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1 Introduction

This manual introduces a tool to support the computational modeling of bi-
ological systems on a high level of abstraction. The basic idea of the chosen
approach is to represent a biological system as a set of objects and a set of
functions that operate on these objects. Any system defined in this way can be
simulated and the results can be visualized.

The presented tool is implemented as an extension of the functional program-
ming language Haskell in form of a library, which specifically provides support
for the definition of probabilistic functions and simulations. The library exten-
sion is called FuSE, which stands for Functional Simulation Environment.

The defined functions provide a black box operation without requiring de-
tailed programming knowledge or prior knowledge of Haskell. However, since
definitions of objects and functions will be expressed in Haskell, a basic under-
standing of Haskell is required to be able to effectively develop models

Rather than ponder the details of our implementation, we instead provide
concrete examples of functions which use our libraries and how to construct
them. These functions provide probabilistic simulations and results, which our
library can convert into R programs providing visualizations.

To be able to successfully use the described modeling approach, a basic
understanding of the following concepts is required.

• Values, functions, and types in Haskell

• Probability distributions and transitions

• Basic operation of R

In this manual, we will introduce all three of these concepts, along with a very
simple biological application. In the next section, we will demonstrate some
basic elements of Haskell. Section 3 provides some background information on
the notion of types. In Section 4 we will introduce the concept of probabilistic
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functions and show how to simulate probabilistic events over time. In Section
5 we will show how the results of a simulation can be graphed in various ways
using the R statistic package. In Sections 6, we show how to employ random-
izations in simulations. Section 7 discusses in more detail how to define models
that describe time- or generation-dependent phenomena. In Section 8 we will
illustrate how to employ more sophisticated Haskell data types to represent
more structured models and how to employ probabilistic data types in that
context. These three sections will provide the necessary background to discuss
the miRNA evolution model in Section 9.

2 Defining Values and Functions in Haskell

The simulation library makes designing and implementing simulations in Haskell
fairly straightforward. In this document, we will discuss the features necessary
to construct useful simulations from the ground up, using examples. Source
code should be entered in a text editor and placed in files with the extension
.hs. Programs should be run in GHC by loading GHCi with the source file.
For example, the command

ghci Tree1.hs

start the GHCi Haskell interpreter and loads the first example program
Tree1.hs, which is shown in Figure 1.

Once GHCi is loaded, it will report any errors found in the source file. These
must be corrected before any evaluation can be attempted. Once the file loads
without errors, functions may be evaluated by entering their name and any
parameters at the prompt.

We will start by considering a simple example. Consider the case of a tree
which starts at five feet tall and grows by one foot every year. To define this, we
first need to find the key components. Units are not relevant in Haskell except
in relation to each other. For example, if you are considering kilometers and
meters, it is important to know that one is 1000 of the other, but not precisely
what the units are. In this case, we have a single tree with a height. No other
information about the tree is given, so there is no need to consider, for example,
whether the tree is deciduous or evergreen.

Since we want to define a model that yields data over time, we we have to
define the initial condition or value and how the value changes over time. The
initial case is the height of 5. This initial value can be represented with a value
definition, which consists of a name for the value and the value itself.

height = 5

The name height is simply an arbitrarily chosen label that has no extrinsic
meaning to the program. In particular, it does not affect how the program
operates nor does it cause the program to catch potentially meaningless opera-
tions.
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module Tree1 where

height = 5
grow h = h + 1

Figure 1: The Haskell program Tree1.hs.

The value change is defined by the rule that each year the height of the
tree is one more than the previous year. This change can be represented by a
function. Function definitions look very similar to value definitions. The only
difference is that functions take one or more parameters, which are given in the
definition by names that follow the function name. These parameters can then
be combined in various ways to produce the result. In this case, we want to
define a grow function that takes one parameter, the height, and returns the
height increased by one.

grow h = h + 1

In this case, the function is named grow and it takes one parameter, h, which
symbolizes the height. It returns the value of h + 1. The definition is the same
as a mathematical function such as f(x) = x+ 1.1

We save the complete program into a file called Tree1.hs. This file contains
the two definitions already shown and a module declaration line that gives the
program a name, see Figure 1.

We then load this program in GHCi by issuing the shell command ghci
Tree1 or ghci Tree1.hs.

$ ghci Tree1.hs

...

Loading package base ... linking ... done.
Compiling Main ( Tree1.hs, interpreted )
Ok, modules loaded: Main.
*Tree1>

At this point we are ready to begin evaluating functions. We can query the
height of the tree by entering height, which accesses that constant.

*Tree1> height
5

If we want to know what happens in the subsequent year, we can apply the
function grow.2

1Note that the parentheses around the argument x are not really needed and are therefore
usually omitted from function definitions in Haskell programs.

2Again, note that no parentheses are needed around the argument since there is no ambi-
guity as to what the argument to the function grow is, unlike in the next example.
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*Tree1> grow height
6

We can apply grow an arbitrary number of times to simulate multiple years in
the future.3

*Tree1> grow (grow height)
7

To leave GHCi enter <Control-D> or type:

:q

followed by <Return>, which will bring you back to the command line.

3 Types

Haskell is a strongly typed language, which means that all values and functions
of a program must have a precisely determined type. The simulation environ-
ment that is built on top of Haskell inherits this property. Therefore, a basic
understanding of what types are is very helpful to know for every user.

3.1 Type Signatures

Similar objects or values are grouped into collections, called types. Any member,
say x, of such a collection, say T, is said to have or be of the type T, which is
written as:

x :: T

For example, integer values have the type Int, and thus we write, for example,
5 :: Int. When we assign a name to a value in Haskell, as we did with the
definition for height, that name has the same type as the value it represents.
Therefore, we have:

height :: Int

Such statements about the type of a value or name is also sometimes called
a type signature. These type signatures can be placed in Haskell programs.
Although in most cases, Haskell does not require type signatures to be given
explicitly (since the Haskell compiler can figure out the types of all objects
automatically), it is nevertheless a Good Thing to provide type signatures for

3Here we have to enclose the argument of the leftmost grow function by parentheses because
function application is a left-associative operation, that is, f g x is not parsed as f(g(x)), but
rather as (f(g))(x). Therefore, we need parentheses around the innermost application since
we want to apply grow to the result of applying grow to height. In contrast, the expression
grow grow height would try to apply grow to grow, which doesn’t make sense and would be
prevented by Haskell by reporting a type error; see also Section 3.
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all definitions in a program, because it documents the program and supports
debugging and maintenance.

A type expresses that certain operations are allowed on all its members while
others are forbidden. For example, integer values can be added, but they cannot
be applied as functions on other objects.

3.2 Function Types

Functions are also values and thus have a type. For example, the function
grow has the type Int -> Int, which expresses the fact that grow accepts one
parameter of type Int and returns a value that is also of type Int. The type
signature for grow thus reads as follows.

grow :: Int -> Int

The type information about individual objects is used by the type checker of
Haskell to ensure that objects are combined only in a correct way. (The set of
rules that define how object can be composed are called the type system.) For
example, one important rule says that a function of some type T -> T’ can be
applied only to objects of type T, which makes much sense because the function
type expresses that the function only accepts objects of type T. The rule for
function application also says that if a function of type T -> T’ is applied to
an object of type T, then the result will be a value of type T’.

For example, it is type correct to apply grow to height since height ::
Int, which matches the argument type of grow. Moreover, the result of this
application is also of type Int, that is, grow height :: Int. The typing rule
for function application also explains why, for example, the expression grow
grow height (without the parentheses around grow height) is not correct.
Since function application is left associative, that expression is interpreted as
grow grow applied to height. Now grow grow is not type correct because the
argument type of grow must be of type Int, but the argument provided is of
type Int -> Int.

What are the types of functions hat have more than one parameter? Con-
sider, for example, the predefined minimum function min that takes two numbers
and returns the smaller of the two. The type of min is written as follows.

min :: Int -> Int -> Int

¿From the typing rule for function application it follows that if min is applied to
two Int values, it will return another Int value. A function can be applied to
multiple arguments by simply juxtaposing the function name to all arguments.
In the case of min we can write, for instance:

*Tree1> min height 7
5
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3.3 Type Definitions

In addition to using the built-in types, it is also a good practice to introduce
type definitions to document an application. For example, the fact that we
are using Int values to represent tree heights can be captured by defining a
corresponding type.

type Height = Int

Now instead of the previous signature for the value height we can use the
following one.

height :: Height

Since the type Int is typically used to represent many different, unrelated values,
defining and employing more specific types, such as Height, helps to document
simulations and also aids with debugging.

We can also use the defined type to give a more meaningful type signature
for the function grow.

grow :: Height -> Height

Note that the shown form of type definition introduces just a new name for an
existing type, that is, grow can still be applied to arbitrary Int values. In fact,
the type definition says that any Height value is an Int value.

4 Building a Simple Simulation

Continuing our tree growth example, it may not always be the case that the
tree grows one foot per year. For example, some years the tree may not grow
appreciably. We can define a straightforward function for the case when a tree
does not grow in a given year.

notGrow :: Height -> Height
notGrow h = h

We then have two growth functions, grow and notGrow, which we can combine
to create a probabilistic growth function. Assume there is an 80% chance that
a tree grows by one foot a year; otherwise, its height stays unchanged. We can
represent this probabilistic function using an enumeration constructor, which
allows one from a group of functions to be selected with given probabilities.

probGrow :: Height -> Dist Height
probGrow = enumT [0.8, 0.2] [grow, notGrow]

In this case, we have constructed a probabilistic function which has an 80%
chance of being the function grow and a 20% chance of being the function
notGrow. The defined function probGrow itself maps an integer into a collection
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module Tree2 where

import Probability

type Height = Int

height :: Height
height = 5

grow :: Height -> Height
grow h = h + 1

notGrow :: Height -> Height
notGrow h = h

probGrow :: Height -> Dist Height
probGrow = enumT [0.8, 0.2] [grow, notGrow]

Figure 2: The revised tree model Tree2.hs.

of integer values each with an associated probability, representing the different
possible tree heights and their likelihood. The type of such a collections of Int
values tagged with probabilities is Dist Int, which is equivalent in the current
example to Dist Height.4

In order to use probabilistic functions, we need to include the probability
library. Here is the new code, which is contained in the file Tree2.hs, which is
shown in Figure 2.

We can load this program into GHCi as before, but now we can employ the
probabilistic function probGrow. After one year, the tree will have grown by
one foot with an 80% probability. We find this result by applying probGrow to
height.

*Tree2> probGrow height
6 80%
5 20%

If we wish to apply the probabilistic growth function multiple times, we cannot
simply apply probGrow to the result of another probGrow application as we
did before with the function grow. Why? Because the types do not match:
Remember that probGrow requires an integer as an argument (recall that Height
is just another name for the type Int), whereas the application of probGrow
yields a distribution of integers. Moreover, it is not really clear what it should
mean to apply an integer function to a distribution of integers. What we really

4A probabilistic function is also called a transition. In general, a transition takes some
value of type T and produces a distribution of possible new values of the same type. In
general, whenever we see a type T -> Dist T for any type T, we call this a transition on T,
and represent it with the type Trans T. For example, the function probGrow has type Height

-> Dist Height, which we can alternatively consider as Trans Height, a transition on heights.
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want to have is that the transition probGrow is applied to each value in the
distribution combining the probabilities of the input with the probabilities of
the values from the computed result distribution. The library provides such a
function called *. which will repeatedly apply a probabilistic function a given
number of times on some input. We can find out the height of the tree after,
for example, five years, as follows.

*Tree2> (5 *. probGrow) height
9 41%
10 33%
8 20%
7 5%
6 1%
5 0%

Notice that the results are presented sorted by likelihood, with the most likely
results shown first. Also note that the probabilities are rounded to 0 decimal
places by default.

5 Visualization

In many cases, it can be easier to understand and compare distributions when
they are graphed, as opposed to simply a list of probabilities. Our library
provides graphing functionality through the statistical package R. Once you
have the distribution, or distributions, that you want to graph, the library
provides functions that can produce R files to visualize the distributions. We
provide access to a number of R graphical customizations to make the resultant
graphs both useful and aesthetic.

5.1 Figures and Plots

Continuing the tree growth example, assume we want to plot the distribution
of tree heights after five years. We have previously seen that the command
(5 *. probGrow) height produces this distribution. We can graph it in a
straightforward way using the plotD and fig functions. First, we have to load
the program Tree3.hs into GHCi, which ensures that the module defining the
visualization functions is loaded. Then we can try to create a figure containing
one plot as follows. The plotD function takes a distribution and creates a plot
out of it. A plot is a single line with attributes such as color and line type. A
list of one or more plots can be composed into a figure by the fig function. In
the shown example, the list contains just one plot.

*Tree3> fig [plotD ((5 *. probGrow) height)]
*Tree3>

Although no result occurs in the interactive GHCi session, a file FuSE.R has
been created that can be opened in R. Once R is started, we can load the file
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from R’s interpreter as follows.

> source("FuSE.R")

At this point, a graph, like the one shown in Figure 3, should appear on the
screen.
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Figure 3: Five Year Plot

At this point, the graphic looks rather plain and boring. Later, we will show
how to customize titles, labels, and colors and how to define a legend.

Although this graph effectively shows the tree height at five years, how does
this compare to the height at ten or fifteen years?

We can use similar commands, namely (10 *. probGrow) height and (15
*. probGrow) height to find out the distribution at ten and fifteen years. In
order to simplify our task slightly, we can define a new function which produces
a distribution of heights at a given number of years.

type Year = Int

heightAtTime :: Year -> Dist Height
heightAtTime n = (n *. probGrow) height

To clearly document what the function does, we have introduced another type
definition for years. The function heightAtTime simply substitutes whatever
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number it is given into the function call we have already determined for com-
puting distributions. Since our goal is to eventually turn distributions into
plots placed in a figure, we can go one step further and define heightAtTime to
directly produce a Plot value instead of a distribution.

heightAtTime :: Year -> Plot
heightAtTime n = plotD ( (n *. probGrow) height)

Now we can use the function fig to produce a figure with, say, three, plots.

fig [heightAtTime 5, heightAtTime 10,heightAtTime 15]

We can simplify the above expression even further by using the Haskell function
map that allows a function to be repeatedly applied to a list of values. In the
present example heightAtTime is applied to three values. Instead of writing
the application three times, we can use the following shorter form

*Tree3> fig (map heightAtTime [5,10,15])
*Tree3>

We see that map is a function that takes two arguments, a function (here:
heightAtTime) and a list of values whose type match the argument type of
the function argument (here: [5,10,15]), and applies the function to each ele-
ment of the list producing a list of the results of each application (here: the list
of plots for 5, 10, and 15 years). This list is then used as an argument for the
fig function.

The figure is again created as an R file called FuSE.R, which can be loaded
into R to produce the graph shown in Figure 4.

This graph, however, could be confusing. Which lines refer to which years?
The data is fundamentally being represented, but it is not annotated in a clear
way.

5.2 Customizing Visualizations

We allow the user to set options on how they would like the plots and figure
rendered. In this case, we would like to draw each curve in a different color, and
give it a corresponding label in the legend. We use the following curly bracket
notation to assign options to individual plots. For example, to give the plot of
five years the color of blue and the label “5 Years”, we modify it to be:

(heightAtTime 5){color=Blue,label="5 Years"}

Note the added parenthesis around heightAtTime 5. If these were not present,
the options would attempt to apply to the integer value 5, which does not make
sense since an integer is not a plot with customizable options. If we likewise
assign green to ten years and red to fifteen years, we can create a figure with
three plots as follows.
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Figure 4: Five, Ten, and Fifteen Year Plot

fig [(heightAtTime 5){color=Blue,label="5 Years"},
(heightAtTime 10){color=Green,label="10 Years"},
(heightAtTime 15){color=Red,label="15 Years"}]

Again, this requires a lot of typing, and again, we can simplify this expression
by introducing another function that creates a plot given a year and a color.
To put the year (which is a number) into the label (which is a string), we
employ the show function that can convert numbers (and other values) into
strings. We then connect the two strings with the concatenation function ++.
The function uses the tuple notation to accept a pair of values, in this case a year
and a color. Alternatively, we could have defined heightCurve as a function of
two parameters (i.e. with type Year -> Color -> Plot). However, the given
definition facilitates the mapping across a list of arguments.

heightCurve :: (Year,Color) -> Plot

heightCurve (n,c) = (heightAtTime n){color=c,label=show n++" Years"}

To create the figure, we wish to create a list of plots by applying our
heightCurve function to a series of year and color tuples. As we have al-
ready done with heightAtTime, we can employ the map function to create a list
based on applying a function to each element in a list. In this case, we apply
the heightCurve function to a list of color and year tuples, which creates a list
of plots, precisely what is needed by the fig function.
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map heightCurve [(5,Blue),(10,Green),(15,Red)]

In addition to customizing the appearance of the plot lines, we can use, instead
of fig, the function figP, which allows a set of figure-wide parameters to be
specified. These parameters include a general title and labels for the x and y
axes. It is also possible to customize the output filename with these options.

In this case, we want to set the general title to “Tree Growth”, and label
the x axis with “Height” and the y axis with “Probability”. We achieve these
changes by modifying the default figure environment, called figure, with the
same curly bracket notation that we have already used for modifying individual
plot settings. We resultant expression is shown here.

figP figure{title="Tree Growth",
xLabel="Height (ft)",
yLabel="Probability"}

(map heightCurve [(5,Blue),(10,Green),(15,Red)])

To save the typing this long expression into the GHCi interpreter, we have placed
a definition fig3 = ... into the program Tree3.hs, which enables the creation
of the figure by just entering that name. We also define the value growthFig as
the shown customized figure parameter setting to reuse it for other plots to be
produced later.

*Tree3> fig3
*Tree3>

Again, the result is an R file that can be loaded from the R interpreter. Plotting
the results of this function gives us a very presentable result shown in Figure 5.

For cases in which the actual choice of the colors doesn’t matter, we also
provide the function autoColor that allows a very quick creation of multiple
distinguishable plots in one figure. For example, the expression

fig (autoColor (map heightAtTime [5,10,15]))

creates an output that looks, except for the customized labels, exactly like Figure
5. The complete program Tree3.hs is shown for reference in Figure 6.

6 Employing Randomization in Simulations

The examples shown thus far elucidate the core of our simulation library. Al-
though the examples are purposefully simple, they can be scaled to produce
more complex results with more details. In this and the following two sections
we will explore different directions to extend simple models.

In this section we address the problem that the number of elements in a
distribution grows exponentially at each step. In a short number of steps, the
distribution will be too large to fit in memory, or too slow to manipulate. In
these cases, we can use randomization to select elements from distributions and
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Figure 5: Five, Ten, and Fifteen Year Plot, with Annotations

use such representative samples to approximate the results in tractable time
and space.

We start by introducing the concept of a randomized values in Section 6.1.
We then introduce how to produce randomized distributions and transitions,
and their application to simulation in Section 6.2.

6.1 Randomized Values

Remember that a distribution (of type, say Dist T) is basically a collection of T
values with attached probabilities that describe all the different possible results
of a value or function and how likely they are to occur. The pick function allows
the selection of exactly one value from such a collection, randomly yielding one
of the values according to the specified probability. The result of applying
pick to a distribution is not simply a T value, but a randomized T value. In
particular, different applications of pick to the same distribution might yield
different results. This fact is reflected in the type of the returned value, which
is R T instead of T.

Randomized values require a special treatment to be printed. If we just
apply pick to a distribution, the randomly selected value will not be printed.

*Tree3> pick (probGrow height)
*Tree3>
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module Tree3 where

import Probability
import Visualize

type Height = Int
type Year = Int

height :: Height
height = 5

grow :: Height -> Height
grow h = h + 1

notGrow :: Height -> Height
notGrow h = h

probGrow :: Height -> Dist Height
probGrow = enumT [0.8, 0.2] [grow, notGrow]

heightAtTime :: Year -> Plot
heightAtTime n = plotD ((n *. probGrow) height)

heightPlot :: (Year,Color) -> Plot
heightPlot (n,c) = (heightAtTime n){color=c,label=show n++" Years"}

growthFig = figure{title="Tree Growth",
xLabel="Height (ft)",
yLabel="Probability"}

fig3 = fig [heightAtTime 5]

fig4 = fig (map heightAtTime [5,10,15])

fig5 = figP growthFig (map heightPlot [(5,Blue),(10,Green),(15,Red)])

fig5b = fig (autoColor (map heightAtTime [5,10,15]))

Figure 6: Using visualization with the tree model Tree3.hs.

However, we can expliticly demand the printing of randomly selected values
using a printR function as follows.5

*Tree3> printR $ pick (probGrow height)
6

Now we can observe that the repeated evaluation of the same expression yields
5The reason for the additional syntax has to do with Haskell’s type system and how random

numbers are generated through a monad. An understanding of the background is not needed
to use randomized values.
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different results. 6

*Tree3> printR $ pick (probGrow height)
5
*Tree3> printR $ pick (probGrow height)
6
*Tree3> printR $ pick (probGrow height)
6

About 80% of the time, we should see a 6, and a 5 the rest of the time. We
can use the function random to turn a transition into a randomized function
which generates a single value from the resultant distribution. Such a function
is called a RChange because it takes one value and produces one randomized
value.

6.2 Randomized Transitions

Recall that a normal transition is a function of type a -> Dist a that produces
a distribution of elements from one input. We also use the type abbreviation
Trans a for a normal transition. As already mentioned, the type R a indicates
when a value is random and may be different from run to run. A randomized
transition produces a distribution of values that may change from run to run—
representing an approximation of a transition. This is similar to the type Trans,
so we define the type RTrans.

type RTrans a = a -> RDist a

Usually, such a transition is constructed from a regular transition by repeatadly
selecting one of the elements from the resulting distribution. This selection is
performed with respect to the probabilities in the distribution.

In order to construct a randomized distribution, the system picks a specified
number of items from a regular transition. This number of items can be con-
sidered a quality-computation tradeoff, with more computation converging the
randomized distribution to the actual distribution.

We introduce the simulation function ~. to produce a randomized transition
from a regular transition.

(~.) :: Int -> Trans a -> RTrans a

The integer value indicates how many samples to take from the transition when
producing the randomized distribution. We can assume, for example, that we
want to take ten samples. We can create such a randomized transition as follows.

rProbGrow :: RTrans Height
rProbGrow = 10 ~. probGrow

6In particular, trying out these examples will generally lead to different sequences of 6s
and 5s.

15



We’d also like to be able to find out what the height is at a particular given
year. In order to accomplish this, we introduce the function ~*.. This function
combines the simulation and randomization aspect of ~. and the iteration aspect
of *.. Precisely, the function uses random selection to pick a single element for
each step of the iteration, and accumulates the requested number of samples at
the final step.

(~*.) :: (Int, Int) -> Trans a -> RTrans a

The two integer parameters represent the number of samples and the number
of iterations, respectively. We can extend the rProbGrow function to allow us
to take a sample at a given year in the function rHeightAtTime.

rHeightAtTime :: Year -> RDist Height
rHeightAtTime n = ((10,n) ~*. probGrow) height

Since these transitions consider only a fixed number of elements, they are much
faster than the exponentially explosive deterministic computations. For exam-
ple, attempting to deterministically compute the distribution of heights at year
one hundred would previously have taken some time (at least several seconds).
Using the randomized transition, however, is much faster.

*Tree4> printR $ rHeightAtTime 100
85 20.0%
86 20.0%
87 20.0%
78 10.0%
81 10.0%
83 10.0%
84 10.0%

A randomized distribution can be converted into a plot using the plotRD
function, which behaves identically to the plotD function, except that it takes
a randomized distribution. With these two functions, we can create a function
to generate a randomized height curve.

rHeightCurve :: (Int,Year,Color) -> Plot
rHeightCurve (runs,n,c) = (plotRD (( (runs,n) ~*. probGrow) height))

{color=c,label=show n++" Years" ("++show runs++" Runs)"}

Finally, we can create a graph that compares the deterministic curve with two
random ones.

fig7 = figP growthFig
[heightCurve (20, Blue),
rHeightCurve (500, 20, Green),
rHeightCurve (25, 20, Red)]
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We will compare the results of a deterministic calculation of the height at year 20
with two simulations: one with five hundred simulation runs, and another with
only ten. This shows how increasing the number of simulation runs increases
the accuracy of the approximation. The result is shown in Figure 7. We see that
as the number of runs increases, the general accuracy of the curve increases.
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Figure 7: Twenty Years, Randomized vs. Deterministic

The advantage of the randomizing technique comes in the ability to control
how much processing time is spent on the task. If greater accuracy is desired,
the number of runs can be increased, and more time spent. If a quick result is
desired, the number of runs can be decreased and the margin of error becomes
wider.

7 Remembering Intermediate States Through
Tracing

As simulation complexity increases, some computational aspects become diffi-
cult. If, for example, we wished to evaluate the growth of the tree at each year
for one hundred years, it would be quite redundant to calculate it first for one
year, then separately for two years, and again for three, and so on. Instead, we
could calculate the growth for one hundred years and simply keep track of all
intermediate results.
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Tracing functions generate a list of all intermediate results obtained from a
simulation. In deterministic simulations, this includes each distribution along
the way. In randomized simulations, this is intermediate random value pro-
duced.

To facilitate tracing, we introduce the types Trace and Space, and their cor-
responding function types Walk and Expand. A Trace is simply a list of values,
representing one value for each step. Since our transitions work in probability
distributions, however, we actually need a distribution at each step. This is
handled by a Space, which holds each intermediate distribution.

type Trace a = [a]
type Space a = Trace (Dist a)
type Walk a = a -> Trace a
type Expand a = a -> Space a

Each of these is also provided in a randomized form.

type RTrace a = R (Trace a)
type RSpace a = R (Space a)
type RWalk a = a -> RTrace a
type RExpand a = a -> RSpace a

Transitions can be converted into trace function using *.. and ~... These work
just like *. and ~*., except that they record each intermediate step.

(*..) :: Int -> Trans a -> Expand a
(~..) :: (Int, Int) -> RTrans a -> RExpand a

For example, we can use ~.. to observe the growth of a tree over 10 years. Note
that the most recent value is shown first. If we want to obtain only one sample
per year, we set the sample rate to 1. In this example, the tree grew from the
initial height of 5 steadily until 9, where by chance it stayed for four years,
then grew further. Note that the syntax is identical to that of ~*.. Since this
produces a randomized value, we still need the printR $ in order to display the
results.

*Tree4> printR $ ((1,10) ~.. (random probGrow)) height
[12 100.0%
,11 100.0%
,10 100.0%
,9 100.0%
,9 100.0%
,9 100.0%
,9 100.0%
,8 100.0%
,7 100.0%
,6 100.0%
]
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Traces are useful for plotting the development of values over time. The function
expected takes a numeric distribution and computes the weighted average of
it. We can take the expected value at each year of tree growth to plot what the
expected height of the tree will be over time.

We can accomplish this by mapping the function expected to each element
in the trace of the tree growth over time. This will produce a single curve which
we can plot using the list plotting function plotL. We use plotL instead of
plotD because we are not plotting probabilities here but values. Notice that
x- and y-axis labels have changed to represent the new aggregate data being
plotted. Since the data comes most recent first, but we want to plot it oldest
first, we apply the reverse function to reverse the list.

figP figure{title="Tree Growth",xLabel="Year",
yLabel="Height (ft)"}
[plotL (reverse (map expected
( (15 *.. probGrow) height)))]

This alone would not be very interesting, so we combine it with a randomized
run to compare the accuracy. We have purposefully set the number of simulation
runs low so that differences between the actual expected value and randomized
expected value can result.

aggregateTrace t = reverse (map expected t)

fig8 = figP figure{title="Tree Growth",xLabel="Year",
yLabel="Height (ft)"}
(autoColor
[(plotL (aggregateTrace
( (15 *.. probGrow) height)))
{label="Expected Growth"},
(plotRL (mapR aggregateTrace

( ( (5,15) ~.. probGrow ) height)))
{label="Randomized Expected Growth"}])

Note that the function mapR is needed to generate the expected result for each
distribution in the randomized trace. This is because the aggregateTrace
function works on distributions, not randomized distributions. The function
plotRL creates a plot given a randomized list. The result is shown in Figure 8.
Using functions which aggregate distributions (such as expected) we can move
from simply plotting probabilities to mining deeper results from our simulations.

8 Structured Modeling with Probabilistic Data
Types

As simulations become reasonably complex, there will often be sets of highly
organized data which need to be manipulated. In our example so far, we have
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Figure 8: Expected Height Over 15 Years

manipulated a single number, the height of the tree. However, real simulations
often have many structured collections of variables. Such simulations can be
effectively represented through data structures, which can be acted on proba-
bilistically in the same way as a simple number.

...

9 Case Study: A Model for the Evolution of
micro RNAs

Biologists have determined that over generational time genomes experience
evolutionary development. Part of this development includes genes from the
genome being duplicated, and occasionally an inverted duplication. The du-
plications and inverted duplications can interact in some instances through
microRNAs. MicroRNAs are transcribed from inverted duplications and can
attach to duplicated genes to inhibit their expressiveness, as shown in Figure 9.
Note that inverted duplication and duplication both represent DNS sequences.
In other words, when a duplication and inverted duplication are interacting,
the genetic function of that duplication is suppressed. An important biological
question is under what circumstances these microRNAs can develop.

To this end we had to model a genome that accumulates changes over time.
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Figure 9: Effects of microRNAs on Gene Duplications

The genome consists of multiple genes, each of which is either capable of inter-
action with inverted duplications or not, depending on the number of changes
accumulated. The biologists felt that modeling various duplications of a single
gene was sufficient. Therefore, the only information we need about each dupli-
cation (gene) is the number of changes it has accumulated. Our goal was to
simulate how long any gene of the genome would remain in the state of inter-
action given a variety of initial conditions, such as varying rate of changes for
different parts of the genome and different numbers of genes.

Our simulation used a genome consisting of Dups and one inverted dupli-
cation IDup. An inverted duplication had three parts that could accumulate
changes. These three parts arise from the fact that an inverted duplication is
a strand of RNA folded onto itself. This can be viewed as two strands (called
sense and anti-sense) and a loop. Changes in the loop are not significant for
this model, and so it was not represented.

In addition to a given number of Dups, we also had a given number of Units.
Each gene was broken into that many units, and the sense and anti-sense of
the inverted duplication also had that many units. We represented the inverted
duplication with a list of Bins, where a Bin is simply a pair of units.

type Unit = Int
type Bin = (Unit,Unit)

type Dup = [Unit]
type IDup = [Bin]
type Genome = (IDup,[Dup])

The biologists told us that, in the beginning, all the genes could interact with an
inverted duplication. They called this state “full” interaction. Over evolution-
ary time, changes accumulate. If, for any duplication, the number of changes
in that duplication plus the number of changes in the anti-sense of the inverted
duplication were five or more, that duplication stopped interacting with the
inverted duplication. In other words, the genetic function of that duplication
could no longer be suppressed by a microRNA. If some duplications were inter-
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acting, the state was “partial”. If none were interacting, the state was “none”.
In addition, if enough changes accumulated in the inverted duplication alone (a
total of five between the sense and the anti-sense), then the inverted duplica-
tion was considered lost, and all interaction stopped. This behavior is directly
implemented with the function interaction.

data Interaction = Loss | None | Partial | Full

The state of Loss occurs when the pairs of the inverted duplication lined up
sequentially had no pattern where the sum of changes between one sense and
anti-sense was less than 11, the sum in the next less than 6, and the sum in the
next less than 11. In other words, we rolled a 10-5-10 upper bound across the
inverted duplication, and if no match was found, it was considered lost.

match x y z = x <= 10 && y <= 5 && z <= 10

The function defunct determines if an inverted duplication has been lost. This
function takes three sequential pairs from an inverted duplication. Each pair
(si,ai) consists of a sense si and anti-sense ai, which are represented as
integers giving the number of accumulated changes. If the sum of the changes
in the first pair and the third pair is less than or equal to 10, and the sum of the
changes in the second (middle) pair is less than or equal to 5, then the inverted
duplication is not defunct (not lost), so the function returns False. If the first
three pairs do not, however, match the 10-5-10 pattern, the function shifts one
pair down the sequence and looks again. If the function reaches the end of the
sequence of pairs, and no sequence of three matching the pattern is found, the
inverted duplication is considered lost. Implicitly, this means that all simulation
models must have at least three units to be interesting.

defunct ((s1,a1):(s2,a2):(s3,a3):sx) |
match (s1+a1) (s2+a2) (s3+a3) = False

defunct (_:sa2:sa3:sa) = defunct (sa2:sa3:sa)
defunct _ = True

If the inverted duplication is not lost, we proceed to inspect each gene to see
if it interacts with the inverted duplication. Such interaction is determined
by adding the changes in each unit in the gene to the anti-sense unit in the
associated pair of the inverted duplication. If the sum is less than 5 for any
unit pair, the gene is considered to interact with the inverted duplication. This
concept is shown in Figure 10.

interact :: IDup -> Dup -> Bool
interact i d = any (<=4) $ zipWith (+) (map snd i) d

Gene interaction is tested for all genes, and the genome interaction state is
determined by comparing the number of genes which interact with the total
number of genes. If all genes interact, interaction is Full. If no genes interact,
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Figure 10: The Test of Interaction

interaction is None. If some genes interact, interaction is Partial.
We define interaction as a function from a genome to an interaction state.

The function interaction takes a Genome, which is a pair consisting of an
inverted duplication i and a sequence of genes gs. The function defunct de-
termines if the given inverted duplication is lost. If so, the interaction func-
tion always returns Loss. Otherwise, the number of genes g is determined by
computing the length of the list gs, along with the number of genes currently
interacting with the inverted duplication, which is determined by filtering the
sequence of genes to retain only those that interact, and then counting them.
These two values are then used to determine the interaction state as None,
Partial or Full as described above.

interaction :: Genome -> Interaction
interaction (i,gs) | defunct i = Loss

| l==0 = None
| l==g = Full
| otherwise = Partial

where l=length (filter (interact i) gs)
g=length gs

Initially, a change could randomly occur anywhere in any unit with equal prob-
ability. However, to model evolutionary pressure, we constructed several models
which defined varying degrees of resilience for the gene parts. In particular, we
used a “variable model” which allowed the genes to receive all the changes that
fell on them, and a “family model” which allowed only one third of the changes
to the duplications to accumulate. The names “variable” and “family” derive
from the biologists’ labels of different classes of genes, in particular, experiments
which showed that some genes were essential to the functioning of an organism
(thus were resistant to change) while others could change freely. The “family
model” represents those genes which are resistant to change, while the “variable
model” represents those which can freely change.

A model is a function which takes the number of genes in a genome and
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creates a probabilistic function which selects to accumulate a change in either
the genes or the inverted duplication based on the number of genes.

type Model = Int -> Trans Genome

In the function mkModel to create a model, enumTT creates a distribution of
transitions. Given the number of genes, x, and that there are 2 parts to the
inverted duplication (sense and anti-sense), we make all units equally likely to
experience a change. The function transAt performs a transition on a pair.
Since genes are the second item in the pair, the gene transition performs the
identity transition on the inverted duplication and a change on the genes, while
for the inverted duplication we perform a correspondingly defined change and
the identity transition on the genes. The definition for genes considers the
probability given in gp, representing a family (gp = 1

3 ) or variable (gp = 1)
model, to determine whether to accept the change or ignore it.

At first glance, a simple uniform function would seem sufficient. However,
since the genes and the idup contain an inequal number of accumulators, simply
applying uniform would not give each accumulator an equal chance of being
selected. Instead, we consider how many accumulators are present in each.
The genome contains n genes, each with u units (accumulators). The inverted
duplication contains u bins, each with two units. In other words, the total
number of units is 2u+ u ∗n. Of those, 2u units are in the inverted duplication
and u ∗ n units are in the genes. Therefore, the probability of selecting a unit
from the genes should be u∗n

2u+u∗n which is the same as n
2+n .

The functions chgGenes and chgIDup apply one change to either a list of
duplications or a list of bins (an inverted duplication), respectively. The location
of the change is a uniform distribution over all possible sites.

mkModel :: Float -> Model
mkModel gp v = enumTT [1-p,p] [genes,idup]

where genes = transAt idT (chgGenes gp)
idup = transAt chgIDup idT
n = fromIntegral v
p = n/(2+n)

A model that accepts all changes is defined by var, and a model that accepts
only one-third of changes to the genes is defined by fam.

var :: Model
var = mkModel 1

fam :: Model
fam = mkModel (1/3)

For each simulation run, we start with a genome that consists of an inverted
duplication with no changes and a list of genes with no changes. We select one
of these genes to be the founder gene and set it aside. The remaining genes
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accumulate a given number of initial changes spread among them. The function
g creates a Genome given an initial chance of changes c, the number of units per
gene u and the number of genes n. This function first constructs the inverted
duplication and genes with 0 changes. A list of n − 1 of genes is constructed,
which has the requested changes randomly applied. The function chgGenes
here is the same as above; it applies one change per call to the given list of
duplications. The parameter 1 indicates that it should not discard any changes.
The founder gene, with no changes, is appended. This completes the creation of
the genome. Once the genome is created, the model transition can be applied
iteratively to produce a trace of the evolution.

type NumUnits = Int
type NumIter = Int

g :: Float -> NumUnits -> NumIter -> R Genome
g c u n = do gs’ <- (m *. (random $ chgGenes 1)) gs

return (zip f f,f:gs’)
where m = round (fromIntegral n*c)

f = list u 0
gs = list (n-1) f

Note the use of random to ensure that the change will produce a single ran-
domized value rather than a distribution. We use the randomization methods
discussed earlier to create an approximate distribution of evolved genomes.

We found that running a full simulation of the genome used tremendous
amounts of memory and time, so we opted for randomized simulations, allowing
the biologists to trade off between detail and time. In order to minimize memory
usage, we performed the aggregation of traces at the outermost level. We avoid
constructing a distribution during each simulation run, holding instead only a
single randomized genome which is built into a randomized trace.

Changes were applied using the model until the interaction entered the state
of Loss. Since these were randomized changes, we only accumulated an RTrace,
which we then put together over many runs to produce an RSpace. We then
analyzed each distribution to count how long the simulation stayed in partial
interaction, as this was the configuration the biologists found interesting.

sumDiff :: [Dist Interaction] -> Float
sumDiff ds = sum (map (prob2Float . ((==Partial) ??)) ds)

We can then simply divide by the number of runs in the space to find the average
time spent in interaction, which we can plot for varying models and number of
genes. An example of the results is shown in Figure 11.
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