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ABSTRACT

This paper studies a multiple-measurement vector (MMV)-
based sparse regression approach to blind hyperspectral un-
mixing. In general, sparse regression requires a dictionary.
The considered approach uses the measured hyperspectral
data as the dictionary, thereby intending to represent the
whole measured data using the fewest number of measured
hyperspectral vectors. We tackle this self-dictionary MMV
(SD-MMV) approach using greedy pursuit. It is shown that
the resulting greedy algorithms are identical or very similar
to some representative pure pixels identification algorithms,
such as vertex component analysis. Hence, our study pro-
vides a new dimension on understanding and interpreting
pure pixels identification methods. We also prove that in
the noiseless case, the greedy SD-MMV algorithms guaran-
tee perfect identification of pure pixels when the pure pixel
assumption holds.

1. INTRODUCTION

Hyperspectral imaging is a sensing technique in which an in-
strument acquires a set of spectral vectors from a surface of
interest. The spectral vector of each pixel carries informa-
tion of how the reflectance of surface materials interact in the
corresponding surface patch. Under the linear mixing model,
a measured spectral vector can be represented by a convex
combination of the so-called pure spectral vectors — spectral
vectors that are purely constituted by a single surface mate-
rial [1].

Pure pixels identification aims at determining the pure
spectral vectors, or simply pure pixels, from the measured
hyperspectral data, assuming that pure pixels exist in the mea-
sured data. It represents an important class of techniques in
blind hyperspectral unmixing, since many algorithms falling
in this class are efficient. Numerous pure pixels identifica-
tion algorithms have been developed for more than a decade,
e.g., pure pixel index (PPI) by Boardman et. al in 1995 [2],
Winter’s N-FINDR [3] and its many variants, successive
projections algorithm (SPA) [4], automatic target generation

process (ATGP) [5], vertex component analysis (VCA) [6],
and more recently, successive volume maximization (SV-
MAX) [7] and the recursive algorithm family in [8]; see [1]
for a review. In this paper, we are interested in a very re-
cent development introduced in [9, 10], where a compressive
sensing formulation is used to tackle pure pixels identifi-
cation. The idea is to use the measured spectral vectors
as the dictionary to perform multiple-measurement vector
(MMV)-based sparse regression [11, 12]. By doing so, one
intends to use the fewest number of measured data, which
would be the pure pixels, to represent the whole set of mea-
sured data. This self-dictionary MMV (SD-MMV) approach
was previously studied under convex relaxation [9, 10]. The
present work considers SD-MMV under greedy pursuit. We
will show that several representative pure pixels identifica-
tion algorithms are identical or very similar to greedy-based
SD-MMV. This result is interesting, and establishes a new
connection between the conventional pure pixels identifica-
tion and relatively novel SD-MMV approaches. The pure
pixel identifiability of the greedy-based SD-MMV algorithms
will also be studied.

2. REVIEW OF MMV

This section reviews the MMV problem in a general con-
text [11–13]. The connection between MMV and hyperspec-
tral unmixing will be discussed in the next section. In MMV,
we consider the following signal model

X = BC, (1)

where X ∈ RM×L is a multiple-measurement matrix, in
which each column, denoted by xi ∈ RM , i = 1, . . . , L, is
a single-measurement vector (SMV), B ∈ RM×N is a basis,
and C ∈ RN×L is a coefficient matrix. Here, note that B is
an overcomplete (and given) dictionary. We wish to use the
fewest number of columns of B, also known as atoms, to do
the representation in (1). This problem is the same as finding
a C whose number of nonzero rows is the smallest. Hence,
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the MMV problem can be formulated as

min
C∈RN×L

‖C‖row−0

s.t. X = BC,
(2)

where ‖C‖row−0 denotes the number of nonzero rows in C,
that is, if ci denotes the ith row vector ofC, then ‖C‖row−0 =
∑M

i=1 I(‖c
i‖2), where ‖ ·‖q denotes the !q-norm, and I(x) =

1 if x > 0 and I(x) = 0 if x = 0. Notice that when L =
1, Problem (2) reduces to the familiarized SMV problem in
compressive sensing.

Like its SMV counterpart, theMMV problem in (2) is NP-
hard in general. As such, approximation approaches should
be sought. One obvious approach is convex relaxation, fol-
lowing the !1-norm approximation in SMV. Specifically, the
approach works by replacing ‖C‖row−0 in Problem (2) by a
convex surrogate, such as ‖C‖q,1 =

∑N
i=1 ‖c

i‖q for a given
q ≥ 1, and then solve the subsequent convex problem to ap-
proximate Problem (2). Readers are referred to [11, 13] for
the details. Here, our interest lies in the greedy approach.
We will review two methods, namely, simultaneous orthogo-
nal matching pursuit (SOMP) and reduced MMV and boost
(ReMBo).

2.1. Simultaneous Orthogonal Matching Pursuit

SOMP can be seen as a direct extension of orthogonal match-
ing pursuit (OMP) for SMV [11, 12]. It aims at determining
a set of indices, say, î1, î2, . . . , îr for some r ≥ 1, such that
BS = [ bî1

,bî2
, . . . ,bîr

] forms a sparse basis matrix for
MMV. SOMP starts by determining the first index as

î1 = arg max
i=1,...,L

‖XT
bi‖q, (3)

for some q ≥ 1. The intuition behind (3) is that ifX is mostly
contributed by one atom, say, bi, then the value of ‖XTbi‖q
is likely to be the largest among the other ‖XTbj‖q , j $= i.
SOMP then follows a similar way to recursively determine
îk, with an additional process known as successive nulling.
To describe it, suppose that we have previously determined a
number of k− 1 atoms, indexed by î1, . . . , îk−1, and the next
task is to determine a new atom indexed by îk. Let B(k−1)

S =
[ bî1

, . . . ,bîk−1
], and consider the residual

R
(k−1) = X−B

(k−1)
S C

(k−1) (4a)

C
(k−1) = arg min

C∈R(k−1)×L

‖X−B
(k−1)
S C‖22 (4b)

= (B(k−1)
S )†X (4c)

where nulling is applied to the measurement matrix X to re-
move signal components related to the previously determined
atoms bî1

, . . . ,bîk−1
. We determine îk by

îk = arg max
i=1,...,L

‖R(k−1)T
bi‖q, (5)

which is analogous to (3).
It has been shown that SOMP can perfectly solve the

MMV problem (2) under certain sufficient conditions on the
mutual coherence of B; see [11].

2.2. Reduced MMV and Boost

Dealing with the MMV problem (2) can be computationally
expensive when the number of measurements L is very large.
ReMBo tackles this issue by reducing the MMV problem to
an SMV problem, and using the subsequent SMV problem
to determine a sparse basis matrix for MMV [14]. The idea
is to merge the single-measurement vectors xi to one. To be
specific, let ξ ∈ RL be a randomly generated vector following
some continuous distribution (e.g., Gaussian distribution). By
considering the merged SMV

x̄ = Xξ

and letting c̄ = Xξ, we consider a reduced MMV problem

min
c̄∈RN

‖c̄‖0

s.t. x̄ = Bc̄,
(6)

where ‖c̄‖0 denotes the number of nonzero elements in c̄.
Problem (6) is essentially an SMV problem, and we can de-
termine a sparse basis matrix from Problem (6) by applying
standard compressive sensing algorithms such as OMP (the
SMV-reduced version of the above introduced SOMP) and
!1-norm relaxation.

In ReMBo we may run the reduced MMV problem (6)
multiple times for different randomly generated realizations
of ξ, and pick the best one. It was empirically shown that
such process can boost the atom selection performance.

3. SELF-DICTIONARY MMV FOR BLIND
HYPERSPECTRAL UNMIXING

Now, we turn our attention back to the context of blind hy-
perspectral unmixing. We consider a standard linear mixture
model setting, described as follows. The measured hyper-
spectral pixel vectors are modeled by

x[n] = As[n], n = 1, . . . , L, (7)

where x[n] denotes the measured hyperspectral pixel vector
at pixel n, A = [ a1, . . . ,aN ] ∈ RM×N is the endmember
signature matrix, in which each an ∈ RM corresponds to
the hyperspectral signature vector of a distinct endmember
(or material), s[n] ∈ RN is the abundance vector of the nth
pixel,M is the number of spectral bands, N is the number of
endmembers andL is the number of hyperspectral pixels. The
endmember matrix A is assumed to have full column rank.
Also, the abundance vectors s[n] satisfy the non-negative and
sum-to-one constraints, i.e., s[n] ≥ 0 and 1T s[n] = 1 where
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≥ denotes the element-wise inequality, and 1 is an all-one
vector of appropriate length.

Several mild assumptions are in order. First, to facili-
tate exposition of the underlying ideas of SD-MMV, we as-
sume the noiseless noise. Note that the resulting algorithms
will work in the presence of noise, at least by simulations,
although noise sensitivity is not the interest of the present pa-
per. Second, like many works in hyperspectral unmixing, the
number of endmembers N is assumed to be known. Third,
we assume that the pure pixel assumption holds. Specifically,
the pure pixel assumption is said to be satisfied if, for each
endmember index k, there exists a pixel index nk such that

x[nk] = ak,

or equivalently, s[nk] = ek where ek is a unit vector (i.e.,
[ek]i = 1 for k = i and [ek]i = 0 for k $= i).

Our problem here is to identify the unknown endmember
matrix A from the multiple hyperspectral measurement ma-
trixX = [ x[1], . . . ,x[L] ]. In particular, we are interested in
the following criterion which is recently introduced in [9,10]:

min
C∈RL×L

‖C‖row−0, (8a)

s.t. X = XC, (8b)
C ≥ 0, 1T

C = 1
T . (8c)

We call Problem (8) the self-dictionary MMV (SD-MMV)
problem in this paper. The rationale of the SD-MMV prob-
lem is as follows: Since each x[n] can always be represented
as a convex combination of {a1, . . . ,aN}, or equivalently,
a distinct set of pure pixels {x[n1], . . . ,x[nN ]}, we can see
that there exists a C that satisfies (8b)-(8c) and has many re-
dundant, or all-zero, rows. For example, if n1 = 1, n2 =
2, . . . , nN = N , then such C is given by

C =

[

S

0

]

,

where S = [ s[1], . . . , s[L] ], cf. (7). Hence, SD-MMV in-
tends to identify the pure pixels by enforcing C to be as row-
sparse as possible. Comparing Problems (8) and (2), we see
that SD-MMV takes an MMV form. In particular, the dic-
tionary employed by SD-MMV is the measurement matrixX
itself. Hence, SD-MMV has a flavor of selecting a subset of
the measurement vectors as the basis matrix for sparse repre-
sentation of the whole measurement data.

In the previous works [9, 10], convex relaxation was em-
ployed to tackle the SD-MMV problem. It was shown that
convex relaxation can lead to the optimal solution of Prob-
lem (8) if there are no repeated pure pixels and there is no
noise. The greedy alternative has been not considered, how-
ever. Our interest in the subsequent subsections will be on the
greedy approach.

3.1. SOMP for the SD-MMV Problem

The SD-MMV problem (8) is still not exactly the same as the
MMV problem (2). Specifically, the former has additional
constraints on C, namely, (8c). In order to employ SOMP
introduced in Sec. 2.1, we simply drop the constraints in (8c)
and directly apply SOMP. The resulting algorithm, which we
call SD-SOMP, is shown in Algorithm 1.

Algorithm 1: SD-SOMP
input :X, and q ≥ 1;

1 setX(0)
S = φ,R(0) = X and k = 1.

2 for k = 1 : N do
3 determine an index of a pure pixel by

n̂k = arg max
n=1,...,L

‖(R(k−1))Tx[n]‖q; (9)

4 X
(k)
S = [ X(k−1)

S ,x[n̂k] ];
5 R(k) = X−X

(k)
S (X(k)

S )†X;
6 end
output: Â = X

(N)
S (pure pixels).

Now, an interesting question arises—how does SD-SOMP
work? We should point out that in the previous work, the
constraints in (8c) play a role in identifying the optimality of
convex relaxation [9,10] for SD-MMV. Since SD-SOMP does
not use (8c), would it affect its pure pixel identifiability? The
answer turns out to be no.

Theorem 1 In the noiseless case and under the pure pixel
assumption, SD-SOMP correctly identifies the pure pixels of
all the distinct endmembers for any q > 1.

Before proceeding to the proof, we should note that the
pure pixels identifiability claim in Theorem 1 is as good
as that in convex relaxation. Also, Theorem 1 implies that
SOMP perfectly solves the SD-MMV problem when the pure
pixel assumption holds.

Proof of Theorem 1: Suppose that after k − 1 iterations, SD-
SOMP has identified k − 1 distinct pure pixels indexed by
n̂1, . . . , n̂k−1, where k ≤ N − 1. Without loss of generality
(w.l.o.g.), we assume x[n̂i] = ai, i = 1, . . . , k − 1, and thus
X

(k−1)
S = [ a1, . . . ,ak−1 ]. By mathematical induction, it

suffices to show that SD-SOMP identifies a new pure pixel at
the kth iteration; i.e., we need to show that ‖(R(k−1))Tx[n]‖q
achieves its maximal value if and only if x[n] is a pure pixel
and x[n] $= ai for i = 1, . . . , k − 1. This can be shown by
taking insights from the proof of Property 3 in [7].

To begin with, notice that R(k−1) = P⊥
A1:k−1

X, where
the notation P⊥

A
denotes the orthogonal complement projec-
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tor ofA. Then, we have
∥

∥

∥
(R(k−1))Tx[n]

∥

∥

∥

q
=

∥

∥

∥

∥

∥

N
∑

i=k

si[n]X
T
P

⊥
A1:k−1

ai

∥

∥

∥

∥

∥

q

(10a)

≤
N
∑

i=k

si[n]
∥

∥

∥
X

T
P

⊥
A1:k−1

ai

∥

∥

∥

q
(10b)

≤ max
i=k,...,N

∥

∥

∥
X

T
P

⊥
A1:k−1

ai

∥

∥

∥

q
(10c)

for q ≥ 1, where (10b) is obtained by the triangle inequal-
ity. Assume w.l.o.g. that maxi=k,...,N ‖XTP⊥

A1:k−1
ai‖q ≤

‖XTP⊥
A1:k−1

ak‖q . We see that if x[n] is a pure pixel of
endmember k, then equality in (10) holds and subsequently
‖(R(k−1))Tx[n]‖q achieves the maximum.

We also need to show that equality in (10) does not hold
for any non-pure pixels. Let 1 < q < ∞. By Minkowski’s
inequality [15], equality in (10b) may be achieved by a non-
pure pixel if there exists an index j, j $= k, such that

X
T
P

⊥
A1:k−1

ak = X
T
P

⊥
A1:k−1

aj . (11)

However, this is impossible: it can be shown that XT has
full column rank if A has full column rank and the pure
pixel assumption holds [16]. Thus, (11) holds only when
P⊥

A1:k−1
ak = P⊥

A1:k−1
aj , which does not hold for a full

column rankA.
The necessity proof above does not cover the case of q =

∞. For q = ∞, the right-hand side of (9) can be expressed as

max
n=1,...,L

‖(R(k−1))Tx[n]‖∞

= max
n=1,...,L

max
m=1,...,L

|xT [m]P⊥
A1:k−1

x[n]|

≤ max
n=1,...,L

‖P⊥
A1:k−1

x[n]‖22. (12)

where the inequality in (12) is due to Cauchy-Schwarz in-
equality. Moreover, it is observed that equality in (12) is
achievable. Hence, we can simplify (9) to

n̂k = arg max
n=1,...,L

‖P⊥
A1:k−1

x[n]‖2. (13)

By the same proof as in (10), ‖P⊥
A1:k−1

x[n]‖2 is shown to be
maximized only if x[n] is a new pure pixel. !

3.2. OMP for the Reduced MMV Problem

Let us consider the ReMBo method introduced in Sec. 2.2.
By applying OMP to the reduced MMV problem in ReMBo,
and employing only one random realization for simplicity, we
obtain a reduced MMV and OMP (ReOMP) algorithm for the
SD-MMV problem (8) as presented in Algorithm 2.

For convenience, we will call the above algorithm the SD-
ReOMP algorithm. Like the previous SD-SOMP algorithm,
SD-ReOMP does not incorporate the constraints in (8c). We
show that this is not a problem from a viewpoint of pure pixel
identifiability:

Algorithm 2: SD-ReOMP
input :X;

1 randomly generate ξ ∈ RL.
2 setX(0)

S = φ, x̄ = Xξ and r(0) = x̄;
3 for k = 1 : N do
4 determine an index of a pure pixel by

n̂k = arg max
n=1,...,L

|(r(k−1))Tx[n]|; (14)

5 X
(k)
S = [ X(k−1)

S ,x[n̂k] ];
6 r(k) = x̄−X

(k)
S (X(k)

S )†x̄;
7 end
output: Â = X

(N)
S (pure pixels).

Theorem 2 Suppose that the random vector ξ in SD-ReOMP
is generated following an absolutely continuous distribution.
Then, in the noiseless case and under the pure pixel assump-
tion, SD-ReOMP correctly identifies the pure pixels of all the
distinct endmembers with probability one.

Proof of Theorem 2: The proof is similar to that in Theo-
rem 1. Assume w.l.o.g. that after k − 1 iterations, we have
X

(k−1)
S = [ a1, . . . ,ak−1 ]. Now our objective is to show that

|(r(k−1))Tx[n]| attains its upper bound if and only if x[n] is
a new pure pixel. To show this, re-express (r(k−1))Tx[n] by

(r(k−1))Tx[n] =
N
∑

i=k

si[n]
(

ξTXT
P

⊥
A1:k−1

ai

)

.

Also, by the triangle inequality, we have

|(r(k−1))Tx[n]| ≤
N
∑

i=k

si[n]
∣

∣

∣
ξTXT

P
⊥
A1:k−1

ai

∣

∣

∣
,

where the equality holds if and only if s[n] = ei, for
i ≥ k (or, x[n] is a new pure pixel), given the premise
that ξTXTP⊥

A1:k−1
ai for i = k, . . . , N are non-zero distinct

real numbers. We now show that the above premise holds
with probability one. Indeed, since ξ is randomly generated
following an absolutely continuous probability distribution, it
lives in the null space of a given non-zero vector of dimension
1× L with probability zero [14]. Hence, we have

Prob{ξTXT
P

⊥
A1:k−1

ai $= 0} = 1,

Prob{ξTXT
P

⊥
A1:k−1

(ai − aj) $= 0} = 1,

for k ≤ i, j ≤ N and i $= j, which completes the proof. !

It should be noted that SD-ReOMP guarantees perfect
pure pixel identifiability in a probability one sense, rather
than deterministically. As a further remark, the study above
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does not employ the “boosting” part of ReMBo, that is,
running SD-ReOMP multiple times and picking the best so-
lution. While we already show that SD-ReOMP can perfectly
identify all the distinct pure pixels, which means that repeat-
ing it may not be necessary, our empirical experience is that
incorporating the boosting part can improve the pure pixel
identification performance in the presence of noise.

4. CONNECTION TO EXISTING ALGORITHMS

Very interestingly, it turns out that the greedy SD-MMV algo-
rithms shown in the previous section are equivalent to some
representative pure pixels identification algorithms.

First of all, consider SD-SOMP in Algorithm 1. We are
interested in the case of q = ∞. As we showed in the proof
of Theorem 1, the main step in (9) can be simplified to

n̂k = arg max
n=1,...,L

‖P⊥

X
(k−1)
S

x[n]‖2;

see (13). The resulting SD-SOMP algorithm is identical to
SPA [4,8], which is also known to be very similar to ATGP [5]
and SVMAX [7] if we neglect some minor algorithmic de-
tails. We should note that SPA follows an explicit pure pixel
search approach, while SVMAX was derived from Winter’s
simplex volume maximization criterion. While their underly-
ing principles are different, it is interesting to find that they are
very similar [7]. Now, the present result further enriches this
previous finding—SPA has three identities, namely, explicit
pure pixel search, volume maximization, and SD-MMV.

Next, consider SD-ReOMP in Algorithm 2. Let η = Xξ,
and note that η is a random vector. The main step in (14) can
be rewritten as

n̂k = arg max
n=1,...,L

|ηT
P

⊥

X
(k−1)
S

x[n]|

The above step is very similar to that used in VCA [6], in
which the principle is to find the vertices of the convex hull of
the measured pixels, which are the pure pixels under the pure
pixel assumption, through random projection on a plane.

In summary, we now understand that SPA, ATGP, SV-
MAX and VCA can be alternatively interpreted as greedy al-
gorithms under the SD-MMV formulation.

5. CONCLUSION AND DISCUSSION

In this paper we studied blind hyperspectral unmixing under a
self-dictionary MMV formulation. We considered two greedy
algorithms for the formulation, and proved their pure pixel
identifiability in the noiseless case. The resulting algorithms
turn out to be identical or very similar to some representative
pure pixels identification algorithms. Hence, we provide a
new perspective on re-interpreting existing pure pixels iden-
tification algorithms. Future study should focus on further
exploring the potential of SD-MMV, for example, on dealing
with unknown number of endmembers.
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