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Abstract

Phase retrieval has been mainly considered in the presence of Gaussian noise. However, the performance of the

algorithms proposed under the Gaussian noise model severely degrades when grossly corrupted data, i.e., outliers,

exist. This paper investigates techniques for phase retrieval in the presence of heavy-tailed noise – which is considered

a better model for situations where outliers exist. An `p-norm (0 < p < 2) based estimator is proposed for

fending against such noise, and two-block inexact alternating optimization is proposed as the algorithmic framework

to tackle the resulting optimization problem. Two specific algorithms are devised by exploring different local

approximations within this framework. Interestingly, the core conditional minimization steps can be interpreted

as iteratively reweighted least squares and gradient descent. Convergence properties of the algorithms are discussed,

and the Cramér-Rao bound (CRB) is derived. Simulations demonstrate that the proposed algorithms approach the

CRB and outperform state-of-the-art algorithms in heavy-tailed noise.

Index Terms

Phase retrieval, iterative reweighted least squares (IRLS), gradient descent, impulsive noise, Cramér-Rao bound

(CRB).

I. INTRODUCTION

Phase retrieval aims at recovering a signal x ∈ CN from only the magnitude of linear measurements. This is

an old problem [2], [3] that has recently attracted renewed and growing interest. Phase retrieval arises in many

fields, such as X-ray crystallography, coherent diffraction imaging, and optical imaging and astronomy, where the

detectors only record the intensity information, because phase is very difficult and expensive to measure.

The mathematical description of the phase retrieval problem is simple: given the measuring matrix A =

[a1 · · · aM ]H ∈ CM×N and the measurement vector y ∈ RM , where am ∈ CN , and

y = |Ax|,
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find x ∈ CN . Early attempts to solve the phase retrieval problem can be traced back to the 1970s, where techniques

such as Gerchberg-Saxton (GS) [2], Fienup [3] and their variants were proposed. These algorithms have been

empirically shown to work well under certain conditions, although little had been known regarding their convergence

properties from a theoretical point of view. Recently, some new algorithms along this line of work were proposed

in [4], where the convergence issue is better studied.

In recent years, more modern optimization-based approaches for phase retrieval have been proposed. For example,

Candès proposed a semidefinite relaxation approach known as the PhaseLift algorithm [8] and proved that exact

recovery is possible with high probability in the noiseless case. Wirtinger-Flow (WF) [5] is a more recent approach

that combines a good statistical initialization with a computationally light gradient-type refinement algorithm. The

combination works very well when A is i.i.d. Gaussian. In our recent work [7], we proposed a least-squares feasible

point pursuit (LS-FPP) approach that aims to solve the same optimization problem as LS PhaseLift in the presence

of noise. Simulations in [6] indicate that LS-FPP approaches the Cramér-Rao bound for the Gaussian measurement

model considered in [6].

Some phase retrieval algorithms were originally developed under an exact measurement model, and subsequently

treated the noisy case by replacing equality constraints with relaxed inequality constraints [8]-[9]. Most of the

existing algorithms were explicitly or implicitly developed under a Gaussian noise model. In certain applications,

a subset of the measurements may be corrupted much more significantly than the others, and heavy-tailed noise

may be encountered as well [11]-[15]. One representative example is high energy coherent X-ray imaging using a

charge-coupled device (CCD), where the impulsive noise originates from X-ray radiation effects on the CCD, and

the density of impulses increases with the intensity of X-ray radiation or CCD exposure time [15]. Under such

circumstance, modeling the noise as Gaussian is no longer appropriate.

In recent years, robust phase retrieval algorithms, e.g., [11], [14], have been proposed to handle outliers. The

framework in [13], [14] considered an undersampled phase retrieval model corrupted with Laplacian-distributed

outliers, but the approach was designed specifically for sparse x. It is worth noting that Chen and Candés [16]

suggested a truncated WF (TWF) algorithm to handle Poisson noise, which also exhibits robustness to outliers

under certain conditions. However, this method is sensitive to the choice of the measuring matrix A in practice, as

will be shown in simulations in Section IV.

Another important aspect of phase retrieval is how noise enters the measurement model. Our previous work [6]

considered the noise model y = |Ax|2 + n. Another noise model that is frequently considered in the literature

[2]-[4], [10] is

y = |Ax|+ n. (1)

Notice the subtle but important difference between the two models: whether noise is added to the magnitude or the

squared magnitude. The choice hinges on the experimental setup, including the measurement apparatus; but (1) is

more widely adopted by experimentalists.

Contributions: We consider the phase retrieval problem under the model in (1) in the presence of impulsive

noise, and focus on designing robust algorithms to handle it. To fend against impulsive noise, we adopt the

`p-fitting (0 < p < 2) based estimator that is known to be effective in dealing with outliers, and devise two

optimization algorithms using two-block inexact alternating optimization. Specifically, the two algorithms both

solve local majorization-based approximate subproblems for one block, instead of exactly solving the conditional
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block minimization problem to optimality. Interestingly, starting from different majorizations, the resulting solutions

turn out equivalent to iteratively reweighted least squares and gradient descent, respectively. Unlike the existing

inexact and exact alternating optimization frameworks that mostly operate with convex constraints, the proposed

algorithms work with a unit-modulus nonconvex constraint, so convergence analysis seems difficult. Nevertheless,

we prove convergence of the proposed algorithms to a Karush-Kuhn-Tucker (KKT) point by exploiting the two-block

structure of the problem. We also derive computationally light implementations using Nesterov-type and stochastic

gradient updates. In order to assist in performance analysis and experimental design, we derive the Cramér-Rao

bound (CRB) for the model in (1) and under different parameterizations, in the presence of Laplacian and Gaussian

noise. Curiously, although related CRBs for different noisy measurement models have been previously derived in

[6], [17]-[21], to the best of our knowledge, there is no available CRB for the model in (1) – and our work fills this

gap. The proposed algorithms are validated by extensive simulations. The simulations show that our approaches

outperform the state-of-the-art algorithms in the presence of impulsive noise.

A preliminary conference version of part of this work has been submitted to EUSIPCO 2016 [1]. The conference

version includes one of the two basic algorithms, the Laplacian CRB, and limited simulations. The second algorithm,

Nesterov acceleration and stochastic gradient-type updates, additional CRB results, and, most importantly, proof of

convergence of the iterative algorithms are all provided only in this journal version, which naturally also includes

more comprehensive simulation results.

Notation: Throughout the paper, we use boldface lowercase letters for vectors and boldface uppercase letters for

matrices. Superscripts (·)T , (·)∗, (·)H , (·)−1 and (·)† represent transpose, complex conjugate, conjugate transpose,

matrix inverse and pseudo-inverse, respectively. The Re{·} and Im{·} denote the real part and imaginary part. E[·]
is the expectation operator, | · | is the absolute value operator, || · ||F is the Frobenius norm, || · ||p is the vector

`p-norm, whose definition is ||x||p = (
∑N

i=1 |xi|p)1/p, � is the element-wise product, and diag(·) is a diagonal

matrix with its argument on the diagonal. δij denotes the Kronecker delta function, and ∠(·) takes the phase of its

argument. 0m, 1m, and Im stand for the m× 1 all-zero vector, m× 1 all-one vector, and m×m identity matrix,

respectively. Furthermore, tr(·) and ∂a/∂x denote the trace and partial derivative operators, respectively.

II. PROPOSED ALGORITHMS

A. AltIRLS

Let us first consider the noiseless case where y = |Ax|. Effectively, it can also be written as

y � u = Ax (2)

where u = ej∠(Ax) is an auxiliary vector of unknown unit-modulus variables with its mth component being

um = ej∠(aH
mx). In the presence of impulsive noise, `p-(quasi)-norm has be recognized as an effective tool for

promoting sparsity and fending against outliers [22]-[26]. Therefore, we propose to employ an `p-fitting based

estimator instead of using the `2-norm, which has the form of

min
|u|=1,x

M∑
m=1

(
|ymum − aHmx|2 + ε

)p/2
(3)

where 0 < p < 2 is chosen to down-weigh noise impulses (i.e., outliers), and ε > 0 is a small regularization

parameter that keeps the cost function within its differentiable domain when p < 1, which will prove handy in

devising an effective algorithm later. When 1 < p < 2, we may simply let ε = 0.
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To handle Problem (3), we follow the rationale of alternating optimization, i.e., we first update x fixing u, and

then we do the same for u.

Assume that after some iterations, the current solution at iteration r is (x(r),u(r)). At step (r+1), the subproblem

with respect to (w.r.t.) x is

x(r+1) = arg min
x

M∑
m=1

(
|ymu(r)

m − aHmx|2 + ε
)p/2

(4)

which is still difficult to handle. Particularly, when p < 1, the subproblem itself is still non-convex; when p ≥ 1,

the subproblem is convex but has no closed-form solution. Under such circumstances, we propose to employ the

following lemma [27]:

Lemma 2.1: Assume 0 < p < 2, ε ≥ 0, and φp(w) := 2−p
2

(
2
pw
) p

p−2

+ εw. Then, we have(
x2 + ε

)p/2
= min

w≥0
wx2 + φp(w), (5)

and the unique minimizer is

wopt =
p

2

(
x2 + ε

) p−2

2 . (6)

By Lemma 2.1, an upper bound of
∑M

m=1

(
|ymu(r)

m − aHmx|2 + ε
)p/2

that is tight at the current solution x(r) can

be easily found:
M∑
m=1

(
|ymu(r)

m − aHmx|2 + ε
)p/2

≤
M∑
m=1

(
w(r)
m

∣∣∣ymu(r)
m − aHmx

∣∣∣2 + φp

(
w(r)
m

))
(7)

where

w(r)
m :=

p

2

(∣∣∣ymu(r)
m − aHmx(r)

∣∣∣2 + ε

) p−2

2

, (8)

and the equality holds if and only if x = x(r). Instead of directly dealing with Problem (4), we solve a surrogate

problem using the right hand side (RHS) of (7) at each iteration to update x. Notice that the RHS of (7) is convex

w.r.t. x and the corresponding problem can be solved in closed-form:

x(r+1) =
(
W(r)A

)†
W(r)

(
y � u(r)

)
(9)

where

W(r) = diag

(√
w

(r)
1 · · ·

√
w

(r)
M

)
. (10)

The conditional problem w.r.t. u is

u(r+1) = arg min
|u|=1

M∑
m=1

(
|ymum − aHmx(r+1)|2 + ε

)p/2
. (11)

Although the problem is non-convex, it can be easily solved to optimality. Specifically, the first observation is that

the partial minimization w.r.t. u is insensitive to the value of p; i.e., given a fixed x, for any p > 0, the solutions

w.r.t. u are identical. Second, for all p > 0, the solution is simply to align the angle of ymum to that of aHmx(r+1),

which is exactly

u(r+1)
m = ej∠(aH

mx(r+1)), m = 1, . . . ,M. (12)
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We update x and u alternately, until some convergence criterion is met. We see that the way that we construct the

upper bound of the partial problem w.r.t. x is in fact the same as the procedure in iteratively reweighted least squares

(IRLS) [27], [29]. The difference is that we ‘embed’ this IRLS step into an alternating optimization algorithm. We

therefore call this algorithm alternating IRLS (AltIRLS), which is summarized in Algorithm 1.

Algorithm 1 AltIRLS for phase retrieval

1: function ALTIRLS (y,A,x(0))

2: Initialize u(0) = exp(∠(Ax(0))) and W(0) = W(0) = diag

(√
w

(0)
1 · · ·

√
w

(0)
M

)
with w

(0)
m =

p
2

(∣∣∣ymu(0)
m − aHmx(0)

∣∣∣2 + ε

) p−2

2

3: while stopping criterion has not been reached do
4: x(r) = (W(r−1)A)†W(r−1)(y � u(r−1)).

5: u(r) = exp(j∠(Ax(r)))

6: w
(r)
m = p

2

(∣∣∣ymu(r)
m − aHmx(r)

∣∣∣2 + ε

) p−2

2

,∀m

7: W(r) = diag

(√
w

(r)
1 · · ·

√
w

(r)
M

)
8: r = r + 1

9: end while
10: end function

A relevant question regarding Algorithm 1 is whether or not this algorithm converges to a meaningful point, e.g.,

a stationary or KKT point. Note that the block variable u is constrained to a non-convex set, and we do not compute

the optimal solution for the block variable x at each iteration of Algorithm 1. For such a type of algorithm, there

is no existing theoretical framework that establishes convergence. We therefore need careful custom convergence

analysis. We have the following result:

Proposition 2.1: Every limit point of the solution sequence produced by Algorithm 1 is a KKT point of

Problem (3).

Proof: See Appendix A.

The result in Proposition 2.1 is interesting: Although the algorithm that we propose to compute the `p fitting-based

estimator solves non-convex subproblems, it ensures convergence to a KKT point. Such a nice property is proven

by exploiting the two-block structure of the algorithm. Note that the proof itself does not rely on the specific form

of the optimization problem in (3), and thus can be easily extended to other two-block alternating optimization

cases, which we believe is of much broader interest.

B. AltGD

Algorithm 1 uses a simple update strategy, but its complexity may still become an issue when the problem size

grows. Specifically, the bottleneck of the AltIRLS algorithm lies in solving the subproblem

x(r+1) = arg min
x

∣∣∣∣∣∣W(r)(y � u)−W(r)Ax
∣∣∣∣∣∣2

2
. (13)

Although the above problem is merely a quadratic program with closed-form solution, i.e.,

x(r+1) =
(
AH(W(r))2A

)−1
AH(W(r))2

(
y � u(r)

)
, (14)
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the matrix inversion part requires O(N3) flops to compute and also O(N2) memory to store, both of which are not

efficient for high-dimensional x – e.g., when x is a vectorized image, N is usually very large (more specifically,

for a 100× 100 image, N is 10,000).

To circumvent this difficulty, we propose to deal with problem (13) using a first-order approach. Specifically, let

us denote

f (r)(x) =
∣∣∣∣∣∣W(r)(y � u(r))−W(r)Ax

∣∣∣∣∣∣2
2

(15)

and approximate (13) using the following function

g(r)(x) = f (r)(x(r)) + Re{(∇f (r)(x(r)))H(x− x(r))}

+
µ(r)

2

∥∥∥x− x(r)
∥∥∥2

2
. (16)

where µ(r) ≥ 0 is a pre-specified parameter. Instead of optimizing f (r)(x), we optimize g(r)(x). By rearranging

terms, the subproblem becomes

x(r+1) = arg min
x

∥∥∥∥x− (x(r) − 1

µ(r)
∇f(x(r))

)∥∥∥∥2

2

(17)

and the solution is

x(r+1) = x(r) − 1

µ(r)
∇f(x(r)) (18)

i.e., a gradient step with step-size 1/µ(r), where the gradient is

∇f (r)(x(r)) = AH
(
W(r)

)2(
Ax(r) − y � u(r)

)
(19)

which does not require any matrix inversion operation. Also, the N × N matrix does not need to be stored, if

we take the order Ax(r) →
(
W(r)

)2
Ax(r) → AH

(
W(r)

)2
Ax(r) to compute the update of x. Therefore, using

this approach, both memory and complexity requirements are less demanding. We summarize the algorithm in

Algorithm 2. We call this algorithm alternating gradient descent (AltGD).

In terms of convergence, it is easy to see that

f (r)(x) ≤ g(r)(x),

if µ(r) ≥ λmax(AH(W(r))2A), and the equality holds if and only if x = x(r). Therefore, the algorithmic structure

of Algorithm 2 is the same as that of Algorithm 1, except that the majorizing functions of the x-block are different

– which means that the proof of convergence of Algorithm 1 also applies here:

Corollary 2.1: If µ(r) ≥ λmax(AT (W(r))2A) for all r, then, every limit point of Algorithm 1 is a KKT point.

Remark 2.1: Exactly computing λmax(AH(W(r))2A) may be time consuming in practice. Many practically

easier ways can be employed, e.g., the Armijo rule-based line search [30]. In our simulations, we use a simple

heuristic: we let µ(r) = trace((W(r))2) instead of λmax(AH(W(r))2A). The rationale behind is that we observe

that the energy of AH(W(r))2A is usually dominated by W(r), and using µ(r) = trace((W(r))2) is a good

approximation of trace(AH(W(r))2A) that is an upper bound of λmax(AH(W(r))2A). We should mention that

this step-size choice is a heuristic, but works well in practice, as will be shown in the simulations.
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Algorithm 2 AltGD for phase retrieval

1: function ALTGD(y,A,x(0))

2: Initialize u(0) = exp(∠(Ax(0)))

3: while stopping criterion has not been reached do
4: Choose µ(r−1) as the leading eigenvalue of AH(W(r−1))2A or the trace of (W(r−1))2

5: x(r) = x(r−1) − 1/µ(r−1)∇f(x(r−1))

6: u(r) = exp(j∠(Ax(r)))

7: r = r + 1

8: end while
9: end function

C. Further Reducing Complexity

1) Extrapolation: Algorithm 2 is easier to compute than Algorithm 1 in terms of per-iteration complexity.

However, first-order methods are known to tend to require more iterations in total. One way to alleviate this effect

is to incorporate Nesterov’s “optimal first-order” method, i.e., for each update, we set

z(r) = x(r) +
t(r−1) − 1

t(r)

(
x(r) − x(r−1)

)
(20)

t(r) =
1 +

√
1 + 4(t(r−1))2

2
(21)

x(r+1) = z(r) − 1

µ(r)
∇f (r)(z(r)) (22)

In practice, the above ‘extrapolation’ technique greatly expedites the whole process in various applications [31],

[32]. Some numerical evidence can be seen in Fig. 1, where a simple comparison between the plain Algorithm 2 and

the extrapolated version is presented. We choose SNR= 20 dB, N = 16 and M = 128. Each element in the signal

and measurement vectors is independently drawn from the complex circularly symmetric Gaussian distribution with

mean zero and variance one. The noise is generated from a symmetric α stable (SαS distribution) which will be

described in detail in Section IV. Fig. 1 shows the convergence of AltGD and accelerated AltGD using extrapolation

when p = 1.3. As we can see, the accelerated AltGD converges after 40 iterations which is much faster than AltGD

that converges after 200 iterations.

2) Block Incremental / Stochastic Gradient: When N is very large (thus M > N is larger), even gradient

computation is too much of a burden. In such cases, a pragmatic way is to “break down” the problem to pieces

and do (block) incremental or stochastic gradient. We divide the measurement matrix into L blocks Γl. Then it is

straightforward to get the gradient for the lth block as

∇fΓl
(x(r)) = AH

Γl

(
W

(r)
Γl

)2(
AΓl

x(r) − yΓl
� u

(r)
Γl

)
. (23)

The estimate of x is updated according to

x(r+1) = x(r) − 1

µ
(r)
Γl

∇fΓl
(x(r)) (24)

where µ(r)
Γl

is chosen as the leading eigenvalue of AH
Γl

AΓl
or trace

((
W

(r)
Γl

)2). The algorithm can proceed block by

block with revisits, or by randomly picking blocks, resulting in block incremental gradient and stochastic gradient

versions, respectively.
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Fig. 1. Cost function value versus number of iterations.

A subtle point here is that, to maintain robustness, one should choose a block size larger than one. The reason

is that the robustness of the algorithm is brought by treating different ym with different weights (more specifically,

by downweighting the outliers). When using only one ym for updating, this ability vanishes.

III. CRAMÉR-RAO BOUND ANALYSIS

In this section, the CRB on the accuracy of retrieving x in (1) is presented. The CRB provides a lower bound

on the MSE of unbiased estimators and is expected to be a good predictor of MSE performance for large values of

M (i.e., a sufficient number of measurements). For phase retrieval under Gaussian noise, over the past few years,

several CRBs have been derived for different models, e.g., 2-D Fourier-based measurements [17], noise added

prior to taking the magnitude [18] and noise added after taking the magnitude square [6], [19]-[20]. To the best

of our knowledge, there is no available CRB formula for the signal model in (1). Here, we present the CRBs for

two particular types of noise: Laplacian and Gaussian noise. Although our main interest here lies in evaluating

performance of robust algorithms and the Laplacian CRB serves this purpose, the Gaussian CRB is of interest in

other application contexts. Note that we use subscripts r, c, L and G to stand for real, complex, Laplacian and

Gaussian, respectively.

To get started, we should note that our derivations are based on the assumption that x is nonzero. That is because

the term |Ax| is non-differentiable at x = 0N where 0N is the N × 1 zero vector, the Fisher information only

exists at x 6= 0N . With this caveat, we have the following theorem:

Theorem 3.1: In Laplacian noise, the variance of any unbiased estimate of x is bounded below by

CRBL,c = trace
(
F†L,c

)
(25)

where

FL,c =
4

σ2
n

GL,c diag(|Ax|−2) GT
L,c (26)

with

GL,c =

[
Re{AHdiag(Ax)}
Im{AHdiag(Ax)}

]
. (27)
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Proof: See Appendix B.

The CRB for real x is a special case of the complex case, which can be easily derived from Theorem 3.1:

Theorem 3.2: In Laplacian noise, the variance of any unbiased estimate of real-valued x is bounded below by

CRBL,r = trace
(
F−1
L,r

)
(28)

where

FL,r =
4

σ2
n

GL,r diag(|Ax|−2) GT
L,r (29)

with

GL,r = Re{AHdiag(Ax)}. (30)

In Appendix C, we show that when A has full column rank, FL,c is singular with rank (2N − 1) while FL,r

is always nonsingular. Thus, for complex x, we adopt its pseudo-inverse to compute an optimistic (looser) CRB,

which is still a valid lower bound that can be used to benchmark the efficiency of any unbiased estimator [39]-[42].

If x is close to zero, then the CRB is not tight at low SNRs, and more measurements should be used to approach

the CRB.

Theorem 3.3: In Gaussian noise case, the CRB is four times larger than the CRB in Theorem 1, i.e.,

CRBG = 4CRBL. (31)

Proof: See Appendix D.

In certain applications of phase retrieval, we may be more interested in the performance bound for retrieving

the phase of x. The following theorem provides the CRB on both the phase and amplitude of x under Laplacian

noise. Note that in the Gaussian noise case, it is straightforward to apply Theorem 3.3 to compute the lower bound.

Similar results can also be found in [43].

Theorem 3.4: In Laplacian noise, the variance of any unbiased estimate of the amplitude of x is bounded below

by

CRBL,|x| =

N∑
i=1

di (32)

and the variance of any unbiased estimate of the phase of x is bounded below by

CRBL,∠(x) =

2N∑
i=N+1

di (33)

where d = [d1 · · · d2N ] contains the main diagonal elements of F†L which in this case is defined as

FL =
4

σ2
n

GL diag(|Ax|−2) GT
L (34)

with

GL =

[
diag(|x|)−1

IN

][
Re
{

diag (x∗) AHdiag(Ax)
}

Im{diag(x∗)AHdiag(Ax)}

]
. (35)

Proof: See Appendix E.

Remark 3.1: In deriving the CRB in Theorem 3.4, we use no additional assumptions on x. Therefore, Theorem

3.4 works for both real and complex x. Specifically, in the real case, the phase is actually the sign of x. Here, FL

is also singular with rank deficit equal to one, so we adopt its pseudo-inverse to compute the CRB. We omit the

proof of rank-1 deficiency of FL, since it follows the line of argument in Appendix C.
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IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed methods and compare them with some existing

algorithms, namely, PhaseCut [10], TWF [16], WF [5], GS [2] and PRIME1 [37] in terms of MSE performance,

where the MSE is computed after removing the global phase ambiguity between the true and estimated x. In the

simulations, we consider an exponential signal - x = exp(j0.16πt) comprising 16 samples, i.e., t = 1, · · · , 16. The

measurement vectors are generated from a masked Fourier transformation, which has the form of

A =
[
(DΛ1)T · · · (DΛK)T

]T
where K = M/N is the number of masks, D is a N×N discrete Fourier transform (DFT) matrix with DDH = NIN

and Λk is a N × N diagonal masking matrix with its diagonal entries generated by b1b2, where b1 and b2 are

independent and distributed as [8]

b1 =



1 w. prob. 0.25

−1 w. prob. 0.25

−j w. prob. 0.25

j w. prob. 0.25

and b2 =


√

2/2 w. prob. 0.8
√

3 w. prob. 0.2.

All results are obtained using a computer with 3.6 GHz i7-4790 CPU and 8 GB RAM. AltGD, AltIRLS, WF,

TWF, GS, and PRIME are all initialized from the same starting point that is computed by picking the principal

eigenvector of
∑M

i=1 y
2
i aia

H
i , and the stopping criterion is∣∣∣ ∣∣∣∣y − |Ax(r)|

∣∣∣∣2
2
−
∣∣∣∣y − |Ax(r−1)|

∣∣∣∣2
2

∣∣∣∣∣∣∣y − |Ax(r−1)|
∣∣∣∣2

2

≤ 10−7

or the number of iterations reaching 1000. Furthermore, we use AltGD with extrapolation for the simulations.

A. Selection of p

Before we do the performance comparison, let us study how p affects the performance of the proposed methods.

In this example, SNR is fixed at 20 dB, where the SNR is computed via

SNR = 10 log 10

(
||Ax||2

||n||2

)
.

We assume that 10% of the data are corrupted by outliers that are generated from the Gaussian distribution with

mean zero and variance 100, and the remaining elements in n are zero. Eight masks are employed to generate

the measurements. Fig. 2 shows the MSE as a function of p. Note that, when p is smaller than 1, in order to

achieve convergence in a non-convex setting, we initialize our methods in a two-step way. Specifically, for each

of the proposed methods, when 0.6 ≤ p < 1, we use the spectrum output to initialize our methods with p = 1.3

and 100 iterations, and then choose the corresponding output to do another 100 iterations with p = 1 and use

the output as a final starting point. When p ≤ 0.6, we take an additional intermediate step with p = 0.7 and 100

iterations to gradually stage the initialization process for our approaches, since in this p-regime the subproblem

is strictly non-convex. It is observed that generally, p ≤ 1 provides better performance than p > 1, especially for

AltIRLS. When p < 0.5, AltGD suffers severe performance degradation while AltIRLS still performs well. Our

1Here, PRIME stands for PRIME-Modulus-Both-Terms in [37].
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Fig. 2. MSE versus p.

understanding is that first-order algorithms are in general more sensitive to problem conditioning, and a small p

can lead to badly-conditioned W(r). Working with p < 1 usually requires much more careful initialization. In our

experience, p ≈ 1.3 strikes a good compromise between numerical stability and estimation accuracy.

To illustrate the performance provided by our proposed methods with p < 1 over the state-of-art algorithms

including TWF, WF, PhaseCut, GS, and PRIME, we present the following example, where the parameters are the

same as for Fig. 2, except that a relative small number of masks is used, say, K = 6. Note that among these

competitors, PhaseCut, GS and PRIME share the same signal model as ours, but WF is designed after a model

with noise added to the squared magnitude of the linear measurements, and TWF adopts a Poisson model with

λ = |aHi x|2. Hence, y2 is fed to WF and TWF, where the squaring is element-wise. We set p = 0.7 for the

proposed methods, and perform Monte-Carlo trials to estimate MSE = 10 log 10(||x̂− x||22). It is shown in Fig. 3

that the MSE samples of WF, PhaseCut, GS and PRIME are located around −10 dB, and TWF is slightly better

than them. However, our methods produce much smaller MSEs. In particular, for AltGD, most of its MSEs are

located between −100 dB and −20 dB, while for AltIRLS, its MSEs are concentrated around -145 dB, which

indicates that our proposed methods are efficient in suppressing outliers.

B. Statistical Performance Comparison

We now compare the MSE performance as a function of SNR, using 500 Monte-Carlo trials. We use Laplacian and

α-stable distributions, which are considered suitable for modeling heavy-tailed distributions that generate impulsive

noise. The probability density function (PDF) of the Laplacian distribution is given in (46). The PDF of an α-stable

distribution is generally not available, but its characteristic function can be written in closed-form as

φ(t;α, β, c, µ) = exp (jtµ− γα|t|α (1− jβsgn(t)Φ(α)))

where Φ(α) = tan (απ/2), 0 < α ≤ 2 is the stability parameter, −1 ≤ β ≤ 1 is a measure of asymmetry, γ > 0

is a scale factor which measures the width of the distribution and µ is a shift parameter. There are two special

cases that admit closed-form PDF expression, that is, α = 1 and α = 2 which respectively yield the Cauchy and

Gaussian distributions. For α < 2, φ(t;α, β, γ, µ) possesses heavy tails, thus is impulsive. Generally, α controls
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Fig. 3. Signal recovery performance comparison.

the density of impulses. In the following, we set α = 0.8, and the other parameters are β = 0, γ = 2 and µ = 0,

resulting in a symmetric α-stable (SαS) distribution with zero-shift.

In the simulations, the number of measurements is M = 8N . Figs. 4 and 5 show the MSEs of amplitude and

phase of x in SαS and Laplacian noise, respectively, where

MSE on amplitude =
1

500

500∑
i=1

|| |x̂|i − |x| ||22

MSE on phase =
1

500

500∑
i=1

||∠(x̂)i − ∠(x) ||22 .

Note that for SαS noise, we set p = 1.3 for AltIRLS and AltGD, while for Laplacian noise, p = 1. In the Laplacian

noise case, we include the CRB derived in Theorem 3.4 as a performance benchmark. It is observed from Fig.

4 that our approaches slightly outperform the AltMinPhase algorithm and yield the MSEs which are closest to

the CRB. The performance gap between the proposed methods and their competitors becomes even larger in SαS

noise; see Fig. 5. This indicates that the proposed algorithms work better in more critical situations, i.e., when more

severe outliers exist. As a reference, we also plot the MSE performance versus SNR in Gaussian noise in Fig. 6,

where we set p = 2 for having a maximum likelihood estimator. We see that the performance of the algorithms

are similar while the proposed algorithms are still the closest to the CRB.

C. CPU Time Comparison

In this example, we compare the CPU times as a function of N . We set SNR at 30 dB, vary the signal length

from 8 to 256, and keep the number of masks K = 8. We set p = 1.3 for the proposed schemes. The simulation

results are shown in Fig. 7, from which we find that TWF is faster than our methods. However, it has larger MSE

than ours.

D. Performance Comparison on Caffeine Molecule Image Data

In this subsection, we showcase the performance using real caffeine molecule data that is often used to test phase

retrieval algorithms [5], [38], [45]. The caffeine molecule data with size 128 × 128 is the projection of electron
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Fig. 4. MSE versus SNR in Laplacian noise.
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Fig. 5. MSE versus SNR in SαS noise.

density of a 3-D Caffeine molecule’s density map onto the xy-plane. The objective is to reconstruct the data

from the magnitude of its masked Fourier transform. Here, we use the same measuring process as in the previous

simulations and K = 6 masks are used to generate measurements. We add impulsive noise that is SαS distributed.

We compare the performance of AltGD and TWF, which are the most scalable robust algorithms. We also include

the block incremental (BI) implementation of AltGD (cf. Section II.C2), which is referred to as BI-AltGD. The

performance is measured by relative MSE, which is defined as MSE = 1/500
∑500

i=1 ‖X̂i−X‖2F /‖X‖2F . Fig. 8 plots

the retrieved molecule’s density map using AltGD, BI-AltGD with p = 1.3 and TWF where SNR= −5 dB. It is

seen in Fig. 8 that TWF yields a blurred image, while our schemes still work well under such a low SNR. It should

be noted that BI-AltGD takes 4.991 seconds and hits a relative MSE as small as 1.945×10−8, that directly knocks

out AltGD and TWF, which take 12.605 seconds and 37.391 seconds, resulting in MSE 2.993× 10−2 and 0.4118,

respectively. The reason why TWF takes much longer time than our methods is that it usually requires about 500

iterations to converge, while the AltGD and BI-AltGD only need 100 and 40 (outer) iterations, respectively. Using

the same parameter setting but changing SNR from −20 dB to 40 dB, we compare the probability of resolution



14

0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

SNR (dB)

M
S

E

 

 

AltIRLS

AltGD

TWF

WF

PhaseCut

GS

PRIME

CRB:Gaussian

(a) MSE on amplitude

0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

M
S

E

 

 

AltIRLS

AltGD

TWF

WF

PhaseCut

GS

PRIME

CRB:Gaussian

(b) MSE on phase

Fig. 6. MSE versus SNR in Gaussian noise.
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Fig. 7. MSE and CPU time versus number of variables N in SαS noise.

as a function of SNR, where resolution is achieved if the relative MSE ‖X̂i −X‖2F /‖X‖2F < 10−5. It is shown in

Fig. 9 that The BI-AltGD achieves the best performance and is followed by AltGD, while both of them outperform

the TWF method in the low SNR regime.

V. CONCLUSION

In this paper, we considered phase retrieval in the presence of grossly corrupted data – i.e., outliers. We formulated

this problem as an `p fitting problem, where 0 < `p < 2, and provided an algorithmic framework that is based

on two-block inexact alternating optimization. Two algorithms, namely, AltIRLS and AltGD, were proposed under

this framework. Although the algorithms cannot be analyzed using standard convergence results for alternating

optimization due to a nonconvex consraint, we managed to show that the algorithms converge to a KKT point.

The tools used for convergence analysis can also be used for analyzing convergence of other types of algorithms

that involve non-convex constraints and inexact alternating optimization. Pertinent CRBs were derived for the noisy
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measurement models considered. Simulations showed that the proposed algorithms are promising in dealing with

outliers in the context of phase retrieval.

APPENDIX A

PROOF OF PROPOSITION 2.1

Let us denote

f(u,x) =

M∑
m=1

(
|ymum − aHmx|2 + ε

)p/2
.

We also define

g(u(r),x) =

M∑
m=1

(
w(r)
m

(
ymu

(r)
m − aHmx

)2
− φp(w(r)

m )

)
.

According to Lemma 2.1, it is easily seen that

f(u(r),x) ≤ g(u(r),x), ∀x, (36a)

f(u(r),x(r)) = g(u(r),x(r)), (36b)

∇xf(u(r),x(r)) = ∇xg(u(r),x(r)). (36c)

Our update strategy can be therefore summarized as

x(r+1) = min
x

g(u(r+1),x) (37a)
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u(r+1) = min
|u|=1

f(u,x(r+1)) (37b)

Now, we have

f(u(r),x(r)) = g
(
u(r),x(r)

)
(38a)

≥ g
(
u(r),x(r+1)

)
(38b)

≥ f
(
u(r),x(r+1)

)
(38c)

≥ f
(
u(r+1),x(r+1)

)
(38d)

where (38a) follows (36b), (38b) is obtained because of (37a), (38c) holds since we have the property in (36a),

and (38b) is obtained by the fact that the subproblem w.r.t. u is optimally solved, i.e., (37b).

Assume that {rj} denotes the index set of a convergent subsequence, and that {x(rj),u(rj)} converges to (x?,u?)

Then, we have

g(x,u(rj)) ≥ g
(
x(rj+1),u(rj)

)
(39a)

≥ f
(
x(rj+1),u(rj)

)
(39b)

≥ f
(
x(rj+1),u(rj+1)

)
(39c)

≥ f
(
x(rj+1),u(rj+1)

)
(39d)

= g
(
x(rj+1),u(rj+1)

)
, (39e)

where (39d) is obtained by the fact that rj+1 ≥ rj + 1 since rj indexes a subsequence. Taking j →∞, we see that

g(x,u?) ≥ g(x?,u?). (40)

The inequality in (40) means that x? is blockwise minimizer of g(x,u?). Therefore, it satisfies the partial KKT

condition w.r.t. x, i.e.,

∇xg(x?,u?) = 0. (41)

By (36c), we immediately have

∇xf(x?,u?) = 0. (42)

Similarly, by the update rule in (37b), we have

f(x(rj),u) ≥ f(x(rj),u(rj)) (43)

and thus

f(x?,u) ≥ f(x?,u?). (44)

Therefore, u also satisfies the partial KKT condition

∇u f(x?,u?) +

M∑
m=1

λ?m(|u?m| − 1) = 0, (45)

where λm for m = 1, . . . ,M are dual variables. Combining (42) and (45), the proof is complete.
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APPENDIX B

CRB FOR LAPLACIAN NOISE

The likelihood function for Laplacian noise is given by [43]-[44]

p(y; x) =

M∏
i=1

1

σ2
n

exp

{
− 2

σn

∣∣yi − |aHi x|
∣∣} (46)

with its log-likelihood function being

ln p(y; x) = −M ln(σ2
n)− 2

σn

M∑
i=1

∣∣yi − |aHi x|
∣∣ . (47)

The vector of unknown parameters for complex-valued x is

β = [Re{x1} · · · Re{xN}, Im{x1} · · · Im{xN}]T . (48)

It is worth noting that σ2
n is actually an unknown parameter which should be considered as a part of β. However,

since σ2
n is uncorrelated with the real and imaginary parts of xi, their mutual Fisher information is zero. It will not

impact the final CRB formula for x. For this reason, we do not include σ2
n in β. Thus, the FIM can be partitioned

into four parts, i.e.,

FL,c =

[
FL,rr FL,ri

FL,ir FL,ii

]
(49)

where

[FL,c]m,n = E

[
∂ ln p(y; x)

∂βm

∂ ln p(y; x)

∂βn

]
. (50)

The partial derivative of ln p(y; x) with respective to βm is

∂ ln p(y; x)

∂βm
= − 2

σn

M∑
i=1

∂
∣∣yi − |aHi x|

∣∣
∂βm

=
2

σn

M∑
i=1

yi − |aHi x|∣∣yi − |aHi x|
∣∣ ∂|aHi x|
∂βm

=
2

σn

M∑
i=1

sgn(yi − |aHi x|)∂|a
H
i x|

∂βm
(51)

where

sgn(a) =

 1, a > 0

−1, a < 0
(52)

and

∂|aHi x|
∂βm

=


[Re
{
aia

H
i x
}

]m

|aHi x|
, for βm = Re{xm}

[Im
{
aia

H
i x
}

]m

|aHi x|
, for βm = Im{xm}.

(53)

Substituting (51) into (50), we have

[FL,c]m,n =
4

σ2
n

M∑
i=1

M∑
j=1

∂|aHi x|
∂βm

∂|aHi x|
∂βn
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× E
[
sgn(yi − |aHi x|) · sgn(yj − |aHj x|)

]
. (54)

Next we compute the value of E[sgn(yi−|aHi x|)sgn(yj−|aHj x|)]. For notational simplicity, let si = sgn(yi−|aHi x|).

It is obvious that when i = j, we have

E [sisj ] = 1. (55)

For i 6= j, we first write

E [sisj ] = Pr(si = sj)× (+1) + Pr(si 6= sj)× (−1)

= 2Pr(si = sj)− 1 (56)

where Pr standards for the probability. Then the value of Pr(si = sj) is computed as

Pr(si = sj) = Pr(si = 1|sj = 1)Pr(sj = 1)

+ Pr(si = −1|sj = −1)Pr(sj = −1)

= Pr(si = 1)Pr(sj = 1)

+ Pr(si = −1)Pr(sj = −1)

= 0.5 (57)

where Pr(si = 1) = Pr(si = −1) = 0.5 and the second equation follows by independence of si and sj when

i 6= j. Substituting (57) into (56) and using (55) yields

E [sisj ] =

 1, i = j

0, i 6= j.
(58)

Substituting (58) into (54), we obtain

[FL,c]m,n =
4

σ2
n

M∑
i=1

∂|aHi x|
∂βm

∂|aHi x|
∂βn

. (59)

Now using (53) and (59), the four sub-FIMs can be easily derived as

FL,rr =
4

σ2
n

Re{AHdiag(Ax)} · diag(|Ax|−2)

× Re{AHdiag(Ax)}T (60)

FL,ii =
4

σ2
n

Im{AHdiag(Ax)} · diag(|Ax|−2)

× Im{AHdiag(Ax)}T (61)

FL,ri =
4

σ2
n

Re{AHdiag(Ax)} · diag(|Ax|−2)

× Im{AHdiag(Ax)}T (62)

FL,ir = FT
L,ri. (63)

Combining (60)-(63), we obtain

FL,c =
4

σ2
n

GL,c diag(|Ax|−2) GT
L,c (64)
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where

GL,c =

[
Re{AHdiag(Ax)}
Im{AHdiag(Ax)}

]
. (65)

This completes the proof of Theorem 1.

APPENDIX C

PROOF OF RANK PROPERTY OF FL,c AND FL,r

We note here that FL,c is derived under the assumption of nonzero x. If A has full column rank, we have

diag(|Ax|−2) is full rank. As a result, computing the rank of FL,c is equivalent to computing the rank of GL,c.

To this end, define a nonzero vector v = [ vT1 vT2 ]T ∈ R2N , which leads to

GT
L,cv = Re{AHdiag(Ax)}Tv1 + Im{AHdiag(Ax)}Tv2. (66)

Now let u = v1 + jv2, then

GT
L,cv = Re

{(
AHdiag(Ax)

)H
u
}

= Re {(Ax)∗ � (Au)} (67)

which equals to zero if and only if

u = jx (68)

i.e.,

GT
L,cv = Re

{
j |Ax|2

}
= 0. (69)

This means that there is only one direction v = [ − Im{x}T Re{x}T ]T , which is non-zero, lies in the null space

of GL,c, thus also in the null space of FL,c.

In the real x case, similar to the proof of FL,c, it suffices to show that there is no nonzero vector v ∈ RN

making FL,rv = 0. It is easy to see that

GT
L,rv = Re {(Ax)∗ � (Av)} . (70)

Since v is real-valued, it cannot be set to v = jx to make (70) zero. Given a nontrivial A, it is impossible to find

a v such that Av = 0 almost surely. Therefore, FL,r is full rank almost surely. This completes the proof.

APPENDIX D

PROOF OF THEOREM 3.1

Before we do the proof, we note that, the subscripts ‘r’ and ‘c’ are omitted in the following derivations, because

the proof is true for both real and complex cases. Assuming that the noise is Gaussian, the log-likelihood function

can be written as

ln p(y; x) = −M
2

ln(2πσ2
n)− 1

2σ2
n

M∑
i=1

(yi − |aHi x|)2. (71)
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Unlike the Laplacian case, it is easier to take the second-order derivative of (71) to compute the FIM. The (m,n)

entry of the FIM is given by

[FG]m,n = −E
[
∂2 ln p(y; x)

∂βm∂βn

]
(72)

where

∂2 ln p(y; x)

∂βm∂βn
=

1

σ2
n

M∑
i=1

(
(yi − |aHi x|) ∂

2|aHi x|
∂βm∂βn

−∂|a
H
i x|

∂βm

∂|aHi x|
∂βn

)
. (73)

Taking the expectation of both sides of (73) yields

E
[
∂2 ln p(y; x)

∂βm∂βn

]
= − 1

σ2
n

M∑
i=1

∂|aHi x|
∂βm

∂|aHi x|
∂βn

(74)

where E[yi − |aHi x|] = 0. Hence,

[FG]m,n =
1

σ2
n

M∑
i=1

∂|aHi x|
∂βm

∂|aHi x|
∂βn

. (75)

By comparing (75) with (59), we find that the Fisher information for Gaussian noise is 1/4 the one for Laplacian

nosie, which proves the claim in Theorem 3.1.

APPENDIX E

PROOF OF THEOREM 3.4

In this case, the unknown parameter vector β contains the amplitude and phase of x, that is

β =
[
|xT |,∠(xT )

]T
. (76)

Using (59), we have

FL =

[
FL,|x||x| FL,|x|∠(x)

FL,∠(x)|x| FL,∠(x)∠(x)

]
(77)

where

FL,|x||x| =
4

σ2
n

M∑
i=1

∂|aHi x|
∂|x|

∂|aHi x|
∂|xT |

(78)

FL,∠(x)∠(x) =
4

σ2
n

M∑
i=1

∂|aHi x|
∂∠(x)

∂|aHi x|
∂∠(xT )

(79)

FL,|x|∠(xT ) =
4

σ2
n

M∑
i=1

∂|aHi x|
∂|x|

∂|aHi x|
∂∠(xT )

(80)

FL,∠(x)|x| = FT
L,|x|∠(xT ). (81)

The computation of ∂|aH
i x|

∂|x| is

∂|aHi x|
∂|x|

=
1

|aHi x|

[
Re{aHi x}∂Re{aHi x}

∂|x|
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+ Im{aHi x}∂Im{aHi x}
∂|x|

]
(82)

where

∂Re{aHi x}
∂|x|

= Re
{

a∗i �
x

|x|

}
(83)

∂Im{aHi x}
∂|x|

= Im
{

a∗i �
x

|x|

}
. (84)

(85)

Substituting (83) and (84) into (82), we obtain

∂|aHi x|
∂|x|

=
1

|aHi x|
Re
{

aHi x

(
ai �

x∗

|x|

)}
. (86)

One the other hand, the derivative of |aHi x| w.r.t. ∠(x) is

∂|aHi x|
∂∠(x)

=
1

|aHi x|

[
Re{aHi x}∂Re{aHi x}

∂∠(x)

+ Im{aHi x}∂Im{aHi x}
∂∠(x)

]
(87)

where

∂Re{aHi x}
∂∠(x)

= Im {ai � x∗} (88)

∂Im{aHi x}
∂∠(x)

= Re {ai � x∗} . (89)

(90)

Plugging (88) and (89) into (87) yields

∂|aHi x|
∂∠(x)

=
1

|aHi x|
Im
{
aHi x (ai � x∗)

}
. (91)

Using (78)-(81), (86) and (91), and defining

GL =

[
diag(|x|−1)

IN

][
Re
{

diag (x∗) AHdiag(Ax)
}

Im{diag(x∗)AHdiag(Ax)}

]
. (92)

we finish the proof of Theorem 3.
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