequences,
and graphs, that will be consideredSection 6 In contrast, the sabgebra dealing with object types
models one specifidatabase. Sorts represent object classes, and operations represent functions appli
cable to objects. As usual in functional modeling, these functions serve to describe object attribute

as well as relationships between objects. Functions may be single- or multi-valued; if they are mult
valued, we represent the result set agjaesace of objects or data values.

Let us introduce an example database describing cities, highways, and so on. This database has a
hierarchy, which is shown Figure 5together with the part of the kind algebra relevant to this section.

Location %
Water HLocation Clty

State Lake River HCity Sectior Highway BASEOBJ

Figure5

The object sorts shown model objestts ed in the database; they make up the kinBASEOBJ, that
is,
«BASEOBJ» = {State, Water, Lake, River, Location, City, HLocation, HCity,
Section, Highway}

There are also “potential objects” derivable from the database, which are not stored. These sorts ¢
collected in a kindDBJ discussed below. For each sorBIASEOBJ the carrier is in principle a set

of object identifiers, which are drawn from some unlimited dorfaiRor technical reasons that will
become clear shortly, instead of an object identifier we use a list containing just that single objec
identifier. So we have (I€* denote the set of non-empty sequences Qyer

0sO «BASEOBI»: < 0 227

So each carrier is a set of lists of object identifiers. If there are three rivers stored in the database, 1
carrier of River contains three one-element lists:
<Rivers = {mlm EZD m3[}a

From the definition of order-sorted algebra we know that <RivetWater>. For object sorts we
require additionally that each object has a single base type (together with its supertypes in tf
hieracchy) which can be formulated as follows:

Os t «BASEOBJ»:
onkz0 O Oul«BASEOBI»: u<s and ust and & n =

This says in particular, that an object cannot belong to two sorts that are different leaves of the sc
hierarchy.
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The operations defined on the object types of our example database are Bigeneit® To enhance
the readability of queries we write object sorts with a capital first letter.

name: State - SIR name: City - STR

region: State - REG pop: City - INT
facilities:  City - Seq(STR)

name: Water - STR lies_in: City - State

surface: Lake - REG way: Section - LINE
limit: Section - INT

flow: River - LINE duration: Section - REAL

pos: Location - POINT hno: Highway - INT
route: Highway - LINE
Visits: Highway - seq(State)

Figure 6

Recall that we regard this signature as a signature specification, thus we can assume that functions
inherited along the sort hierarchy which means that thditumthame” is applicable to River and
Lake objects and a City has a position available through the “pos” function, which it inherits from the
Location sort that just has a POINT attribute. Note that there are object-valued and multi-valued func
tions. The object types HLocation, HCity, Section, and Highway are used below to model a highwa
network. HLocation and HCity are specializations of Location and City, respectively, containing
those positions and cities that are also nodes of the highway network; the HLocation type represen
for example, junctions or exits. Obviously, a HCity is a city but also a special type of location within
the highway network. HLo¢@ns are connected by highway Sections; the geometry of the Section is
given by the “way” attribute. A Highway corqgsnds to a path over this network. The relationships
between HLocations, Sections, and Highways in the network are defisettion 6.3y a graph
structure.

HCity being a subtype of two types, embodies what is often caili#tiple inheritance. Since the
definition of order-sorted algebra requires that for an operation defined on more than one type, a
associated functions of an algebra must agree on common suefatgion 1, (ii)) no ambiguities

can arise. Of course, this condition must be ensured by an implementation.

A special “type restriction” function is defined implicitly for each object sort. For sort X the name of
this function is “restrictX”. It is applicable to any sequence of objects and has a double effect: First
it changes the type of the sequence to X. Second, it passes to the result sequence only those objec
the operand sequence that have type X. So we have additional functions

restrictState: seq(©BJ) - seq(State)
restrictWater: seq(Q©BJ) - seq(Water)
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The normal use of these functions is to apply them to a sequence of objects of a supertype to rest

to elements belonging to a subtype. For example, let “Water”, “Location”, and “HLocation” denote
corresponding sequences of objects. Then

Location restrictCity

returns a sequence of type seq(City) containing only those Location objects that are also cities. WF
happens when “restrictCity” is applied to the other sequences? The expression

Water restrictCity

returns an empty sequence of type seq(City). This results from the fact that Water and City are unr
lated in the object type hierarchy. On the other hand,

HLocation restrictCity

might in principle return a sequence of type seq(HCity) since all objects in the result sequence mu
be of type HLocation and also of type City. That is, the result object type might be the greatest lowe
bound of the two types in the type hierarchy. However, we feel that the user wants to think of the rest
objects as of the type that he has restricted to, rather than determine the greatest lower bound; the
fore we have defined the restriction functions in this way. If one wants to obtain the greatest lowe
bound type, it is always possible to restrict directly to that type. — More examples of the use of restric
tion functions are given below.

The functions defined on object types mayekiensional or intensional; extensional functions are
stored in the database whereas intensiondéeved functions are given by a defining gession.

From the point of view of the algebra and for the user there is no difference between extensional ai
intensional functions except that extensional functions are restricted to have a single operand sort (tl
is mainly for implementation reasons). In fact, some of the functions listed above are defined inter
sionally; their defining expressions are giversection 5

Derived Objects
What remains to be explained about object types are the mysterious “potential objects” and the tyj
constructors] andld. The corresponding part of the second level signature is:

ord BASEOBJ < OBJ

tc 0. OBJxOBJ - OBJ
0: OBJxOBJ - OBJ

eq slis=s
stt=t0s
sO@duw=(@c0t)0u
stt=t0s
sO@duw=(@c0t)0u
sO@duw=(c0t)0(s0u)

The equations specify that both type constructors are commutative and associafivejstrdiutes
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over[], and that] is idempotent. In the following we explain these constructors in detail.

First, we would like to be able to form in a query the union of any two collections of objects of sorts
sandt. We shall later introduce a corresponding union &ipan in the algebra. A sort resulting from

this operation will represent a collection of objects of “union typE’t. Therefore, the kin@BJ
contains a set of sorts that can be derived from the sdB&3&OBJ by application of thél con-
structor. For our example database, we have

{State, Staté] River, River[] City, River(J City [0 Highway} [J «OBJ»

Again, the sorts i©BJ are denoted by terms of the type algebra whereas the constructor semantic
of O is

Ost0«OBI»: Db = 0wbd (=sOb)

It follows from this definition thafT is idempotent, associative, and commutative, which meets the
specification from above. In the object sort hierarchy, we shall view the constructed sort as a superst
of the operands to the constructor, for example, St&@atel] River and Rivek Statel] River:

Os t 0 «OBJ»: s<sOtOt<ssOt

The second constructor applicable to object types iS {fpeoduct) constructor. In a query it is some-
times necessary to form “aggregation objects”, that is, to build from two ob'ieai:m;jo2 an aggre-
gation object on which all functions applicablen&cand all functions applicable to2 are defined. In

a relational setting, this corresponds to concatenating two tuples when forming a cartesian produt
the result tuple has all attributes of both operand tuples.[Tlperation allows us to form a
corresponding product object type (sort). Hence the carrier of Stafaty contains one object for
each combination of objects in the carriers of State and of City. Formally, we define the following
subsort relationships:

Os t 0 «OBJ»: st<ssOsOt<t

Now, the terms State City, Highway[ City [J River, and so on, are also@BJ. The constructor
semantics is defined by aggregation objects which are built by concatenating the lists of object idel
tifiers of the two operand objects (this is the reason why lists are used at all). For example, there m.
be an objeciih _, ¢ _[in the carrier of Highwayl City and an objecﬂﬂgZEin the carrier of River which

42 17
would lead to an aggregation obj@:}z, C r92D One can already observe that with this definition
[ is associative. In addition, we need it to be commutative. For this purpose, we define arbitrarily

some total order on object sortsHASEOBJ, for example,
State< Water< Lake< River < Location< City < HLocation< HCity < Section< Highway

and keep for all aggregation objects the list of object identifiers sorted according to this order. Henc
the example objects would mﬂ, h42Din the carrier of Highway] City and mgzmin the carrier of

River and the resulting aggregation objedﬁé%, C h42D If one object sort occurs several times, as

in Rivery O City O River; (like in a query “find the city closest to the point where two rivers meet”)
the order of writing is assumed to be preserved, so the objecfielsntiould be arranged according
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to the order River O River, [ City. Formally, let there be an operatio®rge that merges two
ordered lists of object identifiers. Then

Os t0«OBI»: <« O« := {merge(s,t) |s O, t' 0} (=«0D)

Now, this definition is consistent with associativity and commutativity specified fabove. Fur-
thermore, it is easy to check thatdistributes ovei]. Observe that we can form arbitrarily nested
sort expressions with union and product type constructors. We have here the situation mentioned
Section Zhat there may be many sort expressions denoting the same carrier; due to the associativi
commutativity, and distributivity laws any such expression may be transformed into a “disjunctive
normal form”

(81,1

which allows to decide whether two expressions are equivalent.

O 81,2D O Sl,nl) g...O0 (sk’1D Sk,ZD N sk’nk)

5 Derived Functions

As in DAPLEX, derived functions are given bypegssions of the query language. Thus they can be
regarded as view definitions (if defined on object types). In general, a definition is of the form

name[:type restriction] = expr

wherename is either a new name or the name of a derived functiortyplea estriction is a type
expression used in the definition of derived functions to aid the type checking procesgr amthe
defining expression of the query language. Definitions may be used to assign names to intermedie
results when building a complex query or to produce derived functions. We do not allow recursive
definitions, such as those that detare transitive relationships between objects. Such relationships
should be modeled and queried using graphs, that is, we follow [15]: “recursive queries without recul
sion”.

Derived functions can be built by means of lambda-abstraction. Using a syntax similar to ML the def
inition of the derived function “duration” looks like:

duration:(Section- REAL) =
fun (x) O (x waylength) / (x limit)

The type annotation is not really needed in this example since the function “way” is only defined or
the type Section, and thus the type for “duration” could be inferred. To keep type checking simple
(that is, to avoid ambiguity problems occurring in the type inference for overloaded functions) we
require, though, each definition of a derived function to have a type annotation.

Lambda-abstraction is the counterpart of function application and is thus introduced in the definitior
of terms, that is, i&xpr is a term of typsd, andxl, Lo X are variables of typs1 ) S respectively,
then

fun (xl, ...,xn) O expr

is a term of type- (sl, oS, t) (also Writtensl, S~ t). Function types are of kindUN. The
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function space constructor is applicable to sorts for data values, objects, sequences, or graphs (in ot
words, to just about anything) collected in a KidNARG (see Figure3 and3).

Caw o P = (s

Figure?7

The constructor semantics is defined in the obvious way:

O Sl’ e Sn’ t 0 «FUNARG»: j(<sl>, e Gn)’ M) =
{f | f is a function with domairsf XX <S> and rangetx}

Now we can fuse lambda-abstraction and type annotations into a more convenient syntax for functic
definitions. For example, the definition for “duration” is written as:

fun durationk:Section):REAL =
(x waylength) / (x limit)

In order to be able to apply functions obtained by lambda-abstraction (and to use them as argumel
in functionals) we have to demaﬁd =2 e WhICh actually means to consider higher order alge-
bras (see [48, 23] for a more detalled treatment) Note that this requirement is consistent with the de
inition of “ -

Some further examples of derived functions are given below.

6 Structured Typesand the Query Language

The two fundamental structures available in this modesaq@ences andgraphs. These are intro-
duced through constructors “seq” and “graph”, respectively. A database is modeled by an object tyy
hierarchy together with a collection of graph definitions. Sequences are the central tool for data mar
pulaion and a collection of sequence operations is offered as a “general purpose” part, cidted the
nel operations, of the query language algebra.

6.1 Sequences

In this subsection we consider the part of the kind algebra shokgure 7and describe the kernel
operations of the query language (this collection might be extended if othetiopeiare needed).

The seq constructor was already defineSention 2 Note that it can be applied only to SortaNY;

it is not applicable to sorts BEQ which means we have no nested sequences. A sequence of object:
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IS made available to a query simply by writing down the name of an object type. For an obgct sort
the result of writing &’ is a sequence containing all elementssiprecisely once, in some unspeci-
fied order. As we have seen $ection 4 multi-valued object functions and some data functions
(intersection) also return sequences; so we can also obtain a sequence by applying such a functic
We prefer to use sequences as a fundamental structure rather than sets because it is then possik
include sequence operations such as sorting, grouping, and so on into the algebra. This is motiva
further in [35]. Next we give signature specifications for the central parts of the query language.

Select

Theselect operation takes one or more sequences of object@ég( serBJI) as operands.
Conceptually, it then produces one aggregate objecS@eteon 4 of typeOBJ1 0...d OBkaor

each combination of objects in the operand sequences. It further takes as a parameter a predicate a|
cable to objects of ty|cféBJl 0...0 OBJk and returns in the result sequence those aggregate objects
for which the parameter predicate evaluatdsue

select: serBJl) X .. % squBJQ x [OBJlD .0 OBJk - BOOL]
~ seqPBJ O ... 0 OBJ)

With this functionality select comprises the operations of selection, cartesian product, and join of the
classical relational algebra; in fact, it is much more general, since it allows parameter predicates th
include arbitrary expressions of the query algebra. It can be used as comfortably as the select-frol
where clause in SQL. This means that a user can easily translate his favourite SQL-queries into ¢
language. Note, however, that projection is provided through a s@hoialcommand (see below)

and that group-by must be reformulated using the inverse operation.

In the above signature entry we have used an obvious notation for denoting a sequence of sorts. T
can be formalized by a third algebra level (callds signature/algebra), which is actually demon-
strated in [23]. The formalization requires some technical effort, and for lack of space we describ
only the idea how it can be performed: First, defiokass, say, T OP, the carrier of which will contain

all kinds that are allowed to appear in sequences. Second, defwdeeanstructor list: TOP - LIST

with the constructor semantics being the same as for the seq constructor. Thus, fér alisttc)»
contains all sequences of sorts from Kntlsing the notational conventions for type schemes intro-
duced inSection 2the expression liSBBJ) introduces the variable bindinga O «list(OBJ)» and

thus denotes sequences of object sorts, suéWatgr, City, RiverlNow, in order to denote a product
type Watel] City 0 River we need a means to “fold” theconstructor along the sequence, and the
type seq(Water)l seq(City)l] seq(River) is obtained by first “mapping” the seq constructor to the
list and then foldindg]. This means, having a functiomrap which applies a type constructor to each
element in a list of types and a functiofd which reduces a list of types by a binary type constructor
we can then specify the typesafect by:

select: fold(x, map(seq, IistQBJ)i)) x [fold(O, Iist(OBJ)i) - BOOL]
- seqfold(OJ, Iist(OBJ)i))

For readability we shall, however, use the intuitive notation from above. Yet, another new notatior
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occurs in the signature: Sometimes we write operand sorts in square brackets. This is to specify tt

In queries arguments are written in square brackets behind the operator. Arguments of these sorts
also calledparameters. For example,

River select[(flow length) > 100]
Show name, flow

asks for all rivers longer than 100 kilometers. The predicase@dt compares the length of a river
which is given by a composition of the functions flow: RiverLINE andlength: LINE — REAL

with a constant. Note that we have made a notational simplification: We are able to ordd-lamb
abstraction since we know tlegtect takes a function defined on objects of type given by the operand
sequence. This means that a parser can always add the missing parts; in this example the full expi
sion would be:

River select[fun (r) O (r flow length) > 100]

To this query we have addedlaow command in order to “see” some aspects of the returned River
objects. We assume that the task of a query is to return a collection of objects. An object can be ma
visible only by applying some functions to it that return data values, for which a textual or graphica
representation exists. This is performed byShew command that takes a list of fuion names and
applies these functions to all objects resulting from a query (therefore there is no “projection” opers
tion in the algebra). Sincslect can be applied to an arbitrary number of object sequences we may
ask for all bridges of highways across rivers by:

Highway Riverselect[routeinter sects flow]

Since aggregate objects formeddalect preserve all functions defined on their component objects
we must be able to deal with name clashes between these functions. This is done by supplying ad
tional names for the object sorts in a query which have to be appended to the conflicting functions:

Highway H River _Rselect[routeinter sects flow]
Show name_H, name_R

We have stated above tlsatect returns in the result sequence those aggregate objects for which the
parameter predicate evaluatesrte. It is convenient to allow the parameter predicate to be undefined
for a given aggregate object (without raising an error condition) and to define the semasetas of

in such a way that these objects are simply omitted from the result sequence. For example, suppc
we obtain as the result of a subquery some set of Location objects “QueryLocation”; among these, v
are only interested in big cities (that is, cities with population larger than 500 000). Though “Location”
does not have a “pop” attribute one can just write:

QueryLocatiorselect[pop > 500000]

But note that the result of this query is still of type seq(Location). With a type restriction function we
could transform it into a sequence of type seq(City). This would also be used if we just want to filte
out City objects without applying a further condition:

QueryLocation restrictCity
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Sequence Transformers
The following operations manipulate sequences

op map: seq(ANYi) X [ANYi - ANYJ_] - seq@\NYj)
map: seq(ANYi) X [ANYi - seq(ANYj)] - seq@\NYj)
asc, desc: seq(ANYi) x [ANYi - ORD] - seq@\NYi)
head, tail: seq(ANYi) x [INT] - seq@\NYi)
rdup: seq(ANYi) - seq@\NYi)

Themap operation, with its first functionality, takes a sequence of elements of sonsarsémlY

and a function frongto some in ANY and returns a sequence of elementsloproduces the result
sequence by applying the parameter function to each element of the operand sequence. We mi
compute the total length of the rivers in River as follows:

River map|[flow length] sum

The parameter function ahap is here a composition of the functions flow: River LINE and
length: LINE — REAL. Hence the result of applyimgap is of type seq(REAL) to which the aggre-
gate functiorsum (see below) can be applied, producing a result of type REAL.

Even with the typeANYi - ANY of parameter functions fanap it is possible to use sequence-
valued functions if they are composed with other functions to yield the required function type. For
example, we may determine the maximal number of states “visited” by a highway, as follows:

Highway map|visits count] max

On the other hand, it is also possible to use indeed a sequence-valued parameter function; this is
second functionality ahap with parameter function tpreNYi - seq(ANYJ_). In this casenap con-
catenates all the result sequences obtained by applying the parameter function to elements of the oy
and sequence. We might use this to get a list of all states visited by any highway:

Highway map|visits] rdup

Here we have additionally used thdup (“remove duplicates”) operation to obtain each state only
once. The operatiorasc anddesc are for sorting sequences. They take a parameter function mapping
the elements of the sequence into one of the totally ordered dom@Rdimccording to which the
sequence is to be sortétead andtail return a front or end part of a sequence. For example, we might
get an alphabetic list of the ten largest states by the query:

Statedesc[regionarea] head[10] asc[name]
Show name

For simplicity we have defineakc anddesc with just one parameter function, this could be extended

to a list of functions to allow lexicographic sorting by several attributes.

Aggregate Functions
An aggregate function combines the elements of a sequence into an atomic value. We already us
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the functiongmax andsum, which are instances of the more general operatign

op ago: seq(ANYi) X [ANYi ><ANYi - ANYi] - ANYi
sum: seq(\IUMi) - NUMi
min, max: squRDi) - ORDi
count: segANY) - INT
exists, forall: seq(ANYi) X [ANYi - BOOL] - BOOL
the: seq(ANYi) - ANYi
in: seq(ANYi) - (ANYi - BOOL)

Theagg function is a fairly general tool to build aggregate functions. It takes as a parameter a binar
function applicable to elements of its operand sequence (which must not be empty) and extends ti
functiontoreturn a value for the whole sequence. FE@uence containing only one element just that
element is returnetiWe are interested @gg to produce non-standard aggregate functions as in the
following example. A highway is a path over the highway network and as such consists of a sequen
of edges (highway sections) each of which has an associated LINE attributaggite can com-

pute the LINE value of the complete highway which is done by the derived function “route”:

fun routef:Highway):LINE =
h path edges map|[way] agg[concat]

(The subexpressior‘path edges’ forms the sequence of edges of the path associated with highway
objecth, seeSection 6.3

The aggregate functiatine is used to extract single objects from sequences. It is defined only for
sequences containing one element and returns just this element. For example, the object represen
the river “Rhine” can be retrieved by

Rhine =the(River selectiname = 'Rhine)]
Note that this is defined only if there exists exactly one river with that name. The opleeat@kes
it easy to define the derived function “ligs:
fun lies_in(c:City):State =
the(Stateselect[(c location)inside region])
Another derived function is “visits” defined as follows:
fun visits(h:Highway):seq(State) =
Stateselect[(h route)inter sects region]

Thein operation makes it possible to form set differences: Given a sedbiehtype sedi, it returns
a function of typet(— BOOL) that can be used to check whether any object ofttigpeontained in
S For example, suppose we would like to determine the stattessited by any highway. Applying

4 Note thatagg is a simplifed version of théold operation found in functional languages, such as, ML: First, the type
of parameter functions is a special case of the more general type that is possiblearafhelyp. Second, we have
omitted the default value for empty sequences since this makes queries cumbersome to read.
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in to the sequence “HighwayStates” yields a function of type (StaBOOL) that allows to check

for each State whether it is an element of the collection HighwayStates. Such constructed functior
can be used as parameter functions:

Stateselect[in(HighwayStateshot]
City select[lies_inin(HighwayStates)]

I nverse Operation

The inverse operation is an important element of the functional data model; while a function realize
a relationship with a predefined direction of access, the inverse operation allows for querying the rel:
tionship in the opposite direction.

inv: [OBJi - ANYj] - (ANYJ_ - serBJi))

Applied to a mapping s - t that associates with an object of tygen object or value of typgeinv
returns a function of type— seqé) that yields for each object or valuetithe list of elements «f

that are mapped into it Hy Note thatinv may even be applied to derived object functions: Since
object types will be finite a single-valued derived function can always be materialized, and from tha
the inverse function can easily be constructed (of course, in some cases optimization will yield bettt
results.) For example, we may define as a derived function the set of cities belonging to a state:

fun cities(s:State):seq(City) =
sinv[lies_in]

This function can then be used in a query “List for each state the number of its big cities!”:

fun no_big_citiesg State):INT =

s citiesselect[pop > 500000Fount
State
Show name, no_big_cities

As a final example, let us formulate the query “Which city with at least 30 000 inhabitants is closes
to the point where highway 1 crosses the river Rhine?” The following query constructs in principle &
list of all intersection points between Rhine and highway 1, a result of type seq(POINT).

H1 =the(Highwayselect[hno = 1)

Rhine flow H1 routenter section

We assume it is known that there is only one point where the highway crosses the river; this sing
value of type POINT can be obtained by writing

the(Rhine flow H1 routenter section)
We further need an auxiliary function that determines for a POINT the city located at that POINT

(defined for points that are city locations):

fun the_city_atp:POINT):City =
the(p inv[pos])



—22_
Since “pos” is a function of type Citys POINT, the inverse functionriv[pos]” has functioality
POINT - seq(City); thereforéhe is needed to return a single City object. The final query can then
be formulated using thelosest operator (se&ection 3 with functionality seq(POINTX POINT -
POINT as follows:

the_city_at(Cityselect[pop > 30000jmap[pos]
the(Rhine flow H1 routenter section)
closest)

6.2 Heterogeneous Sequences and Dynamic Generalization

We shall now use the union type introduced in SecBargi4 to form and manipulate heterogeneous
collections of objects and data values. Two kernel operations provide facilities for constructing het
erogeneous sequences and for type-dependent function application.

union: serBJl) X ... X squBJQ - serBJlﬂ .. g OBJk)
one_of: [(OBJ1 - DATAl) X ... X (OBJk - DATAQ]
- (OBJ1D .. 0 OBJk - DATA1 0...0 DATAk)

The union operation takes, likeelect, a variable number of operand sequences. It transforms them
into a single heterogeneous sequence whose type is the union type of all operands’ object types. E:i
element of any of the operand sequences occurs exactly once in the result sequence. For example
can easily form the collection of all highways, rivers, and lakes:

Highway River Lakeunion

Theone_of operation is needed to access the elements of such a heterogeneous sequence. It allc
selective application of different functions to different objects of the sequ@necof takes as a
parameter a list of functions that map object types into data types and returns a single function fro
the union object type to the union data type. So in some seasef is a “function generalization”
operator. For example, consider the applicatioonef of to the functions

route: Highway - LINE

flow: River - LINE

surface: Lake - REG
denoted by

one_of[route, flow, surface]

The returned function has functionality HighwayRiver [1 Lake — LINE O LINE O REG. The
range type evaluates to EXT. We might use this function as a parammeiay:to

Highway River Lakeaunion map[one_of[route, flow, surface]]

After the application ofinion we have a sequence of type seq(Highdyiver ] Lake) whichmap
transforms into a sequence of type seq(EXONe_of allows also to selectainents from a heteroge-
neous sequence. We can find all highways, rivers, and lakes in or passing through Germany:
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Highway River Lakeaunion select[one_of[route, flow, surface]
inter sects (the(Stateselect[name ='Germany'f)egion)]

Theselect operation applies the function constructecbhbg of to each element of the heterogeneous
operand sequence. This function in turn selects the “right one” of its component functions and applie
it to the object, namely, to a Highway object the “route” function, and so on. In any case, the resu
returned is of type EXT and so fits with the functionality ofitiiter sects operator.

Note that in generaine_of can be applied to objects whose type is given by an arbitrary expression
built from base object types through theandJ constructors. The question arises under which con-
ditionsone_of is well-defined. First, we observe that with each object funétiongeneral, a large
number of functionalities is associated which happens through inheritance, overloading and the co
struction of product types. That means, when we write

one_of[fl, ey fn]

it is not at all clear which of the functions associated with the rﬁjaimmeant. Of course, one might
use type annotations, as in:

one_of[name: River- STR, ...]

but that appears very uncomfortable in queries. Instead, we disambiguate by considering the obje
typesto which the function constructed bge of is to be applied. Letom(f) denote all valid argu-
ment types of. For example, we have

dom(pos) = {Location, City, Locationl State, City(] State, ...}.
We proceed as follows:

(1) The operand typeis brought into disjunctive normal form (as discusse®Hction 4 and hence
represented & 0...0 S (The typing ofone_of requires that the number of functions being
arguments foone_of and the number of types in the union type match.)

(2) Define thecompatibility relation asC = {(si, fj) |si [ dom(fj), 1<i,j<n}. Thenone_of is well-
defined ifCis a (total) function, that is, if easihoccurs in exactly one of the selt:m(fj). (Since
the number of parameter functions and the number of types in the union are tl@isaue
jective. Moreover, since for easihthere has to be a parameter functis also injective.)

(3) Now, if one _of is to be applied to an object of ty;;lpeone_of chooses the functio@(si).

Consider the query
Highway (River Lakeaunion) select[routeinter sects one_of[flow, surface]]

Here the operand type for the result functiormé of is Highway[ (River [0 Lake). Suppose we
had another object type Cube on which “surface” was also defined,

surface: Cubes REAL.
Then the domains of function names “flow” and “surface” would be:

dom(flow) = {River, River State, Rivef] Highway, ...}
dom(surface) = {Lake, Cube, Lake State, Cubél State, Laké] Highway, ...}
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Stepl. For the example above, the operand type in disjunctive normal form is: (High®aer) O
(Highway [ Lake).

Step2. We observe that Highway River [0 dom(flow) and Highway(] Lake [0 dom(surface), so
one_of is well-defined.

Step3. The parameter functionsaife_of are flow: Highway ! River —» LINE and surface: Highay
[0 Lake —» REG. Hence it constructs a function of type (HighwaRiver) O (Highway[ Lake) -
EXT.

Note that it is possible to do full static type checking at query compile time, so we have to look at th
actual objects in the sequence at runtime only to select the right function to apply, and type correctne
ensures that we will never miss one.

We can provide the precise types @mion andone_of as done foselect. For this we need another
auxiliary function shuffle, which takes two sequences of equal length,Sayx,, ..., x,Candly, y»,
..., Yolland a binary type constructgr,and produces the sequenggy yi, Xo Y Yo, .., Xn Y Yol

union: fold(x, map(seq, IistOBJ)i)) - seqfold(], Iist(OBJ)i))
one_of: shuffle(list(OBJ)i, Iist(DATA)j, -) - (fold(d, Iist(OBJ)i) - fold([d, Iist(DATA)J_))

Note that the type fane_of could be defined even more flexible: When working on a union of types
some which share an overloaded operation symbol, this operation need to be given only once. F
example, in the query

City State Highwaynion map[one_of[name, hno]]

“name” can be used for objects of type City and State. Unfortunately, this typing is not expressible b
multi-level algebra since there is no concept to say that one name represents a set of functions. (H
we have a problem with signatures mixing up syntax and type descriptions: The above signature ent
when viewed only as a type specification still covers this extended meaning; read as a syntax speci
cation, however, it requires the same number of parameter functions as the number of types in t
union.)

6.3 Graphs

So far, a database could be modeled as an object type hierarchy together with functions applicable
objects, describing their attributes and relationships. We now intraglagles as another modeling

tool which means a user can define some part of the database explicitly as a graph structure. Assc
ated with graphs are specific graph operations in the query language algebra such as finding short
paths, determining certain subgraphs, and so forth. As far as modeling is concerned, explicit grap
and graph operations allow a user to express a query at a very high level. To some extent this is
contrast to graph manipulation in deductive databases where often fairly complex rule programs ne«
to be written. As far as implementation is concerned, the idea is to provide special storage structur
for the representation of graphs and the most efficient graph algorithms available for realizing specifi
operations. We believe that this approach will result in better performance than can be achieved |
optimization of arbitrary rule based programs.
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There is a difficulty with our strategy, however: It is not easy to come up with a small collection of
graph operations that cover all interesting queries. In that respect, rule-based manipulation, offerir
more primitive operations that can be combined with a powerful paradigm, has an advantage. O
answer to this problem is that the whole approach needs to be understood within the context of
extensible system: For a given application one should be able to determine the graph operations f
quently needed and extend the system by efficient implementations for them. One might also think «
adding facilities for rule-based manipulation for those ad-hoc queries that cannot be formulated wit
the given collection of graph ogions, for example, through an algebra operation that takes a collec-
tion of rules as a parameter. Still another approach is proposed in [21]: Identify the basic buildin
blocks of a reasonable class of graph algorithms and provide a small set of programming facilitie
(basically, an iteration operator that can be combined with data structures) so that new algorithms ¢
be expressed in a very compact way. In [21] it is shown how to integrate these ideas into a function
language where the resulting algorithms are as efficient as their imperative counterparts.

In this subsection, we first introduce the part of the type system relevant to graphs. Based on this, \
then define a set of operations for graph manipulation. Their use is illustrated by some example qu
ries.

Types
The part of the kind signature relevant to graphs is showigiure 8 We have constructors graph,
node, edge, xpath, and path with the shown functionalities.

graph

BASEOBJ ) e -

30

(<3
COMPOBI ) ~ 0O

Figure8

We can pick up any three object s@ts u of kindBASEOBJ and form, by application of the graph
constructor, a type of graphs owett, u denoted by graph(t, u). For example, graph(HLocation,

Sedion, Highway) is such a graph type; this sort is of KBRIAPH. The constructor semantics of the
graph constructor is defined as follows:

Ost,ull <BASEOBJ»: «graph6,t, u)> = graphs, &, w) =

{(N,E, XP, & )|
() NO<s, EQW, XP O w,
(i) € E - NxNis total and injective (no two edges between the same nodes),
(i) 1 XP - E*is total, its range contains only simple paths of the graphl(E)).

}

The idea is that in a given graph of type graph(HLocation, Section, Highway) a HLocation object is
associated with each node and a Section object with each edge. For each Higkiahéme is a
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path in this graph associated to ity

The constructors node, edge, and xpath are in fact selectors, they extract from a graph sort the sori
was constructed from. Thus, they can be defined by equations on the type level.

eq node(graphg t,u)) =s
edge(graplg t,u)) =t
xpath(graphg, t, u)) =u
Now, the constructor semantics are very simpbetg<graphé, t, u)>) := <>, edgd<graphé, t, u)>) :=
<t>, andxpati<graphé, t, u)>) := w». These constructors map to the k&@M POBJ (graph compo-
nent objects) whose elements can be treated like any other object sort; it is therefore a subkind
BASEOBJ. The last costructor is path, defined as:

O graphé, t, u) 0 «<GRAPH»: <path(graphg t, u))> = path(<graphé, t, u)>) :=

{(N,E, XP, g, ) |

(i) — (iii) as in the definition of <grap§(t, u)>

(iv) the graph i, (E)) must be a simple path
}

One recognizes that application of the path constructor just restricts the carrier of a given graph typ
Hence for anys 0 «GRAPH», we have <patl)> [1 <G> which allows us to define a ssdut relation-
ship in the sort hierarchy:

O graphé, t, u) 0 «<GRAPH»: path(graphg t, u)) < graph§,t, u)
In other words, any path can also be viewed as a graph and inherits all operations defined for grapl

So far, we have just introduced types associated with graphs but no instance yet. We assume th
user can define several object types and then create a graph instance by a data definition comme
for example:

create graph Hnetof type HLocation, Section, Highway

“Hnet” is now the name of one specific graph in the carrier of graph(HLocation, Section, Highway);
right after this command, it is a completely empty graph. We assume that an object type used in su
a graph definition is “devoted to” this graph instaﬁﬁy that we mean that every object in the object
type used for nodes is automatically also a node of this graph instance. When an edge object is creat
one has at the same time to specify which nodes it connects. Similarly, when an explicit path obje
is created, the edges of which it is composed need to be given by the user. Hence for the specific gre
Hnet = (\, E, XP, €, 1), we haveN = <HLocation> E = <Section>, an&P = <Highway>. However, the
carrier containing Hnet is more general, for example, it also contains all subgraphs of Hnet.

“Hnet” can now be used in a query to refer to one particular (structured) object, just as “River” refer:
to one particular element in the carrier of seq(River).

> This is not a restriction: If an object type is needed of which only some elements participate in a graph structure
simply defne a subtype for those in the graph, as we have done with HLocation and HCity
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Operations
We now introduce a collection of graph operations for use in queries. As explained in the introductio
to this subsection, this collection is not meant to be complete. It just illustrates our approach.

op subgraph, remove: GRAPHi X seq(\lODEi) - GRAPHi
subgraph, remove: GRAPHi X squDGEi) - GRAPHi
nodes: GRAPHi - seq(\IODEi)
edges: GRAPHi - squDGEi)
from, to: EDGEi - NODEi
path: XPATHi - PATHi
shortest_path: GRAPH xNODE X NODE X [EDGE - NUM] - PATHi
circle: GRAPH xNODE xNUM ><[EDGE - NUM] - GRAPHi
VOronoi_node: GRAPHI X seq(\IODEI) [EDGE - NUM] - (NODEi - NODEi)
voronoi_dist: GRAPHi X seq(\IODEi) [EDGEI - NUMJ] - (NODEi - NUMJ_)

In this signature specification we uN@DEi, EDGEi, XPATHi, andPATHi as abbrewtions for
nodeGRAPHi), edgeGRAPHi), xpathGRAPHi), and pathGRAPHi), respecively. The opera-

tions have the following meaning. Given a gr&phnd a collection of nodasin it, subgraph con-
structs a subgraph @ consisting of the nodes M and the edges incident with such nodes; of the
explicit paths only those remain whose edges occur in the subgraph. Applied to a graph and a list
edgesE, subgraph leaves the nodes alone but in the result graph reduces edges and explicit paths
those inE. Remove works in the opposite way: Given a list of nodes it eliminates those nodes as well
as all dependent edges and xpaths; given a list of edges, it eliminates these edges and the depen
explicit paths. The operatiom®des andedges return all the nodes or edges, respectively, of a given
graph; note that they can also be applied to paiﬁATI’ri—Ii due to the subsort relationship mentioned
above. If these operations are applied to a path, the result sequence contains the nodes or edges i
order of the pathH=rom andto return the source and target nodes of a given edge. For an explicit path
object we can access its path in the graph througpatieoperation which allows to apply path or
graph operations to it.

Some special graph operations ghrertest_path, circle, andvoronoi_node/voronoi_dist. Given a
graphG and nodes andw in it, shortest_path returns (one of) the shortest path(s) froto w. The
operation is parameterized by a function assigning a numeric value to an edge. So one can determ
shortest paths with respect to the number of edges in a path, the geometric distance or the travel
time in a highway network, or some function combining distance and slope of street sections whe
planning a bicycle trip. Theircle operation, applied to a gra@) a nodev in it, and some number
determines a subgraph in a “circle of radiiaroundv where the radius is measured in terms of dis-
tance on the network which is again determined by a parameter function assigning values to edge
One can, for example, determine a part of a street network that can be reached from a given city witt
a specified traveling time, or just retrieve all the neighbours of a node in a graph (by assigning 1 t
each edge and giving a radius of 1). The operationenoi_node andvoronoi_dist realize two
aspects of thgraph Voronoi diagram defined in [22]: The graph voronoi diagram w.r.t. to a set of
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nodesK = {vy, ..., v} O N (calledvoronoi nodes) can be viewed as a mappMgN - K, such that
all nodesw in N (that are reachable from any nogleare nearer t¥/(w) than to any other node K
Here, “nearer” is meant with respect to the distance of the shortest paths defined by the parame
function on edges. The operatioor onoi_node computes just this mapping, avat onoi_dist yields
a mapping recording for each noaie¢he length of the shortest pathv(w). The graph Voronoi dia-
gram supports a great many queries, including nearest facilities, closest pairs, collision-free movin
anti-centers, and furthest points (examples will be given shortly). Note that there are efficient imple
mentations for all of these operations; they are sketched below.

Queries
A highway route from Dortmund to Munich is found by:

fun theCity&. STR):HCity=the(HCity select[name =g])
DoMunich = Hnet theCity('Dortmund’) theCity(‘Munickhortest_path[way length]

In order to actually display the path we have to apfyav command with functions returning print-
able data values, for example,

DoMunichedges
Show way

Of course, we can imagine a more sophisticated user interface having available standard display rc
tines for graph/path objects, so that a graph/path object returned by a query would be automatica
displayed as is assumed for values of type INT or LINE.

“How far is Munich from Dortmund?”
DoMunichedges map[way length] sum
“Are there any rivers traversed on this trip?”
River select[flow inter sects (DoMunichedges map[way] agg[concat])]
or, alternatively,
River DoMunichedges select[flow inter sects way]
“Which big cities lie on highway 1?”
the(Highway select[hno = 1])path nodes select[pop > 500000]

Note that this query works because of the semantisdeat defined above: Firspath expands the

path associated with the object highway 1 and returns a subgraph (path) of Hheop#szeturns

the list of nodes on this path, of type seq(Locatisglict omits all Location objects for which the
function “pop” is undefined, that is, all locations that are not cities. We might also have used the func
tion “restrictCity” as in an example below.

“Show the part of the highway network that can be reached within half an hour from Hagen!”

Hnet theCity('Hagen') 0.&rcle[duration]
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“What is the total population of cities whose distance from Dusseldorf on the highway network is a
most 50 kms?”

Hnet theCity('Dusseldorf") 5€rclefway length]
nodes restrictCitymap[pop] sum

Again, nodes returns all Location objects in the subgraph constructemirble. Here it is necessary
to use the type restriction function “restrictCity” to filter out the City objects and to prevent a type
error whermap is applied.

Sometimes graph operations are not needed for a particular query about the network: “How many c
ies in Germany with more than 100000 inhabitants are not on the highway network”:

(the(Stateselect[name = 'Germany']) citiesglect[(pop > 100000and (in(HCity) not)] count

Suppose a fog area given by a region (polygon) called “Fog” blocks some part of the highway ne
work. “What is the remaining part of the network?”

Clear = Hnet Sectioselect[way inter sects Fog]remove

Extending this query, we can ask: “What route avoiding the fog area can be recommended from Dot
mund to Frankfurt with respect to traveling time?”

Clear theCity('Dortmund’) theCity('Frankfurshortest_path[duration]

“How can one get from Dortmund to Dusseldorf if the piece of highway between Bochum and Esse
is blocked (say, by an accident)?”

Hnet Sectiorselect[(from name = 'Bochumand (to name = 'Essen’jemove
theCity('Dortmund’) theCity('Dusseldorshortest_path[duration]

Note that the “name” function is defined only for City objects; we need the extended semantics ¢
select mentioned above to allow this short formulation without a type error.

Maps recording nearest facilities are very useful in geographic networks. Continuing the previou
example, assume people got injured by the acciddent, and we seek the nearest hospital. We first c
struct the voronoi diagram with respect to a sequence of nodes where hospitals are located:

fun has6:STR):(City -~ BOOL) =fun (c:City) [0 sin(facilities(c))
hospitals = HCityselect[has('Hospital')]

hnode = Hnet hospitalgronoi_node[duration]

hdist = Hnet hospitalgor onoi_dist[duration]

Then, we can simply look up the nearest hospital, and the time required to reach it:

theCity('Bochum’) hnode
theCity('Bochum’) hdist

For another application, assume that we are planning a money transport from Dortmund to Berlin. |
order to get help from the police quickly enough in case of a hold up we should always keep a distan
of less than 8 km to the next police station. This query can be formulated by searching a path in ¢
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appropriate subgraph:

pdist = Hnet (HCityselect[has('Police Station’)Noronoi_dist[way length]
Hnet HLocatiorselect[pdist < 8]subgraph
theCity('Dortmund’) theCity('Berlinghortest_path[way length]

In our final example we consider a chain of stores which wants to build a new shopping mall. To min
imize competition a node is sought which is located as far as possible from the already existing sho
ping malls.

sdist = Hnet (HLocatioselect[has('Shopping Mall' )]Jyoronoi_dist[way length]
maxdist = HLocationrmap[sdist] max
HLocationselect[sdist = maxdist]

Clearly, the set of graph operations offered is still limited; many interesting queries cannot yet be for
mulated. The design of a reasonably complete collection of graph operations is a subject of furths
research. In this paper we just intended to show how graph operations cagtaéehteto a general
querying environment.

I mplementation of Graph Operations

Let us briefly give an idea about the assumed implementation of the operations offered so far. Tt
subgraph andremove operations should certainly not produce a copy of the giveraoperaph.
Instead, the sequence given as a second operand is scanned and gspernthng elements of the
graph are accessed and marked as valid or invalid for the remaining operations of this query. F
example, to implement the query

Hnet Sectiorselect[way inter sects Fog]remove

the collection of Section objects is accessed, hopefully through a geometric index on the “way
attribute, and a sequence of sections intersecting the fog area is formed. For each of those section:
representation within the graph structure is accessed and marked as invalid for any remaining ope
tions of the query. In [33] it is described how this marking of graph components can be implemente
with a time stamp technique.

Theshortest_path operation is to be implemented by the A* algorithm [49] which is guided by a heu-
ristic function that estimates the distance from a node encountered during the search to the targ
node® In spatially embedded networks one can often use the Euclidean distance as a very good e
mator. Hence a shortest path search will be focused well on the target and run quite fast. An even fas
algorithm, which makes use of a geometric index, is described in [20]: For eac{v,edlgehe set

of nodes to which the shortest path frefeads viaw is represented by a polygon with hopefully few
bordering edges. Then a shortest path can be reconstructed in linear time (in the number of edges
the path to be found) plus the time to perform point location in the polygons for the successors alor

6 Unfortunately it is necessary to ask the user to specify such a heuristic function, for example, as
fun distanceX:Location,y:Location):REAL= x posy posmindist
The function “distance” can then be given as another parametéofutewtheshortest_path operationThis parame-
ter was omitted above to keep the presentation simple. It istumdde, because the implementation should in prin-
ciple not afect the query language, but here in the interestfigieficy it cannot be avoided.
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the path. Of course, this requires additional storage for the index (ranging fproilanhattan-
like networks to Of./n) for most networks found in “real life”). On the other hand it outperforms A*,
and the user need not be concerned about heuristics. In geshoateat_path implementation will
check the marks of objects encountered and can therefore be restricted to edges marked as valic
this query (by a precedirsybgraph operation) or avoid edges marked as invalidr@gove).

Thecircle operation explores the environment of the given operand node and will benenpéel by
Dijkstra’s single source shortest paths algorithm (see [3]).nbdes andedges operations should
generally only be applied to a subgraph (in particular, path) obtained as the result of a subquery; if tl
user applies them to the whole graph, the optimizer should replace this by a reference to the cor
sponding node or edge object type.

An easy way of computing voronoi diagrams is to use a modification of Dijkstra’s algorithm starting
node expansion “simultanously” from all voronoi nodes [22]. The nice thing about the algorithm is
that it runs as fast as Dijkstra’s algorithm (in fact, in many cases even faster) and that it can be eas
implemented. Note that the algorithm computes information for both opevaransoi_node and
voronoi_dist in one run.

7 Related Work

In the description of our data model we touched quite different areas of database research. So the cc
parison with other work is divided into several parts: We first look at the underlying functional data
model and then discuss the treatment of graphs and heterogeneous collections in other data mod
After that, we focus on the specific area of application, spatial data models, and finally, we commer
upon the use of multi-level algebra.

Data Modeling in general

The data model described is essentially a functional data model in the spirit of DAPLEX [64] or FQL
[10]. This base model is extended by complex objects which can be defined through the use of tyj
constructors. This is similar to FDL [57] or the model presented in [19] in the sense that the mode
provides a fixed set of type constructors, although the constructors differ significantly: Whereas [57
19] offer the usual tuple, variant, and sequence constructors we have special sequencelproduct (
union (), and, of course, graph type construcors. In PROBE [17], complex objects are modeled b
the basic facilities of the functional model itself, that is, entity types and functions, and in GENESIS
[5] compound structures are represented by (nested) streams. Concerning the query language, F
provides the full computational power of thecalculus. In contrast, we have deliberately chosen a
limited functional language since we advocate the use of explicit graphs for the modeling of comple»
recursive relationships. In DAPLEX and PROBE, a limited imperative language is used. This imper
ative style of PROBE is carried over to the language proposed in [58] which meets the traditional vie\
of graph iterations; in [21] it is demonstrated that traversals can also be formulated declaratively ar
that they can be definitely integrated into a functional language. The supposed lack of completene
concerning types and language of our approach and also of &EN#ELSt be seen from the view-
point of extensibility, see below.
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The algebraic view of the functional model integrates data model and schema description in a unifor
framework. Extending a schema by a new function amounts to simply adding an entry to the signatu
(and giving a defining expression in case of derived functions). By using the algebraic methodolog
on a second level the same applies to extensions of the data model (or type system). In GENES
structured types are mapped to a collection of streams related by functions (viewed as stream gen
ators), which, as the authors admit, is in some cases not very fortunate. In particular, this applies
the extension by graph structures, where it is suggested to load a graph entirely into main memao
before executing queries. Instead, we propose to provide special storage structures for newly adc
types, such as graphs [33]. Certainly, this approach requires more implementation efforts but resu
in higher performance.

From the semantic data modeling point of view, the functional data model provides objects, attribute:
type hierarchies and derived data. Aggregation is possible by associating to an entity each item to
aggregated by a function (or by the explicit use of type constructors as in FDL). Association is realize
in DAPLEX by multi-valued functions; we use the seq constructor, which must not be nested as i
possible in FDL or GENESIS. In particular, some of the essential features of object-orientec
langua@s, such as object identity, subtyping, and inheritance are covered by the functional dat
mockl. Beeri [8] describes in detail how object-oriented features are captured by the algebraic vie\
of databases, and he stresses the strong relationship to functional data models. Comparing the fu
tional model to other semantic data models was done elsewhere [38].

Graphsin Databases

Each data model has its own facilities to represent relationships among objects. Since graphs ar
special concept for representing such relationships many data models do not worry about graphs
all. There are, however, at least two reasons for considering graphs additionally (or instead): The fir
is, that many “real-life” problems can be directly expressed in terms of graph concepts (paths, spa
ning trees, matchings, and so on) that are well understood and thus easy to deal with (compared w
reinventing representations in special data model structures). The second observation is that for mi
of these problems efficient algorithms are available which can be used if the application problem i
formulated as a graph problem.

A first step for taking graphs into account is to regard certain structures of the data model as a gra|
(in the relational model, for example, a relation with two attributes, say, “from” and “to”) and define
graph operations which are only applicable to such structures. Concerning the relational data mod
this line is followed by [2] defining a general transitive closure operator and by [11] describing an
extension of SQL. In [58] a method for traversing graphs is proposed in the context of the functione
data model.

Proposals to use graphs directly for data modeling andfiteedsuery languages in terms of graphs
are made by [14, 15, 28, 29]. In the work of Cruz et al. the intention is to focus on the underlying grap
structure of a database and also to employ efficient graph algorithms [16]. In [28, 29] the main pul
pose is the modeling of end user interfaces. In these propobatgaphs are visible for data mode-
ling and querying. In contrast, our approach is to offer graphs as a separate, “first-class” conce
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besides other facilities of the functional model. An approach for viewing graphs as an additional fee
ture in a relational system is sketched in [33].

Heterogeneous Collections

Let us briefly consider the facilities provided for this in some object-oriented models and systems. li
Orion [41] and Iris [7] it is not at all possible to form a union of differently typed objects. In Orion the
need to query more than one object class is recognized but not yet incorporated into the model. In |
there are object class hierarchies, but no means to build the union of differently typed objects |
described (at least in [7]). In2(p13] it is possible to form the union of typeandt if there is an gpro-

priate schema definition relatirggandt as (possibly indirect) subtypes of another typAssuming

thatu is the smallest common supertypes@ndt, the result of the union is of typewhich means

that only attributes defined anmay be applied in later steps of the query. In Machiavelli [9, 52] it is
possible to form the union of typsandt even if there is no schema definition as described above for
Oz' The types o andt are assumed to be tuples of data types. The same holds for the model presents
in [33] where the data types are additionally arranged into a hierarchy and the result type is obtaine
by taking least upper bounds with respect to the data type hierarchy for any two matching tuple con
ponents in the typesandt. However, attributes that do not match cannot be accessed any more afte
forming the union. In the model presented here it is possible to form the union o$ gypdtswith

no restriction and all atbutes are preserved for later use in the query. This is also possible in FAD
[4]. However, in FAD the union of two typesandt is simply of typeset. Attributes can selectively

be accessed by means of ithen-else function. But FAD is not strongly typed and erroneous
attempts to access attributes in such a set cannot always be ruled out. Thus, our proposal seems t
the most general treatment of heterogeneous collections allowing for static type checking.

Data Models for Spatial Databases

In the development of spatial database systems, on the modeling side the main focus has been on
definition of spatial data types and operations and theegraion as “abstract data types” into data-
base models. Most often, the relational model was used as a basis (for example, [24, 59, 39, 18]), |
there are also gpoaches based on the functional model [46, 55] or on an extended ER-model [43]
Another important issue has been the handling of partitions of the plane, sometimes called mag
including map operations such as overlay [47, 62]. On the metation side, a lot of effort has been
spent to devise efficient spatial access stmas (for example, [36, 37, 61]) and to support efficient
processing of geometric queries [53, 54, 63]. The need of treating graphs in geographic applicatiol
has also been observed in [45].

Concerning heterogeneous collections, current prototype systems and query language proposals o
only superficial support for this such as syntactic constructs to formulate the request in a single que
[1, 24] and output facilities to overlay the results obtained from the different object classes. At the
implementation level, the query is decomposed into distinct queries on all involved object classe
which results in a lot of overhead. Generally, there are no clean modeling concepts to deal with sut
heterogeneous collections of objects. The model of [43] provides a partial solutigahying spa-

tial object classes into a generalization hierarchy, but one cannot query together object classes un
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lated in the hierarchy.

Multi-Level Algebra

In this paper, we have used multi-level algebra for the description of our data model. Multi-level alge
bra itself is described and discussed thoroughly in [23]. In particular, its use for specifying various
aspects of type systems is illustrated by many examples, including a specification of the relation:i
model and an N&model.

In fact, two-level algebras were already used in [56] to specify categories with certain properties fo
theoretical investigation and in [42] for the formalization of the composition of specifications. In con-
trast, our concern is the formal description of a concrete data model. In that respect the approach p
sented in [34] is very similar, although directed more towards describing different levels of a systen
architecture. Unlike [56, 42, 34] our approach is not limited to two levels, and it is shown in [23] that
especially a third level can be extremely helpful: One usage is to describe overloading of operatior
with functions on different numbers of parameters (which is needed in our model, for example, to for
mally describe theelect or union operation).

8 Conclusions

Within the formal framework of a multi-level order-sorted algebra we have presented a data mode
that employs functional modeling concepts to describe properties of objects andgieipsibetween
objects. The main purpose in developing the model was the integration of graphs and graph operatic
into a general modeling and querying environment. In contrast to earlier work such as [2, 58] grapf
are not modeled through the standard facilities of a given data model (for example, relations of a sp
cial form) but explicitly. In contrast to work focusing on the graph structure and graph operations a:
such, like [15, 28], graphs are not the only tool, but are part of a more general environment. We ha
shown that explicit graphs facilitate the clear and direct modeling of graph structures and that querie
can be formulated in a very intuitive way. At the same time, by choosing appropriate operations, effi
cient implementations can be provided.

Through the introduction of union type constructors on data and object types togethe evitand
one_of operations in the query language a flexible treatment of heterogeneous collections of objec
was achieved within the realm of static type checking.

Some details in the model deserve to be highlighted. The view of kernel operations, for example
select, asc, as higher order functions offers a clean formalization; this is an improvement over othel
approaches, for example “parameter expressions” in the NST-algebra [35]. The multi-level order
sorted algebra in connection with the seq constructor and higher order functions makes it possible
define operations in the most general and powerful way, fample, to capture the essence of
sequence operations by making them applicable tAASE). For instance, thasc/desc operators

can sort any kind of sequence by the values of functions applicable to the elements of the sequen
We have introduced operators with a variable number of operands. This is generally useful when ope
ators are needed in a query language that are originally binary and associative (join, cartesian prodt



—-35—
union). The well-known problem in algebraic query languages that the order of operations is ovet
specified (in particular, join order) can so be eliminated.seteet operator that we havetmduced

can be used as comfortably as the select-from-where construct in SQL dialects; it does not specify jc
order nor whether a selection, join or cartesian yco desired.

An implementation of at least parts of the model presented here is underway usingrkiblexdata-

base system Gral [32, 6] as a basis. A special storage structure for graphs decribed in [33] has alre:
been implemented; it clusters and links node, edge, agitiepath objects in such a way that con-
nections between any of these objects can be followed efficiently. For pkemientation of graph
operations efficient graph algorithms, as indicated in Section 6.3, are to be used; here A* has so f
been realized. The functional, or algebraic, structure of the query languagecidgréy suitable for
optimization, a rule-based paradigm as in [44, 6] can be used, and the special optimization opport
nities offered by the functional data model can be exploited [19] (in particular, access path optimize
tion can be carried out already on the algebraic level).
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Appendix |  Type System: Kindsand Type Constructors

ki~ NUM, ORD, EXT, GEO, DATA, COMPOBJ, BASEOBJ, OBJ,
ANY, SEQ, PATH, GRAPH, FUNARG, FUN
ord NUM <ORD; EXT < GEO; ORD, GEO < DATA;
COMPOBJ < BASEOBJ < OBJ; PATH < GRAPH;
DATA, OBJ < ANY,;
ANY, SEQ, GRAPH < FUNARG

tc  INT, REAL, NUM: - NUM
BOOL, STR: - ORD
LINE, REG, EXT: - EXT
POINT, GEO: - GEO
DATA: - DATA
seq: ANY - SEQ
L DATA x DATA - DATA
O, O: OBJ x OBJ - OBJ
. FUNARG x ... x FUNARG - FUN
graph: BASEOBJ x BASEOBJ x BASEOBJ - GRAPH
node, edge, xpath: GRAPH - COMPOBJ
path GRAPH - PATH
eq sOs=s
sdt=tOs
sO@tdu=(s0Otdu
sdt=tOs

sO@tdu=(s0Otdu
sO@tduw=(s0Ot0d(s0Ou)
node(graplg t, u)) =s
edge(grapig t, u)) =t
xpath(graphg, t, u)) =u

Appendix Il  Type System: Constructor Semantics

O sO«ANY»: seq«) = «*
Os,t 0 «DATA»: o Ot =0
Os, t 0 «OBJ»: o Db = 0dbd
Os, t 0 «OBJ»: < <> := {merge(s, t) |s D<o, t' 0«5}
O Sp S t O «kFUNARG»: j(<sl>, e S, d) =
{f|fis a function with domairsi> X XS5 and rangetx}
Os, t,ul «BASEOBJ»: graphcs, «, ww) =

{(N,E, XP, &, m | () NO<s, EO <>, XP [ «w, (ii) € E - N x Nis total and injective,
(i) Tt XP - E* s total, its range contains only simple paths of the graphk(E)).}
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Os,t,ud «<BASEOBJ»: path(<graphé, t, u)>) :=
{(N, E, XP, €, m) O «<graphé, t, u)> | the graphN, €(E)) must be a simple path}
Os,t,ud «<BASEOBJ»: nodd«graphé, t, up) ==
Os,t,ud «BASEOBJ»: edgé<graphé, t, u)) ;= ¢
Os,t,ud «<BASEOBJ»: xpath«graphé, t, u)>) := w»

Appendix |1l Query Language: Types and Operations

ty BOOL, STR, INT, REAL, NUM, POINT, LINE, REG, EXT, GEO, DATA
ord INT, REAL < NUM;

LINE, REG< EXT; POINT, EXT< GEO;

BOOL, STR, NUM, GECG: DATA

Os t0«DATA»: s<sUOt0Ot<sOt

Os t O «OBJ»: sOt<ssOsOt<tOs<sOtOt<sOt

0 g0« GRAPH»: path@) < g

Data Types
op and,or: BOOL x BOOL - BOOL
not: BOOL - BOOL
+, -, %, div,mod: INT x INT - INT
I INT x INT - REAL
+, -5 REAL x NUM - REAL
+, -5 NUM x REAL - REAL
=, # DATAi X DATAi - BOOL
<, K, 2, > ORDi X ORDi - BOOL
inside: GEO x REG - BOOL
inter sects: EXT x EXT - BOOL
inter section: LINE x LINE - seq(POINT)
inter section: LINE x REG - seq(LINE)
inter section: REGx LINE - seq(LINE)
inter section: REGx REG - seq(REG)
closest: seq(POINT)x POINT -  POINT
concat: LINE x LINE - LINE
mindist: GEO x GEO - REAL
length: LINE - REAL
area: REG - REAL
Sequences
op select: serBJl) X ... X squBJl) X
[0BJ 0 ...00BJ - BOOL] = SedOBI,U
map: seq(ANYi) X [ANYi - ANYJ_] - seq(ANYj)
map: seq(ANYi) X [ANYi - seq(ANYj)] - seq(ANYj)

asc, desc: seq(ANYi) X [ANYi - ORD] - seq(ANYi)

DOBJk)



head, tail:
rdup:
ago:

sum:
min, max:
count:

exists, forall:

the:

in:

inv:
union:
one_of:

Graphs
op subgraph, remove: GRAPHixseq(\IODEi)

subgraph, remove: GRAPHi X squDGEi)
GRAPHi
GRAPHi
EDGEi

XPATHi

nodes:
edges.
from, to:
path:

shortest_path: GRAPH XNODE XNODE X[EDGE - NUM] -
GRAPH X NODE X NUM X[EDGE - NUM] -

circle:

seq(ANYi) x [INT]

seq(ANYi)

seq(ANYi) X

seq(\IUMi)
serRDi)
seqANY)

seq(ANYi) X

seq(ANYi)
seq(ANYi)
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[ANYi X ANYi - ANYi]

[ANY, - BOOL]

[0BJ ~ ANY]

j
serBJl) X ...

[(OBJ, ~ DATA )x .

voronoi_node: GRAPHI X seq(\IODEI)
voronoi_dist: GRAPHi X seq(\IODEi)

Appendix IV Example Schema

ty
ord

op

X serBJl)

x (OBJ, ~ DATA )]

[EDGE . NUM]
[EDGEI . NUMJ]

segl NYi)
segl NYi)
ANY.

NUM.

ORDi

INT

BOOL

ANYi

(ANYi - BOOL)
(ANYJ_ - serBJi))
serBJ1D O OBJk)
(0BJ O ...0OBJ -

DATA1 g..d DATAQ

- GRAPHi
- GRAPHi
- seq(\IODEi)
- squDGEi)

-~ NODE
- PATH
PATH.
GRAPH.

-~ (NODE, ~ NODE)
- (NODE, - NUM)

State, Water, Lake, River, LocatigHLocation, City, HCity, Section, Highway
Lake, River<s Water; HCity< HLocation, City< Locatin

name:
surface:
flow:
pos:
name:
pop:
facilities:
lies_in:

Water -
Lake N
River N
Location -
City N
City N
City N

City N

STR
REG
LINE
POINT
STR

INT
seq(STR)
State

name:
region:
way:
limit:

duration:

hno:
route:
visits:

State -
State -
Section -
Section -
Section -
Highway -
Highway -
Highway -

STR

REG

LINE

INT

REAL

INT

LINE
seq(State)



