

AN ABSTRACT OF THE THESIS OF

Steven Kollmansberger for the degree of Master of Science in Computer Science

presented on December 12, 2005.

Title: A Domain-Specific Embedded Language for Probabilistic Programming

Abstract approved:

Martin Erwig

Functional programming is concerned with referential transparency, that is,

given a certain function and its parameter, that the result will always be the same.

However, it seems that this is violated in applications involving uncertainty, such

as rolling a dice. This thesis defines the background of probabilistic programming

and domain-specific languages, and builds on these ideas to construct a domain-

specific embedded language (DSEL) for probabilistic programming in a purely

functional language. This DSEL is then applied in a real-world setting to develop

an application in use by the Center for Gene Research at Oregon State University.

The process and results of this development are discussed.

c©Copyright by Steven Kollmansberger

December 12, 2005

All Rights Reserved

A Domain-Specific Embedded Language for Probabilistic Programming

by

Steven Kollmansberger

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 12, 2005
Commencement June 2006

Master of Science thesis of Steven Kollmansberger presented on

December 12, 2005

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Ore-

gon State University libraries. My signature below authorizes release of my thesis

to any reader upon request.

Steven Kollmansberger, Author

ACKNOWLEDGMENTS

This thesis would not be possible without the ideas, drive and commitment

of many people. First and foremost, I thank my advisor, Martin Erwig, for shaping

and molding vague ideas into reachable goals. I thank the Committee, namely,

Margaret Burnett, Michael Quinn and Tim Budd, for taking time out of their busy

schedules to attend multiple events and work with me throughout this process.

I would also like to acknowledgement the members of the Center for Gene

Research who spent a year helping us develop the genome evolution model which

provided the impetus for the probabilistic DSEL presented here. In particular,

Jim Carrington, Ed Allen, Kristin Kasschau and Chris Sullivan.

A debt of gratitude must be extended to Paul Cull for his coffee hours,

which provided a crucial place to unwind and bounce ideas around casually.

I appreciate the family and friends who supported me and encouraged me

to hang in there; my parents, Lisa, Brent and John.

Of course, I wouldn’t even be in graduate school if it wasn’t for Susan

Mabry, who pushed and encouraged me to apply and attend.

TABLE OF CONTENTS

Page

1 INTRODUCTION . 1

1.1 Background . 1

1.1.1 Domain-Specific Languages . 1

1.1.2 Probabilistic Programming . 3

1.2 Motivation . 4

1.3 Structure of this Thesis . 6

2 PROBABILISTIC FUNCTIONAL PROGRAMMING 7

2.1 Distributions and Transitions . 7

2.2 The Probability Monad. 9

2.3 Probabilistic Functions . 13

2.4 Two Examples . 15

2.4.1 The Monty Hall Problem . 16

2.4.2 Tree Growth . 20

2.5 Randomization . 23

2.6 Tracing. 29

2.7 Visualization . 32

2.8 Another Biology Example . 37

3 MODELING GENOME EVOLUTION . 42

3.1 Model Prototyping . 42

3.2 A Model of Genome Evolution. 46

4 RELATED WORK. 53

4.1 Simulation and Control . 53

TABLE OF CONTENTS (Continued)

Page

4.2 Functional and Monadic Probability Systems . 57

4.3 Biological Modeling Methods and Languages . 59

4.3.1 Algebraic Systems . 60

4.3.2 Graph Systems . 61

4.3.3 Low-level Simulations . 63

4.3.4 Domain-Specific Analogies and Languages 64

4.3.5 Biological Calculi . 68

5 CONCLUSION . 71

BIBLIOGRAPHY . 72

APPENDICES . 79

APPENDIX A Overview of Monads . 80

APPENDIX B Source Code Availability . 84

LIST OF FIGURES

Figure Page

2.1 Composition in Action . 11

2.2 Creating a Randomized Distribution . 25

2.3 Tree Height at Five Years . 34

2.4 Tree Height at Five Years, with Labels . 35

2.5 Tree Height at Three, Five and Seven Years . 36

2.6 Tree Height, with Color and Legend, at Three, Five and Seven Years . 37

2.7 Probabilistic (on the left) and Deterministic (on the right) Preda-
tor/Prey Simulation over 500 Generations . 41

3.1 Effects of microRNAs on Gene Duplications . 43

3.2 The Test of Interaction . 46

3.3 Simulation Results . 52

LIST OF TABLES

Table Page

2.1 Comparing the maximum heap size (in kilobytes) for fully simulated
and randomized tree growth simulations . 28

2.2 Four Basic Iteration Operators and Their Result Types 32

4.1 The Predator-Prey Model in Two Takes . 64

A Domain-Specific Embedded Language

for Probabilistic Programming

1. INTRODUCTION

At the heart of functional programming rests the principle of referential

transparency, which in particular means that a function f applied to a value x

always yields one and the same result y = f(x). This principle seems to be

violated when contemplating the use of functions to describe probabilistic events,

such as rolling a die: It is not clear at all what exactly the outcome will be, and

neither is it guaranteed that the same value will be produced repeatedly.

This thesis addresses this issue of representing uncertainty in functional

languages with a domain-specific embedded language (DSEL) for performing prob-

abilistic computation in a pure functional language (Haskell). The DSEL is ap-

plied to a real problem outside the domain of computer science.

1.1. Background

This thesis ties together the seemingly disparate concepts of domain-

specific embedded languages (DSELs) and probabilistic programming. Both of

these concepts are supported by a wide body of literature.

1.1.1. Domain-Specific Languages

Beyond the development of traditional, general-purpose programming lan-

guages, certain applications required the use of specialized languages. These lan-

2

guages came to be known as domain-specific languages (DSLs) [4]. Many domain-

specific languages exist and remain popular to this day. Database queries, for

example, are often performed using SQL, which is a domain-specific language for

querying relational databases. Popular domain-specific languages also exist for

compiler construction [33] and document formatting [38]. Many other fields, such

as video driver design [64], also sport DSLs.

However, domain-specific languages have many weaknesses. Since they

only operate on a small application domain, they are often used (embedded)

within a larger general purpose language as strings. This prevents any checking

of the DSL program before run-time. Even if the DSL supports advanced compile

time checks, the compiler for the host language will see only a string, and the DSL

error will not be caught until it is run.

Another difficulty comes from the need to mix features of host language

and the DSL. This is often done by performing all the computation in the host

language, then generating a string which represents the appropriate DSL program.

Sometimes an awkward mix of host and DSL processing is used that introduces

unnecessary complexity. Such constructions also introduce substantial opportu-

nity for error. For example, in the domain-specific language SQL, strings are

terminated with a single quote. If you were going to insert the string Mary’s

little lamb into the database, and just inserted it into a query string, the SQL

compiler would interpret the ’ as closing the string, and an error would occur.

This error could, in some cases, be used to modify the intent of the original SQL

query. A whole class of exploits known as SQL injection attacks [5] take advantage

of this phenomenon.

3

A final difficulty arises from requiring the programming to use and remem-

ber various languages. In addition to the host language, the programmer will need

to be well versed on the syntax and operators of each DSL they use.

In many cases, however, it is possible to achieve the advantages of a DSL

without the disadvantages. This is done by constructing the DSL out of elements

of the host language, thus allowing all host language features to be used. Thus,

instead of strings, the domain-specific language is represented by combinators and

variables defined and typed in the host language. Languages following such an

approach are called domain-specific embedded languages (DSELs) [32].

1.1.2. Probabilistic Programming

Early simulations used general-purpose languages, such as C or Fortran.

Probabilistic computation was performed explicitly, using random numbers. Such

an approach forces an undesirable coupling of problem and implementation. Later,

domain-specific languages such as MATLAB were introduced which provided con-

structs for simulation, although still through the vein of random numbers [59].

Simulation languages, such as Simulink [14] and Psim-J [25], were devel-

oped to provide the essential components of process and object interaction to

simulation designers who are not professional programmers. These systems al-

lowed a more implicit representation of random numbers, with a focus on the

actual probabilities involved in behavior.

A Bayesian DSL was introduced by Park, et al. [48, 47]. The language

shown completely abstracts away the process of selecting random numbers, leaving

the user to specific only probabilities. However, the authors’ work is includes only

4

a fixed random sampling based on probabilities, and does not allow complete

distribution construction.

It is not intrinsically necessary to bring in random numbers when dealing

with probabilities. Various authors have shown that probability distributions can

be seen as a monad [22], which is a method for encapsulating computation. In this

case, a distribution is simply a list of values and their probabilities. A computation

is given in the general form of a function from a value to a distribution. The

monad then threads the function, applying it to each value in the distribution,

and combining the results to create a new distribution [50].

By abstracting away the use of random numbers, we can present a uniform

interface to the concept of probabilistic programming. A back-end system can use

random numbers as needed to select elements from a distribution, or maintain an

entire distribution in the monadic way.

1.2. Motivation

A primary occupation of scientists is to devise models of observable pro-

cesses. These models may be formal and mathematical, or informal ideas and

sketches. In general, such models cannot be executed, simulated nor verified di-

rectly. Instead, scientists have to translate their model first into a programming

language.

Traditionally, simulations for scientific models were written in the program-

ming language of their day, such as Fortran or C. Later simulations were also

written in mathematical packages such at MATLAB. Recently, some researchers

have developed domain-specific modeling tools for biological processes [41, 46, 13].

5

Many of these approaches, however, are merely speculation and have not

been used in an actual research application. In addition, many of them are limited

to only the particular given model, and so general computation cannot be mixed

with the scientific specification. For example, the bio-ambients approach requires

any model to be given in terms of a hierarchical chain of interacting objects [52].

On the other hand, some approaches are too general, forcing scientists to adapt

their ideas to fit the general-purpose constructs given by the system. For example,

the pathway logic system presents a general algebraic rewrite approach without

specific support for constructs that may appear in biological systems [19].

We approach the problem driven by a specific application: In conjunction

with the Center for Gene Research at Oregon State University, we have developed

a model for the evolution of microRNAs [21, 12, 1], which has enabled scientists

to predict what types of genome sequences are most likely to exhibit active mi-

croRNAs. This result is important since microRNAs are an essential regulatory

mechanism for controlling gene expressiveness. The model is realized with the help

of our domain-specific embedded language (DSEL) for probabilistic programming

[20].

We have chosen a DSEL approach because it yields a language that offers

constructs general enough to represent any computation, but specific enough to

be very closely related to the model. We found that the scientists did not know

at the outset all the precise details of the model they wanted to represent. There-

fore, choosing a DSEL approach allowed rapid prototyping and iteration as we

developed the model from the ground up. We constructed the DSEL in Haskell

because it offered a number of unique features that allowed “behind-the-scenes”

operation (through monads), allowing the written code to closely resemble the

biological concepts.

6

1.3. Structure of this Thesis

This thesis introduces a DSEL for probabilistic programming. In Chapter

2, we describe the Probabilistic Functional Programming library in detail, and

provide copious examples of its application. A significant application, a model

of genome evolution, is presented in Chapter 3. Related work, both regarding

biological computation and probabilistic programming, is given in Chapter 4.

Finally, closing words and conclusions appear in Chapter 5.

7

2. PROBABILISTIC FUNCTIONAL PROGRAMMING

In this chapter, we introduce the Probabilistic Functional Programming

(PFP) DSEL. The core of the PFP DSEL is a monad for probabilistic computa-

tion. We then provide combinators for combining monads and monadic values.

The end user does not need to be familiar with the technical details of monads to

effectively use the PFP DSEL.

This chapter opens in Section 2.1 with an overview of the two cornerstones

of the DSEL, namely, distributions and transitions. Next, we “open the hood” and

examine some of the technical details behind the implementation in Section 2.2.

Additional functions provided by the library are shown in Section 2.3. We then

break for several examples, demonstrating how the DSEL is applied in Section

2.4. Moving on, we describe how the DSEL provides randomization in Section

2.5, tracing in Section 2.6, and visualization in Section 2.7. A final example to tie

all the concepts together is described in Section 2.8.

2.1. Distributions and Transitions

The probabilistic functional programming approach is based on distribu-

tions. A distribution represents the outcome of a probabilistic event as a collection

of all possible values, tagged with their likelihood.

Distributions can represent events, such as the roll of a die or the flip of a

coin. The function uniform turns a list of values into a distribution where each

value is equally likely. We can define, for example, the outcome of die rolls.

die = uniform [1..6]

8

If we evaluated the value die, we would see all possible values and their probability.

Note that the slight variance from 100% is due to display rounding.

> die

1 16.7%

2 16.7%

3 16.7%

4 16.7%

5 16.7%

6 16.7%

We would also like to be able to work with probabilistic values in a straightfor-

ward way. For this we introduce the concept of a transition. A transition is a

function that takes a value and produces a distribution. For example, we could

define a transition which, given a number, either adds one or doesn’t with equal

probability.

plus1 x = uniform [x, x+1]

For example, if we applied this function to the value one, we would receive:

> plus1 1

1 50.0%

2 50.0%

Creating a distribution of two elements seems to be a common task, so we created

a function just for that purpose. The function choose takes a probability and two

elements, and creates a distribution. We could redefine plus1 using choose.

plus1 x = choose 0.5 x (x+1)

We can then combine these two to roll a die and then possibly add one to the

result. The mechanics of handling all the various values and probabilities is dealt

with automatically by the DSEL.

9

droll = do

d <- die

plus1 d

By either adding or not to each value, we make the extreme values less likely.

> droll

2 16.7%

3 16.7%

4 16.7%

5 16.7%

6 16.7%

1 8.3%

7 8.3%

2.2. The Probability Monad

This section assumes the reader is familiar with the concept of monads in

functional programming. An introduction to monads is given in APPENDIX A.

Distributions are constructed as a list of pairs—value and probability.

The type Dist is parameterized by a type variable a. This allows distri-

butions of different types of elements to be constructed. In the previous section,

we saw distributions of integers (Dist Int), however, distributions can contain

values of any type. In order to differentiate distributions from arbitrary lists, we

use the constructor D. In order to extract the list, pattern matching or a decon-

struction function is required. We provide the function unD, shown here, which

transforms a distribution back into a simple list of pairs.

newtype Probability = P Float

newtype Dist a = D {unD :: [(a,Probability)]}

This representation is shown here just for illustration; it is completely hidden from

the users of the library by means of functions which construct and operate on

10

distributions. In particular, all functions for building distribution values enforce

the constraint that the sum of all probabilities for any non-empty distribution

is 1. In this way, any Dist value represents the complete sample space of some

probabilistic event or “experiment”.

In many cases, we wish to compose functions which operate on probabilistic

values. A versatile approach is to construct functions of the type a -> Dist b

and then be able to compose them. This is precisely the operation of the monadic

bind function.

(>>=) :: Monad m => m a -> (a -> m b) -> m b

In our particular case:

(>>=) :: Dist a -> (a -> Dist b) -> Dist b

A concept that is employed in many examples is the notion of a probabilistic

function, that is, a function that maps values into distributions. For example, the

second argument of the bind operation is such a probabilistic function. Since it

turns out that in many cases the argument and the result type are the same, we

also introduce the derived notion of a transition that is a probabilistic function

on just one type.

type Trans a = a -> Dist a

We can thus make Dist an instance of Monad.

instance Monad Dist where

return x = D [(x,1)]

(D d) >>= f = D [(y,q*p) | (x,p) <- d, (y,q) <- unD (f x)]

fail = D []

The definition of >>= is based on the concept of list comprehension. First, each

element and its probability is extracted from the first distribution by (x,p) <-

11

d. For each element, the transition f is applied (producing a distribution). Each

element and probability is then extracted from this result distribution with (y,q)

<- unD (f x). Each resultant element is accumulated, with its probability being

the probability of x multiplied by the probability of y. This process is diagrammed

in Figure 2.1.

FIGURE 2.1. Composition in Action

The functions return and fail can be used to describe outcomes that

are certain or impossible, respectively. We also use the synonyms certainly and

impossible for these two operations. We will also need monadic composition of

two functions and a list of functions.

(>@>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

f >@> g = (>>= g) . f

sequ :: Monad m => [a -> m a] -> a -> m a

sequ = foldl (>@>) return

We have also defined Dist as an instance of MonadPlus. The class MonadPlus

provides a method for combining two monads. In this case, we can “plus” two

distributions to get a 50/50 selection of the elements in the distributions. As

explained previously, the function choose takes a probability and two elements,

creating a distribution of the two elements. Since the elements are themselves

12

distributions, the result is a distribution of distributions. The function unfoldD

takes such a distributions and flattens it into a single distribution. The function

mzero produces the empty (impossible) distribution.

instance MonadPlus Dist where

mzero = D []

mplus d d’ | isZero d || isZero d’ = mzero

| otherwise = unfoldD $ choose 0.5 d d’

In many cases, we want to transform the elements of a distribution without mod-

ifying the probabilities. The implementation reveals that Dist is also a functor.

We will also use the function name mapD to refer to fmap to emphasize that the

mapping is across distributions.

instance Functor Dist where

fmap f (D d) = D [(f x,p) | (x,p) <- d]

mapD :: (a -> b) -> Dist a -> Dist b

mapD = fmap

The observation that probability distributions form a monad is not new [27]. How-

ever, previous work was mainly concerned with extending languages by offering

probabilistic expressions as primitives and defining suitable semantics [35, 44, 50,

48]. The focus of those works is on identifying semantics to support particular

aspects, such as the efficient evaluation of expectation queries in [50] by using a

monad of probability measures or covering continuous distributions in addition to

discrete ones by using sampling functions as a semantics basis [48] (and sacrificing

the ability to express expectation queries). However, we are not aware of any work

that is concerned with the design of a probability and simulation library based on

this concept.

13

2.3. Probabilistic Functions

The library provides functions for creating and managing distributions, as

well as extracting probabilities and values from them. We can construct distribu-

tions from lists of values using spread functions, that is, functions of the following

type.

type Spread a = [a] -> Dist a

The library defines spread functions for various well-known probability distribu-

tions, such as uniform or normal, and also a function enum that allows users to

attach specific probabilities to values. Probabilities can be extracted from dis-

tributions through the function ?? that is parameterized by an event, which is

represented as a predicate on values in the distribution.

type Event a = a -> Bool

(??) :: Event a -> Dist a -> Probability

(??) p = P . sum . map snd . filter (p . fst) . unD

For example, consider the probability of rolling greater than a three on a six-sided

die. We can represent this event easily using ??.

g3 = (>3) ?? die

Since half of the values are greater than three, we get the expected result if we

evaluate this expression.

> g3

50.0%

In contrast to events, we can combine independent distributions to obtain all pos-

sible combinations of values while multiplying their corresponding probabilities.

Note that the actual combination of all values and multiplication of probabilities

14

is handled automatically by the monad. For efficiency reasons, we can perform

normalization (aggregation of multiple occurrences of a value). The normalization

function is mentioned later.

joinWith :: (a -> b -> c) -> Dist a -> Dist b -> Dist c

joinWith f d d’ = do

x <- d

y <- d’

return (f x y)

prod :: Dist a -> Dist b -> Dist (a,b)

prod = joinWith (,)

Examples of combined independent events are rolling a number of dice. The

function certainly constructs a distribution of one element with probability 1.

dice :: Dist [Int]

dice 0 = certainly []

dice n = joinWith (:) die (dice (n-1))

Having defined distributions as monads allows us to define functions to repeatedly

select elements from a collection without putting them back, which causes later

selections to be dependent on earlier ones. First, we define two functions that, in

addition to the selected element, also return the collection without that element.

selectOne :: Eq a => [a] -> Dist (a,[a])

selectOne c = uniform [(v,List.delete v c) | v <- c]

selectMany :: Eq a => Int -> [a] -> Dist ([a],[a])

selectMany 0 c = return ([],c)

selectMany n c = do (x,c1) <- selectOne c

(xs,c2) <- selectMany (n-1) c1

return (x:xs,c2)

With mapD we can now define the functions for repeatedly selecting elements from

a collection. Note that the function fst is used in select because selectMany

returns a tuple containing the list of selected elements and the list of remaining

15

(unselected) elements. We wish to discard the latter. We reverse the returned list

because the elements retrieved in selectMany are successively cons’ed onto the

result list, which causes the first selected element to be the last in that list.

select :: Eq a => Int -> [a] -> Dist [a]

select n = mapD (reverse . fst) . selectMany n

With this initial set of functions we can already approach many problems found in

textbooks on probability and statistics and solve them by defining and applying

probabilistic functions. For example, what is the probability of getting at least 2

sixes when throwing 4 dice? We can compute the answer through the following

expression.

> ((>=2) . length . filter (==6)) ?? dice 4

13.2%

Another class of frequently found problems is exemplified by “What is the proba-

bility of drawing a red, green, and blue marble (in this order) from a jar containing

two red, two green, and one blue marble without putting them back?”. With an

enumeration type for marbles containing the constructors R, G, and B, we can

compute the answer as follows.

> (==[R,G,B]) ?? select 3 [R,R,G,G,B]

6.7%

2.4. Two Examples

To further illustrate the use of the concepts defined so far, we discuss two

larger examples in this section: The Monty Hall Problem, and a biological example

of Tree Growth.

16

2.4.1. The Monty Hall Problem

In the Monty Hall problem, a game show contestant is presented with three

doors, one of which hides a prize. The player chooses one of the doors, and then

the host opens another door which does not have the prize behind it. The player

then has the option of staying with the door they have chosen or switching to the

other closed door. This problem is given a theoretical probabilistic treatment in

[44], and another approach to representing the problem in a probabilistic language

is shown in [31].

When presented with this problem, most people will assume that switching

makes no difference—since the host has opened a door without the prize, it leaves

a 50/50 chance between the remaining two doors.

However, statistical analysis has shown that the player doubles their chance

of winning if they switch doors. How can this be? We can use our library to

determine if this analysis is correct, and how.

A simple approach is to first consider that of the three doors, only one is

the winning door. Thus, the player’s initial pick has a one third chance of being

the winning door.

data Outcome = Win | Lose

firstChoice :: Dist Outcome

firstChoice = uniform [Win,Lose,Lose]

If the player has chosen a winning door, and then switches, they will lose. However,

if they initially chose a losing door, the host only has one choice for a door to open:

the other losing door. Thus, if they switch, they win. This process can be captured

by a transition on outcomes.

17

switch :: Trans Outcome

switch Win = certainly Lose

switch Lose = certainly Win

We can analyze the probabilities of winning by comparing firstChoice and ap-

plying the transition switch to firstChoice.

> firstChoice

Lose 66.7%

Win 33.3%

> firstChoice >>= switch

Win 66.7%

Lose 33.3%

Therefore, not switching gives the obvious one third chance of winning, while

switching gives a two thirds chance of winning.

We can also model the game in more detail, replicating each step with

the precise rules that accompany them. We first construct the structure of the

simulation from the bottom up. We start with three doors.

data Door = A | B | C

doors :: [Door]

doors = [A .. C]

Next we create a data structure to represent the state of the game by having fields

that indicate which door (A, B, or C) contains the prize, which is chosen, and which

is opened.

data State = Doors {prize :: Door, chosen :: Door,

opened :: Door}

Of course, these will not all be assigned at once, but in sequence. In the initial

state, the prize has not yet been hidden, no door has been chosen, and no door is

open. Since the state will be evaluated only after all fields are set, we can initialize

all fields with undefined.

18

start :: State

start = Doors {prize=u,chosen=u,opened=u} where u=undefined

Now each step of the game can be modeled as a transition on State. First, the

host will choose one of the doors at random to hide the prize behind.

hide :: Trans State

hide s = uniform [s{prize=d} | d <- doors]

The function hide uses another example of a list comprehension. In this case,

we consider each possible door as possibly hiding the prize by accumulating each

door d from the list doors. A transition takes a value of some type and produces

a distribution of that type. In this case, the transition hide takes a State and

produces a uniform distribution of states—one state for each door the prize could

be hidden behind. Next, the contestant will choose, again at random, one of the

doors.

choose :: Trans State

choose s = uniform [s{chosen=d} | d <- doors]

Once the contestant has chosen a door, the host will then open a door that is

not the one chosen by the contestant and is not hiding the prize. This is the

first transition which depends on the value of State it receives by considering the

value of s in the definition.

open :: Trans State

open s = uniform [s{opened=d} |

d <- doors \\ [prize s,chosen s]]

In this case, we first use the function \\ to remove from the list of doors the door

hiding the prize and the door that has been selected. Any of the remaining doors

may then be opened. Next the player can switch or stay with the door already

chosen. Both strategies can be represented as transitions on State.

19

type Strategy = Trans State

Switching means to chose a door that is currently not chosen and that has not

been opened.

switch :: Strategy

switch s = uniform [s{chosen=d} |

d <- doors \\ [chosen s,opened s]]

We can also create a strategy for stay, which would simply be to leave everything

precisely as it already is.

stay :: Strategy

stay = certainlyT id

For constructing transitions which produce a distribution of only one element, we

provide the function certainlyT which converts any function of type a -> a into

a function of type a -> Dist a.

certainlyT :: (a -> a) -> Trans a

certainlyT f = certainly . f

Finally, we define an ordered list of transitions that represents the game: hiding

the prize, choosing a door, opening a door, and then applying a strategy.

game :: Strategy -> Trans State

game s = sequ [hide,choose,open,s]

Recall that sequ implements the composition of a list of monadic functions, which

are transitions in this example.

If, once all the transitions have been applied, the chosen door is the same

as the prize door, the contestant wins.

result :: State -> Outcome

result s = if chosen s==prize s then Win else Lose

20

We can define a function eval that plays the game for a given strategy and

computes the outcome for all possible resulting states.

eval :: Strategy -> Dist Outcome

eval s = mapD result (game s start)

Again, we can determine the value of both strategies by computing a distribution.

> eval stay

Lose 66.7%

Win 33.3%

> eval switch

Win 66.7%

Lose 33.3%

Note that the presented model can be easily extended to four (or more) doors.

All we have to do is add a D constructor to the definition of Door and change C

to D in the definition of doors.

2.4.2. Tree Growth

Consider the simple example of tree growth. Assume a tree can grow be-

tween one and five feet in height every year. Also assume that it is possible,

although less likely, that a tree could fall down in a storm or be hit by light-

ning, which we assume would kill it standing. How can this be represented using

probabilistic functions?

We can create a data type to represent the state of the tree and, if appli-

cable, its height.

type Height = Int

data Tree = Alive Height | Hit Height | Fallen

21

We can then construct a transition function for each state that the tree could be

in. When the tree is alive, it grows between 1 and 5 feet every year. We distribute

these values on a normal curve to make the extreme values less likely.

grow :: Trans Tree

grow (Alive h) = normal [Alive k | k <- [h+1..h+5]]

When the tree is hit, it retains its height, but when fallen, the height is discarded.

hit :: Trans Tree

hit (Alive h) = certainly (Hit h)

fall :: Trans Tree

fall _ = certainly Fallen

We can combine these three transitions into one transition that probabilistically

selects which action should happen to a live tree.

evolve :: Trans Tree

evolve t@(Alive _) = unfoldT (enum [0.9,0.04,0.06]

[grow,hit,fall]) t

evolve t = certainly t

Here we use the function enum to create a custom spread with the given probabil-

ities. We apply this spread to the list of transitions (grow, hit, and fall) which

creates a distribution of transitions. The function unfoldT converts a distribution

of transitions into a regular transition.

unfoldT :: Dist (Trans a) -> Trans a

This transition is then applied to t, the state of the tree, to produce a final

distribution for that year. With an initial value, such as seed = Alive 0, we can

now run simulations of the tree model.

To find out the situation after several generations, it is convenient to have a

combinator that can iterate a transition a given number of times or while a certain

22

condition holds. Three such combinators are collected in the class Iterate, which

allows the overloading of the iterators for transitions and randomized changes (see

next section).

class Iterate c where

(*.) :: Int -> (a -> c a) -> (a -> c a)

while :: (a -> Bool) -> (a -> c a) -> (a -> c a)

until :: (a -> Bool) -> (a -> c a) -> (a -> c a)

until p = while (not . p)

For example, to compute the distribution of possible tree values after n years, we

can define the following function.

tree :: Int -> Tree -> Dist Tree

tree n = n *. evolve

For example, the range of possibilities after two years of growth are substantial—

the tree could be killed right away, or have grown up to ten feet.

> tree 2 seed

Alive 6 16.3%

Alive 7 15.0%

Alive 5 12.8%

Alive 8 11.7%

Fallen 11.4%

Alive 4 8.5%

Alive 9 7.4%

Alive 3 4.6%

Hit 0 4.0%

Alive 10 3.1%

Alive 2 1.7%

Hit 3 0.8%

Hit 4 0.8%

Hit 2 0.7%

Hit 5 0.7%

Hit 1 0.5%

We could also consider following the tree until it either died, or grew beyond five

feet. We use the until function to continually apply the transition evolve until

the tree is dead or has grown beyond five feet.

23

done (Alive x) = x >= 5

done _ = True

ev5 = until done evolve

We find it is still most likely that it will be alive and growing.

> ev5 seed

Alive 5 32.9%

Alive 6 17.0%

Alive 7 15.1%

Fallen 11.3%

Alive 8 10.8%

Alive 9 5.4%

Hit 0 4.0%

Hit 4 1.2%

Hit 3 1.0%

Hit 2 0.8%

Hit 1 0.5%

For large values of n, computing complete distributions is computationally infea-

sible. In such cases, randomization of values from distributions provides a way to

approximate the final distribution with varying degrees of precision.

2.5. Randomization

The need for randomization arises when each transition creates a new set

of values for each value currently in the distribution, thus creating an exponential

space explosion. We provide functions to transform a regular transition into a

randomized change, which selects only one result from the created distribution.

Library users need not design transitions to be randomized. Instead, transi-

tions can be created once, then automatically randomized as needed by employing

corresponding library functions.

24

All randomized values live within the R monad, which is simply a synonym

for IO. Elementary functions to support randomization are pick, which allows

the selection of exactly one value from a distribution, randomly yielding one of

the values according to the specified probabilities, and random which transforms

a transition into what we call a randomized change.

type R a = IO a

pick :: Dist a -> R a

pick d = Random.randomRIO (0,1) >>= return . selectP d

For the function pick, the distribution is considered to span the range zero to one,

with each element having a width equal to its probability. In this case, although

the numbers generated by the random number generator are all equally likely,

they are more likely to fall on “larger” elements (those with higher probabilities).

We can see the use of pick in selecting one value from the die roll. We need the

function printR to extract the result from the monad and display it.

> printR $ pick die

1

> printR $ pick die

6

> printR $ pick die

3

> printR $ pick die

2

> printR $ pick die

5

We can compose pick with a transition to create a randomized change.

type RChange a = a -> R a

random :: Trans a -> RChange a

random t = pick . t

25

Randomly picking a value from a distribution or randomizing a transition is not an

end in itself. By repeatedly applying such a randomized change to the same value,

we can construct an arbitrarily good approximation of the exact probabilistic

distribution. This is known as Monte Carlo sampling [55]. The collection of

values obtained by repeated application of randomized changes can be aggregated

to yield an approximation of a distribution, represented by the type RDist a.

Given a list of random values, we can first transform them into a list of values

within the R monad. Then we can assign equal probabilities with uniform and

group equal values by a function norm that also sums their probabilities. This

process is shown in Figure 2.2.

FIGURE 2.2. Creating a Randomized Distribution

type RDist a = R (Dist a)

rDist :: Ord a => [R a] -> RDist a

rDist = fmap (norm . uniform) . sequence

26

For example, consider rolling a die three times and using those values to build an

approximate distribution. We can do this with pick and rDist.

> printR $ rDist [pick die, pick die, pick die]

1 33.3%

3 33.3%

4 33.3%

> printR $ rDist [pick die, pick die, pick die]

3 66.7%

6 33.3%

Of course, with only three samples the approximation is very crude. However,

by increasing the sample size we can improve the precision of the approximation.

The function replicate produces a list containing n copies of the given argument

(20 and 100, in these cases).

> printR $ rDist (replicate 20 (pick die))

1 25.0%

6 25.0%

5 20.0%

4 15.0%

3 10.0%

2 5.0%

> printR $ rDist (replicate 100 (pick die))

5 19.0%

4 18.0%

1 17.0%

6 17.0%

2 16.0%

3 13.0%

With rDist we can implement a function ~. that repeatedly applies a randomized

change or a transition and derives a randomized distribution. The Ord constraint

27

on a in the signature of ~. is required because the instance definitions are based

on norm (through rDist).1

class Sim c where

(~.) :: Ord a => Int -> (a -> c a) -> RTrans a

...

instance Sim IO where

(~.) n t = rDist . replicate n . t

...

instance Sim Dist where

(~.) n = (~.) n . random

...

In particular, the latter instance definition allows us to simulate transitions in

retrospect. In other words, we can define functions to compute full distributions

and can later turn them into computations for randomized distributions without

changing their definition. For example, the tree growth computation that is given

by the function tree can be turned into a simulation that runs a randomized tree

growth k times as follows.

simTree :: Int -> Int -> Tree -> RDist Tree

simTree k n = k ~. tree n

An example of the space explosion compared to the roughly constant space re-

quirement in randomization is shown in Table 2.1 for the tree growth simulation.

Similarly, for the Monty Hall problem we could randomly perform the trial

many times instead of deterministically calculating the outcomes.

1The function norm sorts the values in a distribution to achieve grouping for efficiency

reasons. Since we have found that in most examples that we encountered defining an Ord

instance is not more difficult than an Eq instance, we have preferred the more efficient

over the more general definition.

28

TABLE 2.1. Comparing the maximum heap size (in kilobytes) for fully simulated

and randomized tree growth simulations

Generations Fully simulated Randomized (500 runs)

5 700 650

6 4000 800

7 19000 800

simEval :: Int -> Strategy -> RDist Outcome

simEval k s = mapD result ‘fmap‘ (k ~. game s) start

In the function simEval, we simulate the game k times with the given strategy,

map the result function (which determines win or loss) and accumulate the

results. With a reasonably high number of runs, the resultant distribution should

closely approximate the actual distribution.

> printR $ simEval 1000 stay

Lose 65.8%

Win 34.2%

> printR $ simEval 1000 switch

Win 68.3%

Lose 31.7%

Since in many simulation examples it is required to simulate the n-fold repetition

of a transition k times, we also introduce a combination of the functions *. and

~. that performs both steps. We add this function to the Sim class.

29

class Sim c where

...

(~*.) :: Ord a => (Int,Int) -> (a -> c a) -> RTrans a

instance Sim IO where

...

(~*.) (k,n) t = k ~. n *. t

instance Sim Dist where

...

(~*.) x = (~*.) x . random

Note that *. is defined to bind stronger than the ~. function. We can thus

implement the tree simulation also directly based on evolve.

simTree k n = (k,n) ~*. evolve

Again, we do not have to mention random number generation anywhere in the

model of the application.

2.6. Tracing

As simulation complexity increases, some computational aspects become

difficult. If, for example, we wished to evaluate the growth of the tree at each

year for one hundred years, it would be quite redundant to calculate it first for

one year, then separately for two years, and again for three, and so on. Instead,

we could calculate the growth for one hundred years and simply keep track of all

intermediate results.

To facilitate tracing, we define types and function to produce traces of

probabilistic and randomized computations. For deterministic and probabilistic

values we introduce the following types.

30

type Trace a = [a]

type Space a = Trace (Dist a)

type Walk a = a -> Trace a

type Expand a = a -> Space a

A walk is a function that produces a trace, that is, a list of values. Continuing

the idea of iteration described in the previous section, we define a function to

generate walks, which is simply a bounded version of the predefined function

iterate, which creates an infinite list by applying a function over and over again

to the previous value.

walk :: Int -> Change a -> Walk a

walk n f = take n . iterate f

Note that the type Change a is simply a synonym for a -> a, introduced for

completeness and symmetry (see RChange a above).

While a walk produces a trace, iteration of a transition yields a list of dis-

tributions, which represents the explored probability space. We use the symbol

*.. to represent the trace-producing iteration. The definition is based on the

function >>:, which prepends the result of a transition to a space. Since a tran-

sition is a function, we also return a function which returns a space, namely an

Expand.

(*..) :: Int -> Trans a -> Expand a

0 *.. _ = singleton . certainly

1 *.. t = singleton . t

n *.. t = t >>: (n-1) *.. t

The potential space problem of “simple” iterations is even more so present in

trace-producing iterations. Therefore, we also define randomized versions of the

types and iterators.

31

type RTrace a = R (Trace a)

type RSpace a = R (Space a)

type RWalk a = a -> RTrace a

type RExpand a = a -> RSpace a

The function rWalk iterates a random change to create a random walk, which can

produce a random trace.

rWalk :: Int -> RChange a -> RWalk a

The definition is similar to that of *.., but not identical, because the result types

are structurally different: While Dist is nested within Trace, R is wrapped around

Trace. This is also the reason why we cannot overload the notation for these two

functions.

Similar to ~. we can now implement a function ~.. that simulates the

repeated application of a randomized change or transition and derives a ran-

domized space, that is, a randomized sequence of distributions that approximate

the exact distributions obtained during tracing. Since ~.. is overloaded like ~.

for transitions and random changes, it can reside in the same class Sim. In the

second instance definition, mergeTraces transposes a list of random lists into a

randomized list of distributions, which represent an approximation of the explored

probabilistic space.

class Sim c where

...

(~..) :: Ord a => (Int,Int) -> (a -> c a) -> RExpand a

instance Sim IO where

...

(~..) (k,n) t = mergeTraces . replicate k . rWalk n t

instance Sim Dist where

...

(~..) x = (~..) x . random

32

Note that the first argument of ~.. is a pair of integers representing the number of

simulation runs and the number of repeated application of the argument function.

The latter is required to build the correct number of elements in the trace unlike

for ~. where only the final result matters.

Applied to the tree-growth example we can now define functions for com-

puting an exact and approximated history of the probabilistic tree space as follows.

hist :: Int -> Tree -> Space Tree

hist n = n *.. evolve

simHist :: Int -> Int -> Tree -> RSpace Tree

simHist k n = (k,n) ~.. evolve

In summary, we have constructed five main operators which transform a transition

into a generator, either random or complete, single-valued or trace. The layout of

the four basic operators is shown in Table 2.2. The fifth operator is ~*., which,

as previously mentioned, is simply the combination of ~. and *..

TABLE 2.2. Four Basic Iteration Operators and Their Result Types

* (complete) ~ (randomized)

. (single) Dist RDist

.. (trace) Space RSpace

2.7. Visualization

Of course, having the output come as a long list of values and probabilities

is neither very interesting nor very useful. Therefore, we have developed a visu-

alization module that presents information in a graph form. Our library provides

33

graphing functionality through the statistical package R. We provide access to a

number of R graphical customizations to make the resultant graphs both useful

and aesthetic.

Consider again the tree example. We can find the distribution of tree

heights after five years with the expression tree 5 seed. However, this distribu-

tion consists of 43 different entries, a mix of living trees, fallen trees, and trees hit

by lightning. We can build a function which extracts the height of a given tree.

height :: Tree -> Int

height Fallen = 0

height (Hit h) = h

height (Alive h) = h

A distribution of values can be turned into a plot using plotD. The function plotD

plots the values on the X-axis and the associated probabilities on the Y -axis. One

or more plots can be transcribed into an R data file using the function fig. Note

that Vis is a synonym for IO (), the IO monad.

plotD :: ToFloat a => Dist a -> Plot

fig :: [Plot] -> Vis

With these functions, we can graph the distribution of tree height at year five with

a straight-forward expression, which produces the graph shown in Figure 2.3.

year5 = fig [plotD $ mapD height (tree 5 seed)]

This graph is very plain. It would be helpful to have some annotations to indicate

what x and f(x) represent. We allow optional annotation for title and axes. This

is done using the figP function which takes figure annotation as well as a list of

plots. In order to allow the user to specify only those annotation of interest, and

so that the annotation may be expanded without breaking existing applications,

annotations are specified as changes from the default figure. The result is shown

in Figure 2.4.

34

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Output

x

f(x
)

FIGURE 2.3. Tree Height at Five Years

year5 = figP figure{title="Tree Growth",

xLabel="Height (ft)",

yLabel="Probability"}

[plotD $ mapD height (tree 5 seed)]

What if we wanted to see the tree’s growth at not only five years, but also three

and seven for comparison purposes? In that case, we can save some space by

defining a function which creates a plot for a given year.

heightAtTime :: Int -> Plot

heightAtTime y = plotD $ mapD height (tree y seed)

Now we can use the function figP to produce a figure with, say, three, plots.

years = figP figure{title="Tree Growth",

xLabel="Height (ft)",

yLabel="Probability"}

[heightAtTime 3, heightAtTime 5,heightAtTime 7]

35

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Tree Growth

Height (ft)

P
ro

ba
bi

lit
y

FIGURE 2.4. Tree Height at Five Years, with Labels

We can simplify the above expression even further by using the Haskell function

map that allows a function to be repeatedly applied to a list of values. In the

present example heightAtTime is applied to three values. Instead of writing the

application three times, we can use the following shorter form. The resultant

graph is shown in Figure 2.5.

years = figP figure{title="Tree Growth",

xLabel="Height (ft)",

yLabel="Probability"}

(map heightAtTime [3,5,7])

Perhaps we can determine which curve refers to which year, but this may not be

obvious to all viewers. It would be nice if there were a straightforward method

for providing a legend or other annotation of each curve. Our system allows each

36

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

Tree Growth

Height (ft)

P
ro

ba
bi

lit
y

FIGURE 2.5. Tree Height at Three, Five and Seven Years

curve to be colored and a legend to be provided. By providing one or more labels,

a legend will automatically be created.

years = figP figure{title="Tree Growth",

xLabel="Height (ft)",

yLabel="Probability"}

[(heightAtTime 3){color=Blue,label="3 Years"}

(heightAtTime 5){color=Green,label="5 Years"}

(heightAtTime 7){color=Red,label="7 Years"}]

As before, we can define a function which will create a plot with for a given year,

and assign it a label and color.

heightCurve :: (Int,Color) -> Plot

heightCurve (n,c) = (heightAtTime n){color=c,label=show n++" Years"}

We use map, as before, to create a new graph with colors and a legend. The final

graph is shown in Figure 2.6.

37

yearsc = figP figure{title="Tree Growth",

xLabel="Height (ft)",

yLabel="Probability"}

(map heightCurve

[(3,Blue),(5,Green),(7,Red)])

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

Tree Growth

Height (ft)

P
ro

ba
bi

lit
y

3 Years
5 Years
7 Years

FIGURE 2.6. Tree Height, with Color and Legend, at Three, Five and Seven

Years

2.8. Another Biology Example

We can bring together many aspects of the DSEL, such as randomization,

simulation and visualization in one example. The Lotka-Volterra predator-prey

model [40] states that the population of predators and of prey can be described

with mutually dependent equations. In particular, given the victims’ growth fac-

tor (g), the predators’ death factor (d), the search rate (s), and the energetic

efficiency, (e), along with the current victim (v) and predator (p) population, a

38

new population count can be determined with the equations g ∗ v − s ∗ v ∗ p (for

victims) and d∗p+e∗v ∗p (for predators). The search rate refers to how able the

predators are to seek out the prey, and the energetic efficiency determines how

much growth the predator population receives from consuming prey. These new

populations can then be rethreaded as input to create a simulation over time.

Consider the case when the growth and death rate are not a known con-

stant, but exist within some probability distribution. We can define them, for

example, using a normal curve.

growth = normal [1.01, 1.02 .. 1.10]

death = normal [0.93, 0.94 .. 0.97]

(s,e) = (0.01,0.01)

The data that we are simulating is the population of victims and predators. We

can represent the population as a pair of floats.

type Pop = (Float,Float)

Recall that we previously stated that distributions could be thought of as a monad.

Monadic sequencing is very helpful in this case. We can create a transition which,

given a Pop, produces a distribution of Pop based on the two distributions and two

constants given above. The equations can be presented in the usual way, letting

the monad do the heavy lifting of extracting values and combining probabilities.

In the transition dvp (short for delta-victim-predator, the change of each

population at each step), all values are extracted by the monad from the distri-

butions growth and death, and are then threaded through the equation, which is

then recombined into a distribution of new values. In other words, this transition

takes a current population and determines all possible new population values, and

their probabilities. Note that the term ‘max‘ 0 is used to ensure that the prey

population can never drop below zero.

39

dvp :: Trans Pop

dvp (v,p) = do g <- growth

d <- death

return (g*v - s*v*p ‘max‘ 0, d*p + e*v*p)

With an initial seed value, such as (v0,p0) = (15,15), we can now simulate the

predator-prey model. However, if we tried this, we would quickly find that this is

a case of strong combinatorial explosion, and we would be unable to simulate more

than a handful of steps! The solution is to introduce randomization. This does

not require any change to our transition, nor any modification of the equation.

We simply use a function to perform 1000 randomized simulations n generations

long to produce a randomized space.

ppt n = ((1000,n) ~.. dvp) (v0,p0)

We then apply the visualization module to present information in a graph form.

We would like to visualize the generations (steps) on the X axis and the

population count on the Y axis. In order to transform a distribution of population

into a single value to plot we use the expected function which computes the

“expected” value based on a weighted average.

We devise a function which operates on the randomized space to extract

distributions of numeric values so that we can apply the expected function. First,

the list of distributions must be extracted from the monad, then for each element

in each distribution, either the first or the second element from the tuple (repre-

senting predator or prey) must be extracted, which is done by mapping a function

f (representing either fst or snd) across all elements of each distribution. The

expected function can be applied to each distribution in the space. The appli-

cation of reverse is needed since traces are accumulated from the most recent

value to the oldest value, but we want to plot the oldest value first.

40

getRE f rs = do rs’ <- rs

let rs’’ = map (fmap f) rs’

return (reverse (map expected rs’’))

Our original idea behind the PFP DSEL was to empower biologists and other

scientists to construct simulation models themselves, using straightforward syntax

and easily understood concepts which closely related to their ideas of the problem.

However, as the definition of getRE shows, there is still much work to be done

before the goal of making PFP usable by end-users becomes realized.

Finally, we can produce a chart with two lines: one for the predator and

one for the prey. Note that the function plotRL takes a randomized list and turns

it into a line on the graph. This list comes from calculating the expected value of

each distribution in the randomized space.

fig1 = figP figure{title="Predator/Prey Simulation ",

xLabel="Time (generation)",

yLabel="Population"}

[(plotRL v’){color=Green,label="Victim"},

(plotRL p’){color=Red,label="Predator"}]

where p = ppt 500

v’ = getRE fst p

p’ = getRE snd p

The plot created by this function is shown on the left in Figure 2.7.

Compared with the corresponding deterministic model with growth =

1.055 and death = 1.95 (shown on the right in Figure 2.7), the probabilistic

model demonstrates a quantitatively different behavior in how the peaks develop,

suggesting that using probabilities in modeling has more effect than simply at-

tempting to average the values and retain a deterministic approach. This conclu-

sion is verified by Renshaw [53], who notes that stochastic predator-prey models

almost always experience extinction after several generations.

41

0 100 200 300 400 500

0
5

10
15

20

Predator/Prey Simulation

Time (generation)

P
op

ul
at

io
n

Victim
Predator

0 100 200 300 400 500

0
10

20
30

Predator/Prey Simulation

Time (generation)

P
op

ul
at

io
n

Victim
Predator

FIGURE 2.7. Probabilistic (on the left) and Deterministic (on the right) Preda-

tor/Prey Simulation over 500 Generations

42

3. MODELING GENOME EVOLUTION

The development of the PFP library did not occur in a vacuum. Instead, a

real application need motivated the development. In conjunction with the Center

for Gene Research at Oregon State University, we worked to develop a model for

the evolution of microRNAs [21, 12, 1], which has enabled scientists to predict

what types of genome sequences are most likely to exhibit active microRNAs.

This result is important since microRNAs are an essential regulatory mechanism

for controlling gene expressiveness. In this chapter, we discuss the development

and final version of the genome evolution application.

We open this chapter in Section 3.1 with a report on the gradual develop-

ment of the genome model through iterations over several prototypes, followed by

evaluations and discussions with biologists. The final genome evolution model is

described in Section 3.2.

3.1. Model Prototyping

The most significant challenge we faced when developing this model was

simply that the problem was not well defined; that is, the biologists did not know

exactly what the model needed to represent. Thus, we employed a method for

rapid prototyping so that the model could evolve easily over time, which was

essential to the project’s success—the feedback and results from each step helped

inform the biologists as to which direction would be most profitable to take. From

our experience it seems that any domain-specific language aimed at biologists, or

scientists in general, should support rapid prototyping.

43

Biologists have determined that over generational time genomes experi-

ence evolutionary development. Part of this development includes genes from

the genome being duplicated, and occasionally an inverted duplication. The du-

plications and inverted duplications can interact in some instances through mi-

croRNAs. MicroRNAs are transcribed from inverted duplications and can attach

to duplicated genes to inhibit their expressiveness, as shown in Figure 3.1. Note

that inverted duplication and duplication both represent DNS sequences. In other

words, when a duplication and inverted duplication are interacting, the genetic

function of that duplication is suppressed. An important biological question is

under what circumstances these microRNAs can develop.

FIGURE 3.1. Effects of microRNAs on Gene Duplications

To this end we had to model a genome that accumulates changes over

time. The genome consists of multiple genes, each of which is either capable

of interaction with inverted duplications or not, depending on the number of

changes accumulated. The biologists felt that modeling various duplications of a

single gene was sufficient. Therefore, the only information we need about each

duplication (gene) is the number of changes it has accumulated. Our goal was to

simulate how long any gene of the genome would remain in the state of interaction

44

given a variety of initial conditions, such as varying rate of changes for different

parts of the genome and different numbers of genes.

We started by constructing the genome as a list of duplications (also simply

called genes) and inverted duplications. Duplications were simply represented as

integers since the number of accumulated changes was the only information that

mattered for this application.

type Dup = Int

Inverted duplications had three significant parts that could accumulate changes,

so we represented them with a three-tuple of integers. These three parts arise

from the fact that an inverted duplication is a strand of RNA folded onto itself.

This can be viewed as two strands (called sense and anti-sense) and a loop.

We then allowed a change to occur either in one of the parts of the inverted

duplications or in one of the duplications. After discussing the model further, the

biologists decided the inverted duplication needed only two components: a sense

and an anti-sense. The loop was found to be non-significant. Since we were using

high-level operations to express the model, the change was trivial.

type IDup = (Int, Int)

Next, the biologists decided that merely having one inverted duplication was suffi-

cient. Each duplication would then be compared against the inverted duplication

to determine interaction.

type Genome = (IDup,[Dup])

At this point, interaction was still a fuzzy concept, so we tried to clarify it into

mathematical terms. The biologists told us that, in the beginning, all the genes

could interact with an inverted duplication. They called this state “full” inter-

action. Over evolutionary time, changes accumulate. If, for any duplication, the

45

number of changes in that duplication plus the number of changes in the anti-sense

of the inverted duplication were five or more, that duplication stopped interact-

ing with the inverted duplication. In other words, the genetic function of that

duplication could no longer be suppressed by a microRNA. If some duplications

were interacting, the state was “partial”. If none were interacting, the state was

“none”. In addition, if enough changes accumulated in the inverted duplication

alone (a total of five between the sense and the anti-sense), then the inverted

duplication was considered lost, and all interaction stopped. This behavior is

directly implemented with the function interaction.

data Interaction = Loss | None | Partial | Full

interaction :: Genome -> Interaction

interaction ((s,a),gs) | s+a>5 = Loss

| l==0 = None

| l==g = Full

| otherwise = Partial

where l=length (filter (\n->a+n<=4) gs)

g=length gs

It soon became apparent that this abstraction was not sufficiently detailed. The

biologists told us that each gene actually needed to be divided into units. This

meant that each duplication was now a list of n integers, each a place where

changes could accumulate. We represented the inverted duplication as a list of n

pairs (sense and anti-sense).

The additional complexity made the ideas of interaction and loss more

interesting, as we had to match units in the genes with the units in the inverted

duplication. We had to check each unit in a duplication against the corresponding

anti-sense unit in the inverted duplication. If any had a sum of less than five

changes, the duplication was still considered to interact. This concept is shown

in Figure 3.2.

46

FIGURE 3.2. The Test of Interaction

We made several additional changes before arriving at the final model,

discussed in the next section, which the biologists found useful for generating

predictions that they could test experimentally.

3.2. A Model of Genome Evolution

Our simulation finally ended up with a genome consisting of Dups and one

inverted duplication IDup. In addition to a given number of Dups, we also had

a given number of Units. Each gene was broken into that many units, and the

sense and anti-sense of the inverted duplication also had that many units. We

represented the inverted duplication with a list of Bins, where a Bin is simply a

pair of units.

type Unit = Int

type Bin = (Unit,Unit)

type Dup = [Unit]

type IDup = [Bin]

type Genome = (IDup,[Dup])

47

Initially, a change could randomly occur anywhere in any unit with equal prob-

ability. However, to model evolutionary pressure, we constructed several models

which defined varying degrees of resilience for the gene parts. In particular, we

used a “variable model” which allowed the genes to receive all the changes that

fell on them, and a “family model” which allowed only one third of the changes to

the duplications to accumulate. The names “variable” and “family” derive from

the biologists’ labels of different classes of genes, in particular, experiments which

showed that some genes were essential to the functioning of an organism (thus

were resistant to change) while others could change freely. The “family model”

represents those genes which are resistant to change, while the “variable model”

represents those which can freely change.

A model is a function which takes the number of genes in a genome and

creates a probabilistic function which selects to accumulate a change in either the

genes or the inverted duplication based on the number of genes.

type Model = Int -> Trans Genome

In the function mkModel to create a model, enumTT creates a distribution of tran-

sitions. Given the number of genes, x, and that there are 2 parts to the inverted

duplication (sense and anti-sense), we make all units equally likely to experience a

change. The function transAt performs a transition on a pair. Since genes are the

second item in the pair, the gene transition performs the identity transition on the

inverted duplication and a change on the genes, while for the inverted duplication

we perform a correspondingly defined change and the identity transition on the

genes. The definition for genes considers the probability given in gp, representing

a family (gp = 1/3) or variable (gp = 1) model, to determine whether to accept

the change or ignore it.

48

At first glance, a simple uniform function would seem sufficient. However,

since the genes and the idup contain an inequal number of accumulators, sim-

ply applying uniform would not give each accumulator an equal chance of being

selected. Instead, we consider how many accumulators are present in each. The

genome contains n genes, each with u units (accumulators). The inverted dupli-

cation contains u bins, each with two units. In other words, the total number of

units is 2u + u ∗ n. Of those, 2u units are in the inverted duplication and u ∗ n

units are in the genes. Therefore, the probability of selecting a unit from the genes

should be (u ∗ n)/(2u+ u ∗ n) which is the same as n/(2 + n).

The functions chgGenes and chgIDup apply one change to either a list of

duplications or a list of bins (an inverted duplication), respectively. The location

of the change is a uniform distribution over all possible sites.

mkModel :: Float -> Model

mkModel gp v = enumTT [1-p,p] [genes,idup]

where genes = transAt idT (chgGenes gp)

idup = transAt chgIDup idT

n = fromIntegral v

p = n/(2+n)

A model that accepts all changes is defined by var, and a model that accepts only

one-third of changes to the genes is defined by fam.

var :: Model

var = mkModel 1

fam :: Model

fam = mkModel (1/3)

The state of interaction is defined as a function on the genome. The possibilities

for interaction are Loss, None, Full and Partial, as mentioned earlier. The state

of Loss occurs when the pairs of the inverted duplication lined up sequentially

49

had no pattern where the sum of changes between one sense and anti-sense was

less than 11, the sum in the next less than 6, and the sum in the next less than 11.

In other words, we rolled a 10-5-10 upper bound across the inverted duplication,

and if no match was found, it was considered lost.

match x y z = x <= 10 && y <= 5 && z <= 10

The function defunct determines if an inverted duplication has been lost. This

function takes three sequential pairs from an inverted duplication. Each pair

(si,ai) consists of a sense si and anti-sense ai, which are represented as integers

giving the number of accumulated changes. If the sum of the changes in the first

pair and the third pair is less than or equal to 10, and the sum of the changes in

the second (middle) pair is less than or equal to 5, then the inverted duplication

is not defunct (not lost), so the function returns False. If the first three pairs do

not, however, match the 10-5-10 pattern, the function shifts one pair down the

sequence and looks again. If the function reaches the end of the sequence of pairs,

and no sequence of three matching the pattern is found, the inverted duplication

is considered lost. Implicitly, this means that all simulation models must have at

least three units to be interesting.

defunct ((s1,a1):(s2,a2):(s3,a3):sx) |

match (s1+a1) (s2+a2) (s3+a3) = False

defunct (_:sa2:sa3:sa) = defunct (sa2:sa3:sa)

defunct _ = True

If the inverted duplication is not lost, we proceed to inspect each gene to see if it

interacts with the inverted duplication. Such interaction is determined by adding

the changes in each unit in the gene to the anti-sense unit in the associated pair

of the inverted duplication. If the sum is less than 5 for any unit pair, the gene is

considered to interact with the inverted duplication.

50

interact :: IDup -> Dup -> Bool

interact i d = any (<=4) $ zipWith (+) (map snd i) d

Gene interaction is tested for all genes, and the genome interaction state is deter-

mined by comparing the number of genes which interact with the total number of

genes. If all genes interact, interaction is Full. If no genes interact, interaction is

None. If some genes interact, interaction is Partial.

We define interaction as a function from a genome to an interaction state.

The function interaction takes a Genome, which is a pair consisting of an inverted

duplication i and a sequence of genes gs. The function defunct determines if the

given inverted duplication is lost. If so, the interaction function always returns

Loss. Otherwise, the number of genes g is determined by computing the length of

the list gs, along with the number of genes currently interacting with the inverted

duplication, which is determined by filtering the sequence of genes to retain only

those that interact, and then counting them. These two values are then used to

determine the interaction state as None, Partial or Full as described above.

interaction :: Genome -> Interaction

interaction (i,gs) | defunct i = Loss

| l==0 = None

| l==g = Full

| otherwise = Partial

where l=length (filter (interact i) gs)

g=length gs

For each simulation run, we start with a genome that consists of an inverted

duplication with no changes and a list of genes with no changes. We select one

of these genes to be the founder gene and set it aside. The remaining genes

accumulate a given number of initial changes spread among them. The function

g creates a Genome given an initial chance of changes c, the number of units per

gene u and the number of genes n. This function first constructs the inverted

51

duplication and genes with 0 changes. A list of n − 1 of genes is constructed,

which has the requested changes randomly applied. The function chgGenes here

is the same as above; it applies one change per call to the given list of duplications.

The parameter 1 indicates that it should not discard any changes. The founder

gene, with no changes, is appended. This completes the creation of the genome.

Once the genome is created, the model transition can be applied iteratively to

produce a trace of the evolution.

type NumUnits = Int

type NumIter = Int

g :: Float -> NumUnits -> NumIter -> R Genome

g c u n = do gs’ <- (m *. (random $ chgGenes 1)) gs

return (zip f f,f:gs’)

where m = round (fromIntegral n*c)

f = list u 0

gs = list (n-1) f

Note the use of random to ensure that the change will produce a single randomized

value rather than a distribution. We use the randomization methods discussed

earlier to create an approximate distribution of evolved genomes.

We found that running a full simulation of the genome used tremendous

amounts of memory and time, so we opted for randomized simulations, allowing

the biologists to trade off between detail and time. In order to minimize memory

usage, we performed the aggregation of traces at the outermost level. We avoid

constructing a distribution during each simulation run, holding instead only a

single randomized genome which is built into a randomized trace.

Changes were applied using the model until the interaction entered the

state of Loss. Since these were randomized changes, we only accumulated an

RTrace, which we then put together over many runs to produce an RSpace. We

52

then analyzed each distribution to count how long the simulation stayed in partial

interaction, as this was the configuration the biologists found interesting.

sumDiff :: [Dist Interaction] -> Float

sumDiff ds = sum (map (prob2Float . ((==Partial) ??)) ds)

We can then simply divide by the number of runs in the space to find the average

time spent in interaction, which we can plot for varying models and number of

genes. An example of the results is shown in Figure 3.3.

10 20 30 40

0
5

10
15

Interaction (6 units, 3.0 initial changes)

Number of simulation runs: 500
of Genes

To
ta

l T
im

e
in

 P
ar

tia
l I

nt
er

ac
tio

n

Family
Variable

FIGURE 3.3. Simulation Results

MicroRNAs are significant in determining the function of genes. However,

it is not completely clear how microRNAs have evolved—in particular, biologists

note that microRNAs are not present with equal likelihood in all genes. Our

model makes two concrete predictions about the presence of microRNAs: First,

microRNAs are more likely to be found in “variable” genomes rather than “family”

genomes, and second, as a probability per gene, microRNAs are more likely to

be found in organisms with smaller genomes. Preliminary experimental results

discussed in the forth-coming paper [1] support both of these predictions.

53

4. RELATED WORK

In this chapter, we present work related to this thesis. An overview of

work done in simulation and control, with a particular emphasis on languages,

is presented in Section 4.1. We then introduce functional and monadic probabil-

ity systems, that is, other approaches to representing probabilistic computation

using functional languages, in Section 4.2. Finally, we discuss other approaches

to biological modeling, including mathematical, theoretical, and domain-specific

languages in Section 4.3.

4.1. Simulation and Control

A popular use of computing technology has long been simulation and con-

trol. In this field, computers simulate real world events, or control external hard-

ware processes. Modern control systems are often constructed with LabVIEW,

a visual dataflow programming language. LabVIEW is programmed with a di-

agram structure that approximates wiring diagrams, while the user interface to

the designed application appears like an instrument panel. In this way, Lab-

VIEW is designed so that applications may be both built and used by scientists

and engineers [65]. LabVIEW allows for sophisticated use of control structures,

data processing and random numbers, but is not explicitly designed for simulation

purposes [7].

A number of platforms and toolkits do exist primarily for simulation pur-

poses. Many of these depend on object-oriented programming languages, assum-

ing that objects are a good way to represent factors of a simulation. One such

54

platform is the High Level Architecture (HLA) introduced by Kuhl et al. which

builds on the Java programming language [39]. The HLA is primarily concerned

with large simulations which are constructed by a heterogeneous team of people.

Randomization and probability are not primary concerns, whereas time manage-

ment and object interaction are considered the key points of an HLA simulation.

A general overview of simulation is provided by Robinson [54]. He de-

scribes simulations which progress over time using discrete events, time slices, or

continuous simulation. The author describes the use of random numbers to derive

distributions appropriate for simulating uncertainty in a model, whereas our sys-

tem abstracts the random numbers away. He also indicates that visual simulation

software is by far the preferred method of designing and executing simulations,

as it allows the user a visual, and thus more directly informative, understanding

of what is happening. A smaller amount of simulation is done in spreadsheets or

traditional programming languages.

Fishman provides a detailed description of the methods and statistics for

discrete event simulation [23]. He discusses several platforms for modeling simula-

tions, including SIMSCRIPT, SIMAN and LABATCH. The author also describes

methods for analyzing output from various starting parameters to determine sta-

tistically significant information from simulations. In addition, a large section of

the text is devoted to describing the precise algorithmic method for deriving a

sample from a wide range of standard probability distributions. These sampling

functions operate on a uniform random number generator. Our system allows

such distributions to be constructed explicitly without worrying about the ran-

dom numbers.

Pooch and Wall [49] provide an overview of the mathematical concepts of

simulation, with discussion of the computational elements as well. In particular,

55

the authors discuss distributed simulation and queueing theory. Distributed sim-

ulation occurs when a single simulation is broken in synchronized components and

executed independently. Since many simulations involve queues, the authors make

special mention of the techniques involved in simulated first-in-first-out queues.

A theoretical treatment of the mathematical foundations of simulation is

provided by Banks et al. in [3]. The authors cover sources of randomness in

simulations, as well as approaches to modeling input and output, and verifying

a simulation’s accuracy. They also offer comparisons of various mathematical

approaches to modeling certain classes of scenarios.

Garrido introduces Psim-J, a Java based simulation platform [25]. He

presents several examples, including a car-wash simulation and a part replace-

ment model, to show how the features of Java can be used to support simulations.

The author spends a reasonable amount of space discussing concurrency issues in

simulation—cooperation, conditional waiting, interrupts, and other similar con-

cerns. The author does not spend much time addressing probabilistic concerns.

A Pascal simulation library is presented in [8]. This library provides a

layer of functionality on top of Pascal, including interpolation functions, timing

functions, input generators (for example, generating waves or pulses), and nu-

merical integration functions. The author demonstrates the use of the library for

two particular applications: a swinging pendulum and a fishery simulation. The

fishery simulation involves a varying number of fishing boats on a lake where fish

reproduce with a given frequency. The goal is to optimize fishing behavior for

maximum sustainable catch.

MATLAB is a mathematics package that can be used to perform simu-

lations [59]. In addition to regular imperative programming features, MATLAB

offers matrix functions and a variety of random number generators. MATLAB

56

can also perform symbolic analysis, such as function simplification or symbolic

integration. Plotting tools for both 2-D and 3-D plots are offered as well.

Methods for reducing problems to differential equations are given by Davis

[18]. He introduces the mathematical modeling of multi-dimensional systems,

and shows how to use MATLAB to solve the numerical equations such problems

present. The text is highly focused on deriving mathematical models of problems

by representing them in terms of well known problems, such as oscillation and

diffusion.

Simulink [14] is a visual programming language for numerical simulations.

Algorithms are described in a visual data-flow manner using various provided

functions which perform numerical analysis or generate curves. More complex

functions can be coded in a scripting language or in C and imported into the

visual environment. The manual provides three aircraft related examples, one

about the performance of an aircraft and two about autopilot design.

A wide variety of applications are modeled using the Stella language by

Hannon and Ruth [29]. The models are primarily represented in terms of difference

equations, although randomness is introduced as a factor in several examples,

including one of natural selection. A variety of competitive models are introduced,

including fisheries and tree cutting. As before, the models attempt to define

the optimal point of resource extraction without destroying growth potential.

The authors introduce an auto assembly example with which they demonstrate

the feature called “ovens”. This feature of the language automatically holds a

specified finite amount of a given component for some amount of time. This feature

simulates, for example, one station in an assembly line where several workers may

take some time to paint a part and can only paint so many parts at a time.

57

In order to transform a system into a simulation, it is important to deter-

mine which components are important and which are not. It is then necessary

to determine how the important components behave, either deterministically or

stochastically, with equations or step by step conditional behaviors. Only once

these have been determined can a model be programmed in any modeling or simu-

lation language. Starfield et al. present a non-technical introduction to determin-

ing the important factors in a model without a heavy emphasis on mathematical

details [61].

4.2. Functional and Monadic Probability Systems

A randomized probabilistic language is demonstrated by Park et al. [48],

extending some earlier work by the same authors in [47]. Their method is based

on sampling from probabilities, which can then be combined to form random

results or probability distributions. The authors show a classic Bayesian network

example of an alarm which can go off if there is either a burglary or an earthquake,

and which may independently cause Mary, John, or both to call the police. The

desired result is to determine the probability that Mary calls given that John

calls (and nothing else is known). Their method involves repeated sampling of

the probability space, whereas our method can concretely represent this problem

with deterministic probability distributions to find an exact probabilisitic result.

Encapsulation of probabilistic computation into monads is briefly discussed

in [22]. The author discusses associating probabilities and values in a list and

performing computation on them. He also mentions such concepts as randomly

choosing a value from a distribution and ambiguous (uncertain) values. However,

58

the treatment is not well developed and does not include concepts such as tracing

or simulation.

A theoretical, set-oriented treatment of probabilistic computations is given

in [34]. The author points out that probabilistic computations can be considered

in a monadic domain.

A monadic probability implementation is demonstrated by [50]. The au-

thors show how probability distributions can be constructed using transitions sim-

ilar to our own. The transitions can be combined monadically and operators are

used to derive expected values and take samples. The authors also demonstrate

a formal stochastic lambda calculus for representing probabilistic computations.

A die-rolling language is presented by Mogensen [43]. This language pro-

vides constructs for combining probabilistic collections of integers, including un-

bound repeation (while-loops). The generated results are displayed either as an

expected value or an entire probability distribution.

Sato and Kameya [56] introduce a statistical logic learning language based

on Prolog, called PRISM. This language is designed for modeling uncertainty at

a high level, and can also infer parameters based on a set of given data.

The construction of statistical models and inference of Bayesian networks

in Haskell is dealt with extensively by Allison [?]. He then shows how the method

can be generalized to support various machine learning techniques, supported by

Haskell type classes [?]. Finally, he introduces the paradigm of inductive program-

ming, where a rough model and noisy data (estimations) are provided, and the

system infers a complete solution [?]. In all three works, a number of case study

examples are shown, with an emphasis on Minimal Message Length and Bayesian

networks.

59

4.3. Biological Modeling Methods and Languages

The foundations of systems biology in modeling are described by Kitano

[37]. He describes four critical components for any modeling method or language.

First, it must be able to describe the structure of the systems, by representing

objects such as genes and processes such as metabolism. Second, it must be able

to describe the operations of the objects and processes. Third, it must have some

method of representing the way systems and objects interact with other objects.

Finally, the modeling method should allow for certain desired properties to be

expressed.

Most biological modeling systems are numerically predictive. That is, given

a model and an initial state, these models produce an indication of what the output

state will be, or is likely to be. It is also possible to take raw data and construct

a model which fits it [26].

However, these models may be insufficient to allow a biologist to express

a complex biological hypothesis. Luca Cardelli [11] proposes that domain-specific

modeling languages are appropriate to bridge the gap between biology and com-

putation. He argues that many processes involve sequential actions which can best

be represented by modeling languages. He also claims that biological systems can

be abstracted in meaningful ways that strongly resemble software systems, and

developing means of modeling biological processes may provide insight into com-

plex software engineering problems. Such a language would allow the biologist

to specify their model not in terms of advanced mathematical equations, but in

terms of cells and interactions that they already know or hypothesize to exist.

In this section, we group the systems by approach: first discussing algebraic

systems in Section 4.3.1, then graph systems in Section 4.3.2. Simulations written

60

in general purpose languages are covered in Section 4.3.3 and compared to domain-

specific languages along with various “analogy” based approaches in Section 4.3.4.

Finally, a theoretical collection of calculi for biological systems is presented in

Section 4.3.5.

4.3.1. Algebraic Systems

A mathematical approach was taken by Nilsson and Fritzson with the

Modelica system [46]. Modelica is an equation-oriented programming environ-

ment, which includes objects, allowing a direct modeling of biological components

and the continuous mathematical models that direct their behavior. The au-

thors also allow the introduction of thresholds, which allow discrete events to be

modeled based on continuous value equations. A graphical environment exists,

which allows straightforward access by mathematically trained scientists to de-

velop Modelica models. The authors focus on a lambda decision circuit, which

attempts to model the activity of phage infection in selecting either replication

or integration. The model shown by the authors involves both switching circuits,

as well as a segment which the authors note would require kinetic modeling. In

this way, the circuit model is not a complete model of biological function, but a

means of connecting numerical models together in a more abstract way.

A more detailed coverage of Modelica [24] describes its capability to model

both discrete, continuous, and hybrid systems using rules, differential equations,

and concurrency. The authors also describe how Modelica can be used to model

non-biological processes, such as pipeline control and manufacturing processes.

Eker et al. introduce a method they called “pathway logic” [19], which

is an algebraic approach that allows analysis of the abstractions. For example,

61

the authors point out that the equality of (x + y) ∗ (x− y) and x2 − y2 could be

checked numerically for many possible values, but it can also be derived using a set

of algebraic rewrite rules, which could form a proof. The authors define a specific

set of rewrite rules involving proteins and cells and then show how analysis can

provide several possible classes of results: explicit simulation, determining what

constraints a given start state has on all future states1 and meta-analysis, which

asks broadly which classes of starting states would satisfy some final criteria, thus

allowing model disambiguation using actual data.

The pathway logic system is applied by Talcott et al. to the modeling of

signal transduction processes involving proteins [62]. The model is concurrently

operational at two levels of abstraction: at the high level, overall protein states

are modeled using protein functional domains. If sufficient data is available, the

lower level modeling extends the protein functional domains to include explicit

molecular representations of signaling molecules. The model is then queried to

determine if particular proteins can be activated in certain situations.

4.3.2. Graph Systems

Graph-based models have also been used by several authors. Vazquez et al.

model protein interaction networks using graph generation algorithms [66]. They

show that the generated graphs have features in common with interaction graphs

derived from actual proteins. The generator algorithm is based on mathematical

probabilities of duplication and divergence.

1For example, if some property P is true, do we always reach a state that satisfies

property Q?

62

Xing et al. introduce a hidden markov inference model for identifying motif

structures in sequences such as DNA [68]. They apply Bayesian and EM learning

to the model to automatically derive the appropriate models, and then check

them against experimental data. Fine tuning the learning methods provided a

false positive rate as low as seven percent, with no false negatives.

Another graph model is presented by Bhan et al. [6]. Their model is con-

cerned with genome regulation on the whole-genome scale, rather than individual

protein interactions. However, the modeling concepts are similar. The authors

discuss duplication, partial duplication, and rewiring (a kind of intentionally in-

troduced error in duplication). They compare the derived graphs to the actual

known genome regulation networks of yeast and find them statistically similar.

A similar approach is presented by Sole et al. [60]. They use a simple

model of duplication with adding a link or removing a link at each stage, with

given probabilities α (for adding) and δ (for removing). They show how a pro-

teome interaction map generated with their model is similar to a yeast proteome

interaction map derived from experimental data.

A more detailed model is provided by Teichmann and Babu [63]. The

authors recognize differences between transcription factors and target genes for

the purposes of duplication. They allow either one or both to be duplicated,

and also allow loss or gain, which provides a similar change strategy to those

mentioned previously. The authors’ model can be used to provide various scenarios

of duplication in evolution of E. coli and yeast.

63

4.3.3. Low-level Simulations

A discussion of quantitative factors in biological modeling is presented in

[28]. The author discusses creating and simplifying numerical simulations, using

population growth as an example. The author gives an example of a two equation

Lotka-Volterra predator-prey model simulated in a page and a half of C code. An

excerpt of this code is shown in Table 4.1 and compared to the corresponding

PFP code for the same problem. Note that the PFP code is more compact and

avoids entanglements with orthogonal concerns, such as output preparation.

The author also shows how little code could be needed to represent a simu-

lation in an ideal language. The trade-off between micro-control and conciseness is

noted, with the author indicating a preference for conciseness, saying that it gives

freedom to the user to focus on and understand their problem. Several simula-

tion specific languages are discussed, including SCoP, a 1986 simulation language

using differential equations for physiological and biomedical systems, Stella, a vi-

sual modeling language using Forrester diagrams, along with a brief mention of

mathematical packages and spreadsheets.

Wilson [67] points out how to create models that simulate the actual be-

havior step by step. Wilson’s approach is very low-level. Each simulation model is

written in C. The visualization engine he demonstrates is a PostScript generator

also written in C. The author’s simulations have the advantage of taking spatial

issues into account. However, most of the examples are done in one-dimensional

space. For example, the author works through two examples, one for a population

of moving insects, another for an epidemic where each member may be either

suspectible, exposed but not yet infectious, infectious, or recovered and immune.

Once exposed to the disease by an infectious neighbor, an organism stays in each

64

TABLE 4.1. The Predator-Prey Model in Two Takes

Haefner’s C Code (logic) PFP Version (logic)

while (t < maxt) { dvp (v,p) = do

newV = V + r*V - b*V*P; g <- growth

newP = P + b*c*P - d*P; d <- death

V = newV; return (g*v - s*v*p ‘max‘ 0,

P = newP; d*p + e*v*p)

if (prntime <= t) { ppt n = ((1000,n) ~.. dvp) (v0,p0)

tarray[toprint] = t;

Varray[toprint] = V;

Parray[toprint] = P;

prntime += prndelt;

toprint++;

}

t++;

}

state for a particular amount of time, eventually returning to the suspectible state.

These times are given deterministically, and no uncertainty is introduced into the

model. Each model requires at least two full pages of C code.

4.3.4. Domain-Specific Analogies and Languages

An early attempt to model biological systems was done by McAdams and

Shapiro [41]. The authors compared biological systems to electrical circuits, noting

65

that, like electrical circuits, biological systems operate in parallel, and switches

may describe activation or repression of either electricity or biological function.

Regev et al. [52] introduce an abstraction method for representing biolog-

ical components as units of computation. They call these components ambients.

An ambient is an isolated computation environment which may contain, in a hi-

erarchical fashion, other ambients. An ambient within another ambient is called

a child, and the ambient housing it is called the parent. The authors also describe

a series of capabilities and processes which control what each ambient does. One

ambient with an “entry” capability may become a child ambient of an ambient

with an “accept” capability. Likewise, an ambient may leave another ambient if

the child ambient has the “exit” ability and the parent ambient has the “expel”

ability. Similarly, ambients may merge or separate.

Processes describe the way ambient functionality is coordinated. For ex-

ample, two ambients may exist and operate simultaneously. A single ambient may

“replicate”, and exist any number of times. Messages can also be sent between

ambients, which serve to instantiate behavior.

The authors describe the isolation of an ambient as being similar to the

membranes of a cell—most processes within the cell are independent of the pro-

cesses outside the cell except for a few processes which cross the membrane. The

authors also describe complex, multi-level models which include functions at the

molecular, cellular, and anatomical level. These situations are modeled by having

a set of ambients for each level of detail, and using the hierarchy to specify the

range of influence. A language, BioSpi, which includes the concept of ambients

and is designed for systems biology simulations is briefly described.

A graphical summary of this model is presented by Cardelli in [9]. This

model uses graphical rewrite rules for expressing molecular reactions. The model

66

is primarily composed of concurrent token generation and consumption. When a

set of matching rules is found with the same name, where one produces a token

and another consumes it, then the processing proceeds. The generating rule is

specified as n!{m}(P), while the consuming rule is specified as n?{p}(Q). Pro-

cessing proceeds when the names n match, and one rule is producing (!) and one

is consuming (?). In this case, the first rule produces the token m, and is replaced

with the molecule P , while the second rule received the token m, and is replaced

by the molecule Q{m/p}, where all cases of m are replaced by the received token

p.

Harrison and Harrison [30] introduce a biological modeling language that

consists of cells which perform bacterial actions, such as tumbling (changing di-

rection), growing, dividing, and dieing. The language uses Markov chains, a

non-deterministic state approach wherein the state of the cell and environment

determine the probability of each action that may be taken.

Antoniotti et al. describe the important ability to query a biological mod-

eling system to determine facts about the model [2]. The authors note that such a

system would work well with biologists, who often have data and a mathematical

model, and want to pose queries to it. A model could be queried with formal

representations of questions such as “Will the system reach a steady state?” or,

more generally, “Will some event P cause another event Q?”. The foundation

of the authors’ model is the XS system, which is a series of algebraic constraints

extended with automata. Once a biological model has been expressed in these

precise mathematical constructs, the biologist may query the model using a lan-

guage that allows constraints to be set on various parameters and determine if

certain states will occur under the given conditions.

67

Kam et al. employ the mechanisms of live sequence charts and play-in/play-

out methods to model cell activity [36]. Live sequence charts are a visual method

for describing a variety of sequenced scenarios which are certain, possible, or

impossible (the latter are known as anti-scenarios). Play-in/play-out is an end-

user device for constructing live sequence charts. The mechanism allows users to

demonstrate behavior to the system by performing it (play-in) and then allow the

system to infer the desired operational rules, which can then be run to continue the

user’s activity (play-out). The system automatically detects attempts at creating

contradictory rules, thus keeping the model consistent. As an additional predictive

feature, the authors discuss “smart play-out”, which allows the user to specify an

end result and determine if it could be reached from any consistent starting state

in the model.

Pathway Modeling Language (PML) is introduced by Chang and Sridharan

[13]. This language is based on the concept of binding sites – where two compo-

nents have a compatible connector and so bind, allowing some private interactions

and transformations, and then break apart with new connectors ready to bind to

other components. They also provide for comparmentalization of reactions. The

authors devise a method to translate PML into π-calculus as well. This approach

allows an event-oriented design where reactions happen as all preconditions are

met and binding occurs. In this way, the order of reactions does not need to be

explicitly specified.

Shannon et al. have introduced a data mining and visualization tool for

systems biology called Cytoscape [58]. Cytoscape is designed to process large

amounts of raw data, and visualize it in network form. The system allows queries

on the network and arbitrary extension via plug-ins. These plug-ins, which include

68

modules such as genetic regulatory analysis and a protein analyzer with respect to

DNA damage recovery, contain the primary functional component of Cytoscape.

4.3.5. Biological Calculi

In addition to systems which model some subset of biological functionality,

it is important to devise mathematical abstractions of biological systems [51].

This allows a broad analysis and extrapolation of biological concepts, leading to

the formation of hypotheses.

In particular, a good abstraction will capture the essence of the domain

in a computable, comprehensible, and extensible representation. Systems biology

has not developed an agreed abstract representation, although the π-calculus (a

model for communication over channels) [42] is being used as a basis by many

approaches. In particular, it is important to separate the implementation (live

cells, simulation, etc) from the specification (the “logic” of the system) before

such an implementation-independent representation can be agreed upon.

An early attempt at this formalization was done by Nagasaki et al. in their

construction of Bio-Calculus [45]. They described a calculus with multiple inter-

changable semantics operating on a single biological syntax based on interaction

diagrams. The syntax is formally represented by a collection of relations, sets,

and an initial status. The various semantics describe by what means the relations

are applied to the sets to generate a stream of data over time. The authors de-

scribe four semantics: continuous, differential equations, Michaelis-Menten, and

stochastic. In the first three semantics, all possible relations that can be applied

are applied at each step, with the difference being between what equations are

69

applied to update the data sets. In the stochastic semantics, only one relation

(update) is applied at each step, chosen based on probabalistic factors.

Schilstra and Bolouri [57] describe a method for mapping boolean logic

operations, such as AND and OR, into the domain of mathematical equations for

biological modeling. The authors describe these models for both logical operations

and for linear primitives which express the simpliest linear equation possible for

certain operations.

Curit et al. devise an extension to π-calculus semantics that allows a formal

representation of causality in concurrent systems [15]. They demonstrate this

model showing a protein reaction where-in a series of reactions must occur in a

particular order. The authors use the concept of causality to impose an ordering

on reductions, ensuring that some reduction happens before another.

Danos and Laneve construct a calculus for the purpose of representing

biological networks at the molecular level [16]. The calculus, called κ-calculus,

consists of proteins, sites, and a function which maps proteins to a multiset of

sites. This function describes the method of protein interaction. Proteins may

also be composed to form complexes. The authors then define chemical reactions

at the protein level using rewrite rules. Finally, the authors describe an algorithm

for compiling κ-calculus into asynchronous π-calculus.

The authors later extend their work to include a graphical representation

of κ-calculus [17]. They show proteins as being boxes, with the appropriate sites

indicated on the boundary of the box. Depending on the interaction with other

proteins, sites from one protein may be connected to another with a line. The

rewrite rules are likewise replaced with visual rewrite rules that show a set of

proteins and sites on the left and another set of the right. The authors then show

70

that the graphical κ-calculus can be represented with any graphical calculus which

represents at least binary interactions and name creation.

Luca Cardelli introduces the Brane Calculus in [10]. The Brane Calculus

is based on membranes, which form an encapsulation of computation. In this

case, the membranes are highly fluid, and the operations of the calculus consist

of modifications to the membranes. In addition, the calculus also supports the

nesting of membranes. The precise set of actions differs depending on the appli-

cation desired. For example, on the cellular level, the author gives phagocytosis

(placing one membrane within another), pinocytosis, and exocytosis (expelling a

membrane). On the molecular level, binding, release, and reaction of molecules

are appropriate actions. Cardelli also shows how the Brane Calculus can represent

the viral infection and hijacking of a cell.

71

5. CONCLUSION

The general-purpose languages COBOL, Fortran, and Lisp were originally

conceived for domain-specific purposes (business logic, mathematical computa-

tion, and symbolic processing, respectively). Since then, domain-specific lan-

guages have enjoyed wide-spread use in a variety of fields. However, DSLs have

several weaknesses, which become even more glaring as programming languages

gain sophisticated type-checking and debugging features. Domain-Specific Em-

bedded Languages (DSELs) offer an approach which combines the advantages of

DSLs with the strengths of modern languages.

This thesis has presented a DSEL for probabilistic programming. We have

shown how uncertainty is an important factor in many programs, and how mod-

ern programming languages offer little or no probabilistic abstraction. We have

introduced a DSEL for probabilistic programming and have given examples in

several domains. Our DSEL allows direct specification of uncertainty using prob-

abilistic constructs, such as distributions, rather than requiring the programmer

to explicitly represent their computation using random numbers.

Finally, we have presented an experience and application of the DSEL in

use by the Center for Gene Research at Oregon State University, demonstrating

that the probabilistic DSEL is not merely an academic exercise, but meets actual

needs of users and is suitable for expressing complex, real-life models.

72

BIBLIOGRAPHY

[1] E. Allen, J. Carrington, M. Erwig, K. Kasschau, and S. Kollmansberger.
Computational Modeling of microRNA Formation and Target Differentiation
in Plants, 2005. In Preparation.

[2] M. Antoniotti, F. Park, A. Policriti, N. Ugel, and B. Mishra. Foundations of a
Query and Simulation System for the Modeling of Biochemical and Biological
Processes. In Pacific Symp. on Biocomputing, pages 116–127, 2003.

[3] Jerry Banks, John S. II Carson, and Barry L. Nelson. Discrete-Event Simu-
lation. Prentice Hall, 2nd edition, 1999.

[4] J. L. Bentley. Programming pearls: Little languages. Communications of the
ACM, 29(8):711–721, 1986.

[5] E. Bertino, D. Bruschi, S. Franzoni, I. Nai-Fovino, and S. Valtolina. Threat
Modelling for SQL Servers. In 8th IFIP Conf. on Communications and Mul-
timedia Security, pages 159–171, 2004.

[6] A. Bhan, D. J. Galas, and T. G. Dewey. A Duplication Growth Model of
Gene Expression Networks. Bioinformatics, 18(11):1486–1493, 2002.

[7] Richard Bitter, Taqi Mohiuddin, and Matthew Nawrocki. LabVIEW advanced
programming techniques. CRC Press, 2001.

[8] Bossel, Hartmut. Modeling and Simulation. A K Peters, 1994.

[9] Luca Cardelli. Bioware Languages. Computer Systems: Theory, Technology,
and Applications – A Tribute to Roger Needham, Monographs in Computer
Science, pages 56–65, 2004.

[10] Luca Cardelli. Brane Calculi. In Computational Methods in Systems Biology,
2004.

[11] Luca Cardelli. Languages for Systems Biology. In Grand Chellenges UK, GC1
InVivo <=> InSilico, 2004.

[12] J. C. Carrington and V. Ambros. Role of microRNAs in Plant and Animal
Development. Science, 301:336–338, 2003.

[13] Bor-Yuh Evan Chang and Manu Sridharan. PML: Toward a High-Level For-
mal Language for Biological Systems. In Bio-CONCUR, 2003.

[14] Checkoway, Cheryl and Kirk, Kim and Sullivan, Donna and Townsend, Mar-
ianne, editor. SIMULINK User’s Guide. The Math Works, 1993.

73

[15] Michele Curti, Pierpaolo Degano, and Cosima Tatiana Baldari. Causal π-
Calculus for Biochemical Modelling. In C. Priami, editor, Computational
Methods in Systems Biology, LNCS 2602, pages 21–33, 2003.

[16] Vincent Danos and Cosimo Laneve. Core Formal Molecular Biology. In Eu-
ropean Symp. On Programming, LNCS 2618, pages 302–318, 2003.

[17] Vincent Danos and Cosimo Laneve. Graphs for Core Molecular Biology. In
Computational Methods in Systems Biology, LNCS 2602, pages 34–46, 2003.

[18] Davis, Paul W. Differential Equations: Modeling with MATLAB. Prentice
Hall, 1999.

[19] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, Jose
Meseguer, and Kemal Sonmez. Pathway Logic: Symbolic Analysis of Bio-
logical Signaling. In Pacific Symp. on Biocomputing, pages 400–412, 2002.

[20] M. Erwig and S. Kollmansberger. Probabilistic Functional Programming in
Haskell. Journal of Functional Programming, 2005. To appear.

[21] M. Erwig and S. Kollmansberger. Modeling Genome Evolution with a DSEL
for Probabilistic Programming. In 8th Int. Symp. on Practical Aspects of
Declarative Languages, 2006. To appear.

[22] Filinski, Andrzej. Controlling Effects. PhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1996.

[23] George S. Fishman. Discrete-Event Simulation: Modeling, Programming, and
Analysis. Springer, 2001.

[24] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. IEEE Press, 2004.

[25] Jóse M. Garrido. Object-Oriented Discrete-Event Simulation with Java.
Kluwer Academic / Plenum Publishers, 2001.

[26] Michael Andrew Gibson and Eric Mjolsness. Modeling the Activity of Sin-
gle Genes. In James M. Bower and Hamid Bolouri, editors, Computational
Modeling of Genetic and Biochemical Networks, chapter 1, pages 3–48. MIT
Press, 2001.

[27] Giry, Michèle. A Categorical Approach to Probability Theory. In Ba-
naschewski, Bernhard, editor, Categorical Aspects of Topology and Analysis,
pages 68–85, 1981. Lecture Notes in Mathematics 915.

[28] Haefner, James W. Modeling Biological Systems. Int. Thomas Publishing,
1996.

74

[29] Hannon, Bruce and Ruth, Matthias. Dynamic Modeling. Springer, 2nd edi-
tion, 2001.

[30] William L. Harrison and Robert W. Harrison. Domain Specific Languages
for Cellular Interactions. In 26th Annual IEEE Int. Conf. on Engineering in
Medicine and Biology, 2004.

[31] Eric C. R. Hehner. Probabilistic Predicative Programming. In 7th Int. Conf.
on Mathematics of Program Construction, volume 3125 of LNCS. Springer,
2004.

[32] P. Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4), 1996.

[33] Steven C. Johnson. Yacc: Yet Another Compiler Compiler. In UNIX Pro-
grammer’s Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston,
New York, NY, USA, 1979.

[34] Jones, Claire. Probabilistic Non-determinism. PhD thesis, University of Ed-
inburgh, July 1990.

[35] Jones, Claire and Plotkin, Gordon D. A Probabilistic Powerdomain of Eval-
uations. In 4th IEEE Symp. on Logic in Computer Science, pages 186–195,
1989.

[36] Na’aman Kam, David Harel, Hillel Kugler, Rami Marelly, Amir Pnueli,
E. Jane Albert Hubbard, and Michael J. Stern. Formal Modeling of C. elegans
Development: A Scenario-Based Approach. In C. Priami, editor, Computa-
tional Methods in Systems Biology, LNCS 2602, pages 4–20, 2003.

[37] Hiroaki Kitano. Systems Biology: Toward System-level Understanding of Bi-
ological Systems. In Hiroaki Kitano, editor, Foundations of systems biology,
chapter 1, pages 3–36. MIT Press, 2001.

[38] Knuth, D. TEX: The Program. Addison-Wesley, 1986.

[39] Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Creating Computer
Simulation Systems. Prentice Hall, 2000.

[40] A. J. Lotka. The Growth of Mixed Populations: Two Species Competing
for a Common Food Supply. Journal of Washington Academy of Sciences,
22:461–469, 1932.

[41] Harley H. McAdams and Lucy Shapiro. Circuit Simulation of Genetic Net-
works. Science, 269(5224):650–656, 1995.

75

[42] Robin Milner. Communication and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

[43] Mogensen, Torben. Roll: A Language for Specifying Die-Rolls. In 5th Int.
Symp. on Practical Aspects of Declarative Languages, pages 145–159, 2003.
LNCS 2562.

[44] Morgan, Carroll and McIver, Annabelle and Seidel, Karen. Probabilistic Pred-
icate Transformers. ACM Trans. on Programming Languages and Systems,
18(3):325–353, 1996.

[45] Masao Nagasaki, Shuichi Onami, Satoru Miyano, and Hiroaki Kitano. Bio-
calculus: Its Concept and Molecular Interaction. In K. Asai, S. Miyano, and
T. Takagi, editors, 10th Workshop on Genome Informatics, volume 10, pages
133–143, 1999.

[46] Emma Larsdotter Nilsson and Peter Fritzson. Using Modelica for Modeling of
Discrete, Continuous and Hybrid Biological and Biochemical Systems. In The
3rd Conf. on Modeling and Simulation in Biology, Medicine and Biomedical
Engineering, 2003.

[47] Park, Sungwoo and Pfenning, Frak and Thrun, Sebastian. A Probabilistic
Language based upon Sampling Functions. In 31st Symp. on Principles of
Programming Languages, pages 171–182, January 2004.

[48] Park, Sungwoo and Pfenning, Frank and Thrun, Sebastian. A Probabilistic
Language based upon Sampling Functions. In 32nd Symp. on Principles of
Programming Languages, pages 171–182, 2005.

[49] Udo W. Pooch and James A. Wall. Discrete Event Simulation. CRC Press,
1993.

[50] Ramsey, Norman and Pfeffer, Avi. Stochastic Lambda Calculus and Monads
of Probability Distributions. In 29nd Symp. on Principles of Programming
Languages, pages 154–165, January 2002.

[51] Amitai Regev and Ehud Shapiro. Cells as Computation. In C. Priami, editor,
Computational Methods in Systems Biology, LNCS 2602, pages 1–3, 2003.

[52] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and
Ehud Shapiro. BioAmbients: An abstraction for biological compartments.
Theoretical Computer Science, Special Issue on Computational Methods in
Systems Biology, 325(1):141–167, September 2004.

[53] Renshaw, Eric. Modelling Biological Populations in Space and Time. Cam-
bridge University Press, 1993.

76

[54] Stewart Robinson. Simulation: The Practice of Model Development and Use.
John Wiley and Sons, 2004.

[55] Rubinstein, R. Y. Simulation and the Monte Carlo Method. Wiley, 1981.

[56] T. Sato and Y. Kameya. Parameter Learning of Logic Programs for Symbolic-
Statistical Modeling. Journal of Artificial Intelligence Research, 15:391–454,
2001.

[57] Maria J. Schilstra and Hamid Bolouri. The Logic of Gene Regulation. In 3rd
Int. Conf. on Systems Biology, 2002.

[58] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T.
Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker.
Cytoscape: A Software Environment for Integrated Models of Biomolecular
Interaction Networks. Genome Research, 13(11):2498–2504, 2003.

[59] Sigmon, Kermit. MATLAB Primer. CRC Press, 5th edition, 1998.

[60] Ricard V. Sole, Romualdo Pastor-Satorras, Eric Smith, and Thomas B. Ke-
pler. A Model of Large-scale Proteome Evolution. Advances in Complex Sys-
tems, 5:43–54, 2002.

[61] Starfield, Anthony M. and Smith, Karl A. and Bleloch, Andrew L. How to
Model It: Problem Solving for the Computer Age. Burgess Publishing, 2nd
edition, 1994.

[62] C. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. Laderoute. Pathway Logic
Modeling of Protein Functional Domains in Signal Transduction. In Pacific
Symp. on Biocomputing, pages 568–580, 2004.

[63] Sarah A. Teichmann and M. Madan Babu. Gene Regulatory Network Growth
by Duplication. Nature Genetics, 36(5):492–496, 2004.

[64] S. A. Thibault, R. Marlet, and C. Consel. Domain-specific languages: From
design to implementation application to video device drivers generation. IEEE
Transactions on Software Engineering, 25(3), 1999.

[65] Jeffrey Travis. LabVIEW for Everyone. Prentice Hall, 2nd edition, 2002.

[66] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Modeling of Pro-
tein Interaction Networks. ComPlexUs, 21:38–44, 2003.

[67] Wilson, Will. Simulating Ecological and Evolutionary Systems in C. Cam-
bridge University Press, 2000.

77

[68] Eric P. Xing, Wei Wu, Michael I. Jordan, and Richard M. Karp. LOGOS:
a Modular Bayesian Model for de novo Motif Detection. In IEEE Computer
Society Conf. on Bioinformatics, pages 266–276. IEEE Computer Society,
2003.

78

79

APPENDICES

80

APPENDIX A. Overview of Monads

Functional programming abstracts away two attributes common to other

languages: sequencing and side effects. Sequencing refers to the important of

evaluating certain applications in order, as one may affect the outcome of another.

Normally, functional programs are evaluated lazily, with evaluation of any given

term delayed as long as possible. Functional programs also have, generally, no

side effects. This means that the evaluation of one term cannot have any effect on

the result of evaluating some other term. Sometimes, however, it is important for

one computation to affect the next. Monads provide a controlled, specific method

for sequencing computation and organizing side effects.

A.1. The Maybe Monad

To see an example of monads in action, consider first the datatype Maybe

which is used to indicate a computation that might fail.

data Maybe a = Just a | Nothing

If the computation succeeds, the Just value is returned, otherwise Nothing is

returned. Consider the following function which divides two integers.

divide :: Int -> Int -> Int

divide x y = x ‘div‘ y

However, if y was zero, a run-time error would result. We could avoid this by

making divide return a Maybe type, which would indicate Nothing if the divisor

was zero.

divide :: Int -> Int -> Maybe Int

divide x y = if y == 0 then Nothing else Just (x ‘div‘ y)

81

Now imagine we want a function which takes three numbers: x, y and z. It divides

x by z and y by z then adds the results together. We might first try:

divxyz :: Int -> Int -> Int -> Int

divxyz x y z = (divide x z) + (divide y z)

However, this does not work because divide returns Maybe Int, which is not a

numeric type. Instead, we need to use case statements to extract the (possible)

value, or handle the failure.

divxyz :: Int -> Int -> Int -> Maybe Int

divxyz x y z = case (divide x z) of

(Just xz) -> case (divide y z) of

(Just yz) -> Just (xz + yz)

Nothing -> Nothing

Nothing -> Nothing

What a mess! If we look at this a bit, we can see a pattern. Whenever a compu-

tation returns Just, extract the value and continue. If the computation returns

Nothing, abort and do not perform any further computation. In this case, the

outcome of one computation (say, divide x z) affects another (divide y z). In

particular, the result of the first computation could cause the second to possibly

not be executed.

Wouldn’t it be nice if there were a way to take this behavior and abstract

it away from the particular application, so that we wouldn’t have to have tons of

Justs and Nothings all over the place? How would this work? We can start by

defining a way to combine Maybe computations.

bind :: Maybe a -> (a -> Maybe b) -> Maybe b

bind Nothing _ = Nothing

bind (Just x) f = f x

The function bind takes a Maybe value and a function which operates on the

value inside, producing another Maybe value. If the first value is Nothing, there’s

82

no need to evaluate the function. Otherwise, extract the value and apply the

function. We could use this to rewrite the above code.

divxyz :: Int -> Int -> Int -> Maybe Int

divxyz x y z =

bind (divide x z) (\xz->

bind (divide y z) (\yz->

Just (xz + yz)))

This is already a substantial improvement. We have abstracted away the handling

of Nothing and are left with just the logic. In general, this form of computation

is known as a monad.

In Haskell, monads are defined as a type class. For a data type to be an in-

stance of Monad, two functions must be defined: return, which injects a value into

the monad, and >>= (pronounced bind), which connects monadic computations.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

We can make Maybe an instance of the type class Monad using the definition of bind

we already derived. What would be the definition of return? Simply applying

the Just constructor.

instance Monad Maybe where

return x = Just x

Nothing >>= _ = Nothing

(Just x) >>= f = f x

Haskell supports a special shorthand notation for monads called the do-notation.

Using the do-notation, we can rewrite divxyz into a nice, sequenced function.

divxyz :: Int -> Int -> Int -> Maybe Int

divxyz x y z = do

xz <- divide x z

yz <- divide y z

return (xz + yz)

83

This is much clearer than our tedious original attempt with case statements. In

particular, the handling of all the Nothing cases is completely abstracted away

and hidden from the user of the monad.

A.2. The List Monad

A list is simply a sequence of values. In some cases, we might want to

apply a function to each value in a list. This can be done with the function map.

For example, if we wanted to increase a list of numbers each by 1, we could define

a function (incr1 below) which maps the successor function to a list.

incr1 xs = map succ xs

> incr1 [1,2,3]

[2,3,4]

Imagine now we have two lists, and we want to combine all possible pairs, for

example, to find all the sums of one element from the first list and one from the

second.

ls xs ys = concatMap (\x->map (\y->x+y) ys) xs

Like the Maybe example, there is a lot of overhead here—we’re creating a function

and then applying to each element using a concatMap, which maps a function

to a list, then concatenates all resulting lists into a single list. The innermost

value only uses a map because it produces only one value. The logic here (x+y) is

shrouded in organizational overhead.

Like with the Maybe monad, we can hide away the overhead inside a monad.

How can we combine lists? We want to apply the function f to each element in

a given list, and concatenate all the results together to produce a single list of

results.

84

bind :: [a] -> (a -> [b]) -> [b]

bind la f = concatMap f la

This is precisely how the monad is defined.

instance Monad [] where

return x = [x]

m >>= f = concatMap f m

Using the previously shown do-notation, we can rewrite our function in a much

more attractive and comprehensible form.

ls xs ys = do

x <- xs

y <- ys

return (x+y)

The monad presented in this thesis can be considered as an extension to the list

monad.

APPENDIX B. Source Code Availability

The complete code for the probabilistic programming DSEL along with

examples is available for download at

http://eecs.oregonstate.edu/~erwig/pfp/

Source code for the genome evolution application (which requires the PFP

DSEL) is available by e-mail, kollmast@eecs.orst.edu

