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Abstract

This work considers the problem of computing the canonical polyadic decomposition (CPD)
of large tensors. Prior works mostly leverage data sparsity to handle this problem, which are
not suitable for handling dense tensors that often arise in applications such as medical imaging,
computer vision, and remote sensing. Stochastic optimization is known for its low memory cost
and per-iteration complexity when handling dense data. However, existing stochastic CPD al-
gorithms are hard to incorporate a variety of constraints and regularizations that are of interest
in signal and data analytics. Convergence properties of many such algorithms are also unclear.
In this work, we propose a stochastic optimization framework for large-scale CPD with con-
straints/regularizations. The framework works under a doubly randomized fashion, and can be
regarded as a judicious combination of randomized block coordinate descent (BCD) and stochas-
tic proximal gradient (SPG). The algorithm enjoys lightweight updates and small memory foot-
print, and thus scales well. In addition, this framework entails considerable flexibility—many
frequently used regularizers and constraints can be readily handled under the proposed scheme.
The approach is also supported by convergence analysis. Numerical results on large-scale dense
tensors are employed to showcase the effectiveness of the proposed approach.

1 Introduction

Canonical polyadic decomposition (CPD) [previously known as parallel factor analysis (PARAFAC)]
[1–3] is arguably the most popular low-rank tensor decomposition model. CPD has successfully
found many applications in various fields, such as analytical chemistry [4], social network mining [5],
hyperspectral imaging [6], topic modeling [7], and time series analysis [8]; also see [9–11] for more
classic applications in communications.

Computing the CPD of a tensor, however, is a quite challenging optimization problem [12].
Many algorithms have been proposed through the years [3, 13–15]. To keep pace with the ever

1



growing volume of available data, one pressing challenge is to compute CPD at scale. The classic
alternating least squares (ALS) algorithm [3] has an elegant algorithmic structure, but also suffers
from a number of numerical issues [16, 17] and is hardly scalable. In recent years, many new
CPD algorithms have appeared, triggered by the advances in big data analytics and first-order
optimization [13,14,18,19]. Many of these algorithms leverage data sparsity to scale up CPD—by
cleverly using the zero elements in huge tensors, computationally costly key operations in ALS
(e.g., the matricized tensor times Khatri-Rao product (MTTKRP) operation) can be significantly
simplified. Consequently, the classic ALS algorithm can be modified to handle CPD of huge and
sparse tensors.

However, when the tensor to be factored is dense—i.e., when most entries of the tensor are
nonzero—the sparsity-enabled efficient algorithms [6, 13, 14, 18, 19] are no longer applicable. Note
that large and dense tensors arise in many timely and important applications such as medical
imaging [20], hyperspectral imaging [6], and computer vision [21]. In fact, since big dense tensors
typically cost a lot of memory (e.g., a dense tensor with a size of 2, 000 × 2, 000 × 2, 000 occupies
57.52GB memory if saved as double-precision numbers), it is even hard to load them into the RAM
of laptops, desktops, or servers. This also raises serious challenges in the era of Internet of Things
(IoT)—where edge computing on small devices is usually preferable.

Stochastic approximation is a powerful tool for handling optimization problems involving dense
data, which is known for its low per-iteration memory and computational complexities [22]. A
number of stochastic optimization based CPD algorithms have been proposed in the literature
[23–25]. Specifically, The works in [23, 24] work in an iterative manner. In each iteration, the
algorithm samples a random subset of the tensor entries and update the corresponding parts of the
latent factors using the sampled data. The algorithms have proven quite effective in practice, and
features distributed implementation [24]. The challenge here is that every tensor entry only contains
information of a certain row of the latent factors, and updating the entire latent factors may need a
lot of iterations. This may lead to slow improvement of the latent factor estimation accuracy. More
importantly, this update strategy loses the opportunity to incorporate constraints/regularizations
on the whole latent factors, since the sampled entries only contain partial information of them.
This is undesired in practice, since prior information on the latent factors are critical for enhancing
performance, especially in noisy cases.

Recently, a stochastic algorithm that ensures updating one entire latent factor in every iteration
was proposed in [25]. Instead of sampling tensor entries, the algorithm works via sampling tensor
fibers that contain information of the whole latent factors. However, this algorithm works with at
least as many fibers as the tensor rank, which in some cases gives rise to much higher per-iteration
complexity relative to the algorithms in [23, 24]. In addition, like those in [23, 24], the algorithm
in [25] cannot handle constraints or regularizations on the latent factors, either. In addition,
although empirically working well, convergence properties of many stochastic CPD algorithms such
as those in [23,25] are unclear.
Contributions In this work, we propose a new stochastic algorithmic framework for computing
the CPD of large-scale dense tensors. Specifically, our contributions include:
• A Doubly Randomized Computational Framework for Large-Scale CPD. Our first
contribution lies in proposing an efficient and flexible computational framework for CPD of large
dense tensors. Our method is a judicious combination of randomized block coordinate descent
(BCD) [26, 27] and stochastic proximal gradient (SPG) [28, 29]. Specifically, in each iteration, our
method first samples a mode from all modes of the tensor. Then, the algorithm samples some fibers
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of this mode and updates the corresponding latent factor via stochastic proximal operations. Such a
combination exhibits an array of attractive features: It admits much smaller per-iteration memory
and computational complexities relative to the existing fiber sampling based method in [25]. More
importantly, it is very flexible in terms of incorporating regualrizations and constraints on the latent
factors.
• Rigorous Convergence Analysis. Both BCD and SPG are well studied topics in the op-
timization literature [26, 27, 30]. However, convergence properties of the proposed framework is
not immediately clear, due to the nonconvex nature of CPD. The existing block-randomized SGD
(BR-SGD) framework [31] only considers convex optimization. A related work in [32] deals with
nonconvex problems via block stochastic gradient, but their Gauss-Seidel type BCD strategy (with-
out block randomization) makes the convergence analysis inapplicable to our case. Hence, we offer
tailored convergence analyses for our proposed CPD algorithms.
• Implementation-friendly Adaptive Stepsize Scheduling. In practice, one of the most
challenging aspects in stochastic optimization is selecting a proper stepsize schedule. To make
the proposed algorithms friendly to use by practitioners, we propose a practical and adaptive
stepsize schedule that is based on the celebrated Adagrad algorithm [33]. Adagrad is an adaptive
stepsize selection method that was devised for single-block gradient descent. Nonetheless, we find
through extensive simulations that it largely helps reduce the agonizing pain of tuning stepsize
when implementing our multi-block algorithm for CPD. In addition, we also show that the adaptive
stepsize-based algorithm converges to a stationary problem almost surely under some conditions.

A quick demonstration of the effectiveness of the proposed algorithms is shown in Fig. 1, where
the average mean squared error (MSE) of the estimated latent factors [cf. Eq. (21)] against the
number of MTTKRP computed (which dominates the complexity) is plotted. One can see that
the proposed algorithm largely outperforms a couple of state-of–the-art algorithms for constrained
CPD. More thorough numerical results can be seen in Sec. 6.

Part of the work was submitted to ICASSP 2019 [34]. In this new version, we have additionally
included detailed convergence proofs and the new adaptive stepsize based algorithm. More extensive
simulations and real-data experiments are also included.
Notation. We follow the established conventions in signal processing. x, x, X, and X denote
scaler, vector, matrix, and tensor, respectively; ‖ · ‖ denotes the Euclidean norm, i.e., ‖x‖2 and
‖X‖F , respectively; ◦, �, and ~ denote outer product, Khatri-Rao product, and Hadamard prod-
uct, respectively; vec(X) denotes the vectorization operator that concatenates the columns of X;
X ≥ 0 means that all the entries of X are nonnegative; > and † denote transpose and pseudo-
inverse, respectively; |C| denotes the cardinality of of set C; λmax(·) denotes the largest eigenvalue
of a matrix.

2 Background

We first introduce some notions that are heavily used in tensor algebra.

2.1 Tensors and CPD

An Nth order tensor is an array whose entries are indexed by N coordinates; i.e., X(i1, . . . , iN )
denotes an element of the tensor X with a size of I1 × I2 × . . .× IN . Like matrices, tensors can be

3



0 100 200 300 400

no. of MTTKRP computed

10-6

10-4

10-2

100

M
S

E

BrasCPD (  = 1.5)
AdaCPD
AO-ADMM
APG

Figure 1: The proposed algorithms (AdaCPD and BrasCPD) exhibit low complexity for achieving
high accuracy of the estimated latent factors. The tensor under test has a size of 100× 100× 100
and the rank is 10. The latent factors are constrained to be nonnegative. The baselines are two
state-of-art constrained CPD algorithms AO-ADMM [13] and APG [14].

represented as sum of rank-one components:

X =
F∑
f=1

A(1)(:, f) ◦A(2)(:, f) ◦ . . . ◦A(N)(:, f), (1)

where “◦” denotes the outer product of vectors, and A(n) an In × F matrix that is often referred
to as the mode-n latent factor. When F is the minimal integer that satisfies the expression in (1),
the right hand side in (1) is called the canonical polyadic decomposition of the tensor X. At the
entry level, the CPD can be expressed as

X(i1, . . . , iN ) =

F∑
f=1

N∏
n=1

A(n)(in, f) (2)

for in ∈ {1, . . . , In}. The CPD of a tensor is essentially unique under mild conditions (meaning
that the latent factors A(n)’s that constitute the data X are unique up to some trivial ambiguities
like column permutations and scalings [2]). In practice, the CPD of a tensor is often obtained via
solving a certain optimization criterion

minimize
{A(n)}Nn=1

f(A(1), . . . ,A(N)). (3)

One of most commonly seen optimization surrogate for CPD in the literature is the least squares
(LS) fitting criterion [3, 13,14]:

f(A(1), . . . ,A(N)) =
∥∥∥X − F∑

f=1

A(1)(:, f) ◦ . . . ◦A(N)(:, f)
∥∥∥2
F
.

In the sequel, we will often use the shorthand notation f(θ) to denote f(A(1), . . . ,A(N)), where

θ = [vec(A(1))
>, . . . , vec(A>(N))]

>.
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Note that many other criteria have also been considered, e.g., the Kullback-Leibler (KL) divergence
[35] and robust fitting [36, 37] criteria—which serve for different purposes. Nevertheless, the LS
fitting criterion is arguably the most popular one.

2.2 Unfolding, ALS and MTTKRP

The matricization operation, or matrix unfolding of a tensor, has proven very useful in designing
tensor factorization algorithms. The mode-n unfolding of a tensor is a Jn × In matrix where

X(i1, . . . , iN ) = X(n)(j, in),

and we have j = 1 +
∑N

k=1,k 6=n(ik − 1)Jk and Jk =
∏k−1
m=1,m 6=n Im [1]. The CPD representation in

Eq. (1) can be expressed as
X(n) = H(n)A

>
(n), (4)

where the Jn × F matrix H(n) is defined as

H(n) = A(1) �A(n−1) �A(n+1) � . . .�A(N) = �Ni=1,i 6=nA(i).

The elegant form of the unfoldings has enabled the famous alternating least squares (ALS)
algorithm [3] for handling Problem (3) with the LS objective. Specifically, ALS solves the following
cyclically for n = 1, . . . , N :

A(n) ← arg min
A

∥∥X(n) −H(n)A
>∥∥2

F
. (5)

Problem (5) is nothing but a least squares problem that admits the following closed-form solution:

A(n) ←
(

(H>(n)H(n))
−1H>(n)X(n)

)>
,

if rank(H(n)) = F . Note that (H>(n)H(n))
−1 is not difficult to compute by exploiting the Khatri-

Rao structure of H(n) [1, 2, 13]. However, when the problem dimension is large (which often
happens in applications such as medical imaging, remote sensing, and computer vision), solving
the seemingly simple problem in (5) can be computationally prohibitive. The reason is that both

X(n) ∈ R(
∏N
j=1,j 6=n Ij)×In and H(n) ∈ R(

∏N
j=1,j 6=n Ij)×F can be very large matrices. In particular, the

so-called matricized tensor times Khatri-Rao product (MTTKRP) operation, i.e.,

MTTKRP : H>(n)X(n)

that happens in every iteration of ALS costs O(
∏N
n=1 InF ) flops (or, O(INF ) if In = I). This

is quite costly even if In is moderately large. Many works have considered fast algorithms for
computing MTTKRP, but these methods are mainly enabled by judiciously exploiting sparsity of
the tensor data [18,38].

In a lot of applications, some prior knowledge on the latent factors is known—e.g., in image
processing, A(n)’s are normally assumed to be nonnegative [6]; in statistical machine learning,
sometimes the columns ofA(n) are assumed to be constrained within the probability simplex [35,39];
i.e.,

1>A(n) = 1>, A(n) ≥ 0. (6)
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In those cases, the following criterion is often of interest:

minimize
{A(n)}Nn=1

f(A(1), . . . ,A(N)) +
N∑
n=1

hn(A(n))

subject to A(n) ∈ An

(7)

Compared to the unconstrained version, Problem (7) is even harder to handle. Some recent methods
combine first-order constrained optimization and ALS [13, 14] to make the tensor factorization
algorithms more flexible in handling constraints and regularizations—but the complexity orders
of those algorithms often scale similarly as that of ALS, since these algorithms cannnot avoid
computing H>(n)X(n) that is the bottleneck for computing CPD.

2.3 Stochastic Optimization

When the tensor is large and dense, working with the entire dataset could be computationally and
memory-wise expensive. A popular workaround is to apply stochastic approximation (SA)—i.e.,
sampling parts of the data at random and use the sampled piece to update the latent factors. Using
Eq. (2), Problem (3) with the LS objective is equivalent to the following:

minimize
{A(n)}

(1/T )
∑

i1,...,iN
fi1,...,iN (θ) , (8)

where T =
∏N
n=1 In and

fi1,...,iN (θ) =

X(i1, . . . , iN )−
F∑
f=1

N∏
n=1

A(n)(in, f)

2

.

The objective function in (8) can be understood as the empirical risk of SA [22]. Using this obser-
vation, the algorithms in [23,24] randomly sample a subset set of entries indexed by {(i1, . . . , iN )}
and update the pertinent parts of the latent factors (note that the (i1, . . . , iN )th entry of tensor
contains the information of A(n)(in, :) for n = 1, . . . , N) using the sampled entries of the tensor.
For example, [24] uses a stochastic gradient (SG) based approach and update the A(n)(in, :)’s that
are associated with the sampled entries. The sampling method in [23] is similar, while the update is
not gradient-based but Gauss-Newton or ALS applied to the sampled set of entries (or, sub-tensors,
to be precise). The upshot of this line of work is that the per-iteration complexity can be quite
low.

Despite of such favorable complexity savings, the approaches in [23,24] have a couple of limita-
tions. First, in every iteration only a small part of the A(n)’s (i.e., some rows) are updated—which
may result in slow improvement of estimation accuracy of the latent factors. Second—which is
perhaps more critical—many useful prior information cannot be incorporated in the algorithm.
The reason is that these algorithms update some of the rows of A(n)’s, while many useful priors
are defined w.r.t. the columns of the latent factors, e.g., the probability simplex constraint in (6)
and the total variation constraint that is heavily used in image processing. Third, convergence
properties of these methods are often unclear.

An alternative [25] to the SA based methods above is to leverage the tensor data structure by
considering randomly sampled fibers of tensors. Note that a mode-n fiber of X (cf. Fig. 2) is a row
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Figure 2: From left to right: mode-1, 2, 3 tensor fibers of a third-order tensor, respectively.

of the mode-n unfolding X(n) [1]. Now, assuming that one samples a set of mode-n fibers indexed
by Fn ⊂ {1, ..., Jn}, then A(n) can be updated by solving a ‘sketched version’ of Problem (5):

A(n) ← arg min
A

∥∥X(n)(Fn, :)−H(n)(Fn, :)A>
∥∥2
F
, (9)

If |Fn| ≥ F , thenH(n)(Fn, :) can be invertible and the sketched system of linear equationsX(n)(Fn, :
) ≈H(n)(Fn, :)A>(n) is over-determined. Hence, one can updateA(n) by solving the |Fn| dimensional
linear system

A>(n) ←H(n)(Fn, :)†X(n)(Fn, :).

Similar to the ALS algorithm, after updating A(n), the algorithm moves to mode-(n + 1) fibers
and repeats the same for updating A(n+1). Intuitively, the method in [25] can be more efficient
than SG based methods in terms of estimating the A(n)’s. The downside is that it needs to
sample at least F fibers for each update, and F can be larger than In in tensor decomposition.
In addition, the update in (5) can only handle unconstrained/unregularized tensor decomposition,
while incorporating constraints/regularizations is often critical in practice. Convergence properties
of this method is also unclear.

3 Proposed Algorithm

In this work, we propose a new stochastic optimization strategy for CPD. Our method combines
the insights from ALS and fiber sampling, but allows |Fn| � F . This is instrumental in practice,
since it is the key for achieving low per-iteration complexity. The proposed algorithm can easily
handle a variety of constraints and regularizations that are commonly used in signal processing and
data analytics—which is reminiscent of stochastic proximal gradient (SPG) [29, 40]. In addition,
we provide convergence analyses to back up the proposed approach.

3.1 Basic Idea: Unconstrained Case

We first consider Problem (3). Our idea is combining SA and exploiting the tensor fiber structure.
Specifically, at each iteration, we sample a set of mode-n fibers for a certain n as the method
in [25] does. However, instead of exactly solving the least squares subproblems (5) for all the
modes following a Gauss-Seidel manner in each iteration, we update A(n) using a doubly stochastic
procedure. To be more precise, at iteration r, we first randomly sample a mode index n ∈ {1, ..., N}.
Then, we randomly sample a set of mode-n fibers that is indexed by Fn ⊂ {1, ..., Jn}. Let G(r) ∈
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RI1×F × · · · × RIN×F be a collection of matrices, representing the stochastic gradient as:

G
(r)
(n) =

1

|Fn|

(
A

(r)
(n)H

>
(n)(Fn)H(n)(Fn)−X>(n)(Fn)H(n)(Fn)

)
G

(r)
(n′) = 0, n′ 6= n, (10)

where G
(r)
(n) denotes the nth block of G(r), and we used the shorthand notations

X(n)(Fn) = X(n)(Fn, :), H(n)(Fn) = H(n)(Fn, :).

The latent variables are updated by

A
(r+1)
(n) ← A

(r)
(n) − α

(r)G
(r)
(n), n = 1, ..., N. (11)

One observation is that G
(r)
(n) is simply an SA applied to the full gradient of Problem (3) w.r.t. the

chosen mode-n variable A(n), and the update is an iteration of the classical SG algorithm (with a
minibatch size |Fn|) for solving the problem in (5).

The proposed update is very efficient, since the most resource-consuming update H>(n)X(n) in

algorithms such as those in [13,14] is avoided. The corresponding part X>(n)(Fn, :)H(n)(Fn, :) costs

only O(|Fn|FIn) flops—and |Fn| is under our control. Note that the first step in this procedure is
different from standard ALS-type algorithms that update the block variables A(n) cyclically instead
of updating a randomly sampled block. As we will show, this modification greatly simplifies our
convergence analysis.

3.2 Constrained and Regularized Case

As mentioned, there are many cases in practice where considering regularizations or constraints on
A(n)’s can benefit the associated tasks. Since our framework updates an entire A(n) in each itera-
tion, it is friendly for incorporating a large variety of commonly used constraints/regularizations—
which is more flexible relative to the entry sampling based approaches in [23, 24]. Specifically, the
algorithm can be easily extended to handle the constrained/regularized case:

minimize
{A(n)}Nn=1

f(θ) +
N∑
n=1

hn(A(n))

subject to A(n) ∈ An,

(12)

where f(θ) is the objective function of (3), hn(A(n)) denotes a structure-promoting regularizer on
A(n). Note that A(n) ∈ An can also be written as a regularization hn

(
A(n)

)
if hn(·) is defined as

the indicator function of set An, i.e.,

hn(A) = I(An) =

{
0, A ∈ An
∞, o.w.
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Algorithm 1: BrasCPD

input : N -way tensor X ∈ RI1×...×IN ; rank F ; sample size B, initialization {A(0)
(n)}, step size

{α(r)}r=0,...

1 r ← 0;
2 repeat
3 uniformly sample n from {1, . . . , N}, then sample Fn from {1, . . . , Jn} with |Fn| = B;

4 form the stochastic gradient G(r) ← (10);

5 update A
(r+1)
(n) ← (13a), A

(r+1)
(n′) ← A

(r)
(n′) for n′ 6= n;

6 r ← r + 1;

7 until some stopping criterion is reached ;

output: {A(r)
(n)}

N
n=1

where I(X ) denotes the indicator function of the set X . Using the same fiber sampling strategy as
in the previous subsection, we update A(n) by

A
(r+1)
(n) ← arg min

A(n)

∥∥A(n) −
(
A

(r)
(n) − α

(r)G
(r)
(n)

)∥∥2
F

+ hn
(
A(n)

)
(13a)

A
(r+1)
(n′) ← A

(r)
(n′), n′ 6= n (13b)

Problem (13a) is also known as the proximal operator of hn(·), which is often denoted as

A
(r+1)
(n) → Proxhn

(
A

(r)
(n) − α

(r)G
(r)
(n)

)
. (14)

Many hn(·)’s admit simple closed-form solutions for their respective proximal operators, e.g., when
hn(·) is the indicator function of the nonnegative orthant and hn(·) = ‖ · ‖1; see Table 1 and more
details in [13, 41]. The complexity of computing (14) is often similar to that of the plain update
in (11), and thus is also computationally efficient. An overview of the proposed algorithm can be
found in algorithm 1, which we name Block-Randomized SGD for CPD (BrasCPD).

Table 1: Proximal/projection operator of some frequently used regularizations and constraints.

h(·) prox./proj. solution complexity

‖ · ‖1 soft-thresholding O(d)

‖ · ‖2 re-scale O(d)

‖ · ‖2,1 block soft-thresholding O(d)

‖ · ‖0 hard-thresholding O(d)

I(∆) randomized pivot search [42] O(d) in expectation

I(R+) max O(d)

monotonic monotone regression [43] O(d)

unimodal unimodal regression [44] O(d2)
†In the table, d is the number of optimization variables.
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4 Convergence Properties

Note that BrasCPD does not fall into any known framework of block stochastic gradient optimization,
and thus its convergence properties are not immediately clear. Two most relevant works from the
optimization literature are [14] and [31]. However, the work in [14] considers Gauss-Seidel type
block SGD (i.e., cyclically updating the blocks), instead of the block-randomized version as BrasCPD
uses. The work in [31] considers block-randomized SGD, but only for the convex case. In addition,
many assumptions made in [14,31] for their respective generic optimization problems are not easily
satisfied by our CPD problem. In this section, we offer tailored convergence analyses for BrasCPD.

4.1 Unconstrained Case

To proceed, we will use the following assumptions:

Assumption 1 The stepsize schedule follows the Robbins-Monro rule [45]:

∞∑
r=0

α(r) =∞,
∞∑
r=0

(α(r))2 <∞.

Assumption 2 The updates A
(r)
(n) are bounded for all n, r.

Assumption 1 is a principle for stepsize scheduling, which is commonly used in stochastic ap-
proximation. Assumption 2 is a working assumption that we make to simplify the analysis. It
is considered a relatively strong assumption, since it is hard to check or guarantee. Nevertheless,
unbounded iterates rarely happen in practice, if the stepsize is well controlled.

There are also an array of problem structures that are useful for studying convergence of the
algorithm.

Fact 1 The LS fitting part in the objective function (12) (i.e.f(θ)) satisfies

f(θ) ≤f(θ̄) + 〈∇A(n)
f(θ̄),A− Ā(n)〉

+
L̄(n)

2
‖A− Ā(n)‖2F , (15)

where L̄(n) ≥ λmax(H̄>(n)H̄(n)), θ̄ is a feasible point, and Ā(n) and H̄(n) are extracted/constructed

from θ̄ following the respective definitions.

Eq. (15) holds because the objective function f(θ) w.r.t. A(n) is a plain least squares fitting
criterion, which is known to have a Lipschitz continuous gradient—and the smallest Lipschitz
constant is λmax(H̄>(n)H̄(n)).

The second fact is instrumental in proving convergence of the algorithm:

Fact 2 Denote ξ(r) and ζ(r) as the random variables that are responsible for selecting the mode and

fibers in iteration r, respectively. Also denote B(r) = {ξ(1), ζ(1), . . . , ξ(r−1), ζ(r−1)}, i.e., the filtration
up to r. The block-wise stochastic gradient constructed in (10) is an unbiased estimation for the
full gradient w.r.t. A(ξ(r)), i.e.,

Eζ(r)
[
G

(r)

(ξ(r))
| B(r), ξ(r)

]
= ∇A

(ξ(r))
f(θ(r)), (16)
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if ζ(r) admits the following probability mass function (PMF):

Pr(ζ(r) = i) =
1

Jn
, ∀i ∈ {1, . . . , Jn}. (17)

The proof of the above is straightforward and thus skipped. The Fact says that even if our block
stochastic gradient is not exactly an unbiased estimation for ∇θf(θ), it is an unbiased estimation
for the “block gradient” ∇A(n)

f(θ(r)). This fact will prove quite handy in establishing convergence.
In fact, the two-level sampling strategy (i.e., block sampling and fiber sampling, respectively),
makes the gradient estimation w.r.t. θ unbiased up to a scaling factor (see Appendix A). This
connection intuitively suggests that the proposed algorithm should behave similarly as an ordinary
single-block stochastic gradient descent algorithm.

We first have the following convergence property:

Proposition 1 Consider the case where hn(·) = 0 and Assumptions 1-2 hold. Then, the solution
sequence produced by BrasCPD satisfies:

lim
r→∞

inf E
[∥∥∥∇A(n)

f
(
A

(r)
(1), . . . ,A

(r)
(N)

)∥∥∥2] = 0, ∀n.

The proof is relegated to Appendix B. The above proposition implies that there exists a subsequence
of the solution sequence that converges to a stationary point in expectation. We should mention
that the SGD/stochastic proximal gradient type update and the block sampling step are essential
for establishing convergence—and using the exact solution to (9) as in [25] may not have such
convergence properties.

4.2 Constrained/Regularized Case

To understand convergence of the proximal gradient version with hn(·) 6= 0, denote Φ(θ) = f(θ) +∑N
n=1 hn(θ) as the objective function. Our optimality condition amounts to P

(r)
(n) = 0, ∀ n, where

P
(r)
(n) =

1

α(r)

(
A

(r+1)
(n) − Proxhn

(
A

(r)
(n) − α

(r)∇A(n)
f(θ(r))

))
;

i.e., the optimality condition is satisfied in a blockwise fashion [30, 32]. Hence, our goal of this

section is to show that E[‖P (r)
(n)‖

2] for all n vanishes when r grows. We will use the following
assumption:

Assumption 3 There exists a sequence σ(r) for r = 0, 2, . . ., such that

Eζ(r)
[∥∥∥G(r)

(ξ(r))
−∇A

(ξ(r))
f(θ(r))

∥∥∥2 ∣∣∣ B(r), ξ(r)] ≤ (σ(r))2,

and
∞∑
r=0

(σ(r))2 <∞. (18)

We show that BrasCPD produces a convergent solution sequence in the following proposition:
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Proposition 2 Assume that Assumptions 1-3 hold. Also assume that hn(·) is a convex function.
Then, the solution sequence produced by BrasCPD satisfies

lim
r→∞

inf E
[∥∥∥P (r)

(n)

∥∥∥2] = 0, ∀n.

Remark 1 Note that the convergence result in Proposition 2 inherits one possible drawback from
single-block stochastic proximal gradient algorithms for nonsmooth nonconvex optimization. To
be specific, the relatively strong assumption in (18) needs to be assumed for ensuring convergence.

Assumption 3 essentially means that the variance of the gradient estimation error δ
(r)

(ξ(r))
= G

(r)

(ξ(r))
−

∇A
(ξ(r))

f(θ(r)) decreases and converges to zero. This is not entirely trivial. One way to fulfill this

assumption is to increase the minibatch size along the iterations, e.g., by setting [29, 32]:

|F (r)
n | = O(dr1+εe), ∀ε > 0.

Then, one can see that (σ(r))2 = O( 1
dr1+εe), so that

∑∞
r=0(σ

(r))2 < ∞. Another popular way for

achieving (18) is to use some advanced variance reduction techniques such as SVRG [40]—which
may go beyond the scope of this paper and thus is left out of the discussion. Also notice that as
the convergence analysis is pessimistic, in practice constant minibatch size works fairly well—as we
will see soon.

5 An Adaptive Stepsize Scheme

One may have noticed that the convergence theories in Propositions 1-2 do not specify the sequence
α(r) except two constraints as in Assumption 1. This oftentimes gives rise to agonizing tuning
experience for practitioners when implementing stochastic algorithms.

Recently, a series of algorithms were proposed in the machine learning community for adaptive
stepsize scheduling when training deep neural networks [46–48]. Most of these works are variants
of the Adagrad algorithm [33]. The insight of Adagrad can be understood as follows: If one
optimization variable has been heavily updated before, then it is given a smaller stepsize for the
current iteration (and a larger stepsize otherwise). This way, all the optimization variables can be
updated in a balanced manner. Adagrad was proposed for single-block algorithms, and this simple
strategy also admits many provable benefits under the context of convex optimization [33]. For our
multi-block nonconvex problem, we extend the idea and propose the following updating rule: In
iteration r, if ξ(r) = n, then, for all i ∈ {1, . . . , In} and all f ∈ {1, . . . , F}, we have

[η
(r)
(n)]i,f ←

η(
b+

∑r−1
t=0 [G

(t)
(n)]

2
i,f

)1/2+ε , (19a)

A
(r+1)
(n) ← A

(r)
(n) − η

(r)
(n) ~G

(r)
(n), (19b)

A
(r+1)
(n′) ← A

(r)
(n′), (19c)

where η, b, ε > 0. The Adagrad version of block-randomized CPD algorithm is very simple to
implement. The algorithm is summarized in Algorithm 2, which is named AdaCPD.

As one will soon see, such a simple stepsize strategy is very robust to a large number of scenarios
under test—i.e., in most of the cases, AdaCPD performs well without tuning the stepsize schedule.
In addition, the AdaCPD algorithm works well for both the constrained and unconstrained case.
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Algorithm 2: AdaCPD

input : N -way tensor X ∈ RI1×...×IN ; rank F ; sample size B , initialization {A(0)
(n)}

1 r ← 0;
2 repeat
3 uniformly sample n from {1, . . . , N}, then sample Fn from {1, . . . , Jn} with |Fn| = B;

4 form the stochastic gradient G(r) ← (10);

5 determine the step size η
(r)
(n) ← (19a)

6 update A
(r+1)
(n) ← (19b), A

(r+1)
(n′) ← A

(r)
(n′) for n′ 6= n;

7 r ← r + 1;

8 until some stopping criterion is reached ;

output: {A(r)
(n)}

N
n=1

Proving convergence for nonconvex Adagrad-like algorithms is quite challenging [49,50]. In this
work, we show that the following holds:

Proposition 3 Assume hn(·) = 0 for all n, and that Pr(ξ(r) = n) > 0 for all r and n. Under the
Assumptions 1-2, the solution sequence produced by AdaCPD satisfies

Pr
(

lim
r→∞

‖∇A(n)
f(θ(r))‖2 = 0

)
= 1.

Proposition 3 asserts that the algorithm converges almost surely. The proof is relegated to Appendix
D in the supplementary materials due to page limitations. Our proof extends the idea from a
recent paper [49] that focuses on using Adagrad for solving single-block nonconvex problems. As
mentioned, our two-level sampling strategy makes our algorithm very similar to single-block SGD
with a scaled gradient estimation (cf. Appendix A), and thus with careful modifications the key
proof techniques in [49] goes through. Nevertheless, we detail the proof for being self-containing.

6 Numerical Results

In this section, we use simulations and real-data experiments to showcase the effectiveness of the
proposed algorithm.

6.1 Synthetic Data Simulations

6.1.1 Data Generation

Throughout this subsection, we use synthetic third-order tensors (i.e., N = 3) whose latent factors
are drawn from i.i.d. uniform distribution between 0 and 1—unless otherwise specified. This
way, large and dense tensors can be created. For simplicity, we set In = I for all n and test the
algorithms on tensors having different In’s and F ’s. In some simulations, we also consider CPD for
noisy tensors, i.e., factoring data tensors that have the following signal model:

Y = X +N ,
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where X is the noiseless low-rank tensor and N denotes the additive noise. We use zero-mean i.i.d.
Gaussian noise with variance σ2N in our simulations, and the signal-to-noise ratio (SNR) (in dB) is

defined as SNR = 10 log10

(
1∏N

n=1 In
‖X‖2

σ2
N

)
.

6.1.2 Baselines

A number of baseline algorithms are employed as benchmarks. Specifically, we mainly use the
AO-ADMM algorithm [51] and the APG algorithm [14] as our baselines since they are the most flexible
algorithms with the ability of handling many different regularizations and constraints. We also
present the results output by the CPRAND algorithm [25]. Note that we are preliminarily interested
in constrained/regularized CPD. Because CPRAND operates without constraints, the comparison is
not entirely fair (e.g., CPRAND can potentially attain smaller cost values since it has a much larger
feasible set). Nevertheless, we employ it as a benchmark since it uses the same fiber sampling
strategy as ours. All the algorithms are initialized with the same random initialization; i.e., A(0)’s
entries follow the uniform distribution between 0 and 1.

6.1.3 Parameter Setting

For BrasCPD, we set the stepsize to be

α(r) =
α

rβ
, (20)

where r is the number of iterations, β = 10−6 and α typically takes a value in between 0.001 and
0.1, and we try multiple choices of α in our simulations. The batch size |Fn| is set to be below 25,
which will be specified later. For AdaCPD, we fix β = 10−6 and η = 1 for all the simulations. For
CPRAND, we follow the instruction in the original paper [25] and sample 10F log2 F fibers for each
update.

6.1.4 Performance Metrics

To measure the performance, we employ two metrics. The first one is the value of the cost function,
i.e., cost = (1/

∏N
n=1 In) × f(θ(r)). The second one is the estimation accuracy of the latent factors,

A(n) for n = 1, . . . , N . The accuracy is measured by the mean squared error (MSE) which is as
defined in [52,53]:

MSE = (21)

min
π(f)∈{1,...,F}

1

F

F∑
f=1

∥∥∥∥∥ A(n)(:, π(f))

‖A(n)(:, π(f))‖2
−

Â(n)(:, f)

‖Â(n)(:, f)‖2

∥∥∥∥∥
2

2

where Â(n) denotes the estimate of A(n) and π(f)’s are under the constraint {π(1), . . . , π(F )} =
{1, . . . , F}—which is used to fix the intrinsic column permutation in CPD.

Since the algorithms under test have very different operations and subproblem-solving strategies,
it may be challenging to find an exactly unified complexity measure. In this section, we show
the peformance of the algorithms against the number of MTTKRP operations H>(n)X(n) used,

since H>(n)X(n) is the most costly step that dominates the complexity of all the algorithms under
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comparison. All the simulations are conducted in Matlab. The results are averaged from ten
random trials with different tensors.

6.2 Results

Fig. 1 in Sec. 1 has shown the MSE performance of the algorithms in a relatively small-size example,
where In = I = 100, F = 10 and the nonnegativity constraints are used in the algorithms. In that
simulation, we use |Fn| = 20 so that every 500 iterations of the proposed algorithm compute a
full MTTKRP. One can see that for this relatively easy case, all the algorithms can reach a good
estimation accuracy for the latent factors. Nevertheless, the proposed methods exhibit remarkably
higher efficiency.

Fig. 3 shows the average MSEs of the estimated latent factors by the algorithms under a much
larger scale simulation, where I1 = I2 = I3 = 300 and F = 100. We set |Fn| = 18 so that the
proposed algorithms use 5,000 iterations to compute a full MTTKRP. All the algorithms use non-
negativity constraints except CPRAND. There are several observations in order: First, the stochastic
algorithms (i.e., BrasCPD, AdaCPD, and CPRAND) are much more efficient relative to the determinis-
tic algorithms (AO-ADMM and APG). After 30 MTTKRPs computed, the stochastic algorithms often
have reached a reasonable level of MSE. This is indeed remarkable, since 30 MTTKRPs are roughly
equivalent to 10 iterations of AO-ADMM and APG. Second, two of the proposed stochastic algorithms
largely outperforms CPRAND. In particular, BrasCPD with α = 0.1 gives the most promising perfor-
mance. However, the performance of BrasCPD is affected a bit significantly by the parameters α.
One can see that using α = 0.05 and α = 0.01 the algorithm does not give so promising results un-
der this setting. Third, AdaCPD yields the second lowest MSEs, but its MSE curve starts saturating
and decreases slower after it reaches MSE=10−3. This is understandable, since the ‘size’ of η is
shrinking after each iteration and thus the stepsize could vanish after a large number of iterations.
Nevertheless, MSE=10−3 is already very satisfactory, and AdaCPD shows surprising robustness to
changing scenarios, without changing any setup in its stepsize scheduling strategy. Fig. 4 shows
the cost values against the number of full MTTKRPs computed, which is consistent to what we
observed in Fig. 3.

Table 2 shows the MSEs and cost values of output by the algorithms when the tensor rank
varies under I = 300. All the algorithms are stopped after 30 full MTTKRPs are used. One can
see that BrasCPD in general exhibits the lowest MSEs if a proper α is chosen, under the employed
stepsize schedule in (20). However, one can see that when F changes, there is a risk that BrasCPD
runs into numerical issues and yields unbounded solutions. This suggests that BrasCPD may need
extra care for tuning its stepsize. On the other hand, AdaCPD always outputs reasonably good
results. The MSEs output by AdaCPD is slightly higher relative to BrasCPD, but is much lower
compared to those of the baslines. More importantly, AdaCPD runs without tuning the stepsize
parameters—which shows the power of the adaptive stepsize scheduling strategy.

Tables 4-5 show the performance of the algorithms under different SNRs. Except for adding
noise, other settings are the same as those in Fig. 3. In a noisy environment, the ability of handling
constraints/regularizations is essential for a CPD algorithm, since prior information on the latent
factors can help improve estimation accuracy. Table 4 and Table 5 test the cases where A(n)

is elementwise nonnegative and the columns of A(n) reside in a scaled version of the probability
simplex, respectively. One can see from the two tables that both BrasCPD (with a proper α) and
AdaCPD work very well. In Table 5, one can see that BrasCPD again shows its sensitivity to the choice
of α, with α = 0.1 and 0.05 actually not working. We also note that when the SNR is low, CPRAND
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Figure 3: MSE of the algorithms. I1 = I2 = I3 = 300 and F = 100. A(n) ≥ 0.
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Figure 4: cost of the algorithms. I1 = I2 = I3 = 300 and F = 100. A(n) ≥ 0.
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Table 2: MSEs of the estimated latent factors by the algorithms under different F ; I = 300; all
the algorithms are stopped after computing 30 MTTKRPs. “NaN” means the algorithm outputs
unbounded solutions. A(n) ≥ 0.

Algorithm Metric
F

100 200 300 400

BrasCPD (α=0.1) MSE 8.4375× 10−5 NaN NaN NaN

BrasCPD (α =0.05) MSE 0.0126 0.0494 0.0894 NaN

BrasCPD (α =0.01) MSE 0.2882 0.3142 0.3235 0.3239

AdaCPD MSE 0.0016 0.1247 0.1467 0.2382

AO-ADMM MSE 0.3190 0.3124 0.3093 0.3033

APG MSE 0.3574 0.3527 0.3538 0.3545

CPRAND MSE 0.0056 0.0967 0.2115 0.2404

BrasCPD (α =0.1) Cost 2.3759× 10−5 NaN NaN NaN

BrasCPD (α =0.05) Cost 0.0046 0.0397 0.1162 NaN

BrasCPD (α =0.01) Cost 0.0903 0.1832 0.2687 0.3461

AdaCPD Cost 4.8050× 10−4 0.1555 0.1684 0.2144

AO-ADMM Cost 0.0990 0.1952 0.2800 0.3520

APG Cost 0.6649 1.3629 2.0664 2.7707

CPRAND Cost 0.0018 0.0691 0.1842 0.2481

Table 3: Performance of the algorithms under various I’s, F = 100. A(n) ≥ 0; all the algorithms
are stopped after computing 30 MTTKRPs. A(n) ≥ 0.

Algorithm Metric
I

100 200 300 400

BrasCPD (α=0.1) MSE 0.2432 0.0474 8.4375× 10−5 1.2052× 10−9

BrasCPD (α =0.05) MSE 0.2724 0.2000 0.0126 1.0631× 10−4

BrasCPD (α =0.01) MSE 0.2906 0.3086 0.2882 0.2127

AdaCPD MSE 0.2214 0.0121 0.0016 1.0068× 10−4

AO-ADMM MSE 0.2561 0.3171 0.3190 0.3235

APG MSE 0.3107 0.3459 0.3574 0.3635

CPRAND MSE 0.1857 0.0459 0.0056 0.0025

BrasCPD (α =0.1) Cost 0.0795 0.0179 2.3759× 10−5 3.5023× 10−10

BrasCPD (α =0.05) Cost 0.0862 0.0668 0.0046 2.8758× 10−5

BrasCPD (α =0.01) Cost 0.1453 0.0981 0.0903 0.2127

AdaCPD Cost 0.0814 0.0058 4.8050× 10−4 3.5958× 10−5

AO-ADMM Cost 0.0843 0.0957 0.0990 0.1008

APG Cost 0.5936 0.6450 0.6649 0.6776

CPRAND Cost 0.0566 0.0136 0.0018 0.0011
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Table 4: Performance of the algorithms under various SNRs; all the algorithms are stopped after
computing 30 MTTKRPs. I1 = I2 = I3 = 300, F = 100. A(n) ≥ 0.

Algorithm Metric
SNR

10 20 30 40

BrasCPD (α=0.1) MSE 0.3685 0.0225 0.0024 0.0003

BrasCPD (α =0.05) MSE 0.2962 0.0198 0.0066 0.0044

BrasCPD (α =0.01) MSE 0.3125 0.2823 0.2774 0.2758

AdaCPD MSE 0.3285 0.0192 0.0025 0.0004

AO-ADMM MSE 0.3330 0.3135 0.3118 0.3101

APG MSE 0.3524 0.3521 0.3521 0.3520

CPRAND MSE 1.6047 0.0367 0.0104 0.0100

BrasCPD (α =0.1) Cost 1.9627 0.2081 0.0212 0.0021

BrasCPD (α =0.05) Cost 0.9086 0.0918 0.0110 0.0025

BrasCPD (α =0.01) Cost 0.2812 0.1058 0.0885 0.0865

AdaCPD Cost 0.3137 0.0671 0.0155 0.0024

AO-ADMM Cost 0.1533 0.0999 0.0954 0.0948

APG Cost 0.6445 0.6441 0.6430 0.6435

CPRAND Cost 0.8038 0.0811 0.0100 0.0039

Table 5: Performance of the algorithms under various SNRs after computing 30 MTTKRPs. I1 =
I2 = I3 = 300, F = 100. 1>A(n) = ρ1>, A(n) ≥ 0. ρ = 300.

Algorithm Metric
SNR

10 20 30 40

BrasCPD (α =0.1) MSE 0.4697 0.4423 0.3956 0.4320

BrasCPD (α =0.05) MSE 0.4443 0.4267 0.4135 0.4146

BrasCPD (α =0.01) MSE 0.3940 0.0335 0.0033 0.0003

AdaCPD MSE 0.2983 0.0611 0.0011 0.0002

AO-ADMM MSE 0.3206 0.2996 0.2973 0.2972

APG MSE 0.2761 0.2760 0.2760 0.2760

CPRAND MSE 1.6020 0.0466 0.0045 0.0112

BrasCPD (α =0.1) Cost 14274.5141 12059.7192 7386.9652 10944.0721

BrasCPD (α =0.05) Cost 11424.7030 10159.3117 9059.4911 9152.1151

BrasCPD (α =0.01) Cost 229.6424 24.8565 2.5698 0.2571

AdaCPD Cost 14.8627 3.4755 0.5916 0.1318

AO-ADMM Cost 9.6097 6.1642 5.8643 5.8359

APG Cost 36.5461 36.5095 36.5059 36.5055

CPRAND Cost 51.5269 5.2663 0.5413 0.2570
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is not as competitive, perhaps because it cannot use constraints to incorporate prior information
of the A(n)’s—this also shows the importance of being able to handle various constraints.

6.3 Real-Data Experiment

In this subsection, we test our algorithm on a constrained tensor decomposition problem; i.e., we
apply the proposed BrasCPD and AdaCPD to factor hyperspectral images. Hyperspectral images
(HSIs) are special images with pixels measured at a large number of wavelengths. Hence, an HSI
is usually stored as a third-order tensor with two spatial coordinates and one spectral coordinate.
HSIs are dense tensors and thus are suitable for testing the proposed algorithms. We use sub-images
of the Indian Pines dataset that has a size of 145 × 145 × 220 and the Pavia University dataset1

that has a size of 610× 340× 103.
Tables 6-7 show the cost values of the nonnegativity constrained optimization algorithms un-

der different ranks, after computing 10 MTTKRPs for all three modes, which corresponds to 10
iterations for AO-ADMM and APG (we use this “all-mode MTTKRP” in this section since the tensors
are unsymmetrical and thus single-mode MTTKRPs cannot be directly translated to iterations in
batch algorithms). One can see that the proposed algorithms show the same merits as we have seen
in the simulations: BrasCPD can exhibit very competitive performance when α is properly chosen
(e.g., when F = 10 and α = 5 for the Indian Pines dataset); in addition, AdaCPD gives consistently
good performance without tuning the stepsize manually. Particularly, on the Pavia University
dataset, AdaCPD gives much lower cost values compared to other algorithms. Fig. 5 shows how the
cost values change along with the iterations on the Pavia University data using F = 200.

Table 6: Performance of the algorithms on the Indian Pines dataset under different F ’s.

Algorithm Metric
F

10 20 30 40

BrasCPD (α =4) Cost 6.8343× 10−4 4.7777× 10−4 3.4738× 10−4 2.9053× 10−4

BrasCPD (α =3) Cost 6.8507× 10−4 4.8550× 10−4 4.1556× 10−4 3.1278× 10−4

BrasCPD (α =2) Cost 6.9877× 10−4 5.7753× 10−4 5.4205× 10−4 4.2504× 10−4

AdaCPD Cost 7.0677× 10−4 4.6180× 10−4 3.5328× 10−4 2.9848× 10−4

AO-ADMM Cost 7.2503× 10−4 5.5708× 10−4 5.1489× 10−4 5.1505× 10−4

APG Cost 1.9392× 10−3 1.8952× 10−3 1.8818× 10−3 1.8675× 10−3

Table 7: Performance of the algorithms on the Indian Pines dataset under different F ’s.

Algorithm Metric
F

100 200

BrasCPD (α =0.5) Cost 2.7193× 10−3 2.5275× 10−3

BrasCPD (α =0.3) Cost 3.6496× 10−3 5.3453× 10−3

BrasCPD (α =0.1) Cost 6.4221× 10−3 5.7509× 10−3

AdaCPD Cost 1.7269× 10−3 9.0080× 10−4

AO-ADMM Cost 6.2494× 10−3 4.5879× 10−3

APG Cost 7.2966× 10−3 7.2647× 10−3

1Both datasets are available online: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_

Sensing_Scenes
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Figure 5: No. of all-mode MTTKRPs v.s. cost values output by the algorithms when applied to
the Pavia University dataset. F = 200. Nonnegativity constraint is added.

7 Conclusion

To conclude, we proposed a block-randomized stochastic proximal gradient based CPD algorithmic
framework for large-scale dense tensors. The framework works under a doubly stochastic manner,
which randomly selects a mode and then samples a set of fibers for updating the associated latent
factor. The framework has a series of nice features including being able to quickly improve estima-
tion accuracy of the latent factors, being flexible with incorporating constraints and regularizations,
and having rigorous convergence guarantees. We also proposed a practical and effective adaptive
stepsize scheduling method that is reminiscent of recent advances in neural network training algo-
rithms. Simulations and real-data experiments show that the proposed algorithms outperform a
number of state-of-art constrained CPD algorithms when dealing with large dense tensors.

A Connection between ∇f(θ(r)) and G(r)

Let us consider the following conditional expectation:

G
(r)
(n) = E

[
G

(r)
(n) | B

(r)
]

= E
[
G

(r)
(n) | {A

(r)
(n)}

N
n=1

]
= En′

[
1(Jn′
F

)(A(r)
(n′)H

>
(n′)H(n′) −X>(n′)H(n′)

]
(a)
=

N∑
n′=1

δ(n′ − n)

N
(Jn′
F

) (A(r)
(n′)H

>
(n′)H(n′) −X>(n′)H(n′)

)
=

1

N
(Jn
F

)(A(r)
(n)H

>
(n)H(n) −X>(n)H(n)

)
(22)

where δ(·) is the Dirac function and the expectation in (a) is taken over the possible modes n′.

The last equality shows that G
(r)
(n) is a scaled version of the gradient of the objective function of (3)
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taken w.r.t. A
(r)
(n). Hence, the block sampling step together with fiber sampling entails us an easy

way to estimate the full gradient w.r.t. all the latent factors in an unbiased manner.

B Proof of Proposition 1

To show Proposition 1, we will need the following [54, Proposition 1.2.4]:

Lemma 1 Let {at}t and {bt}t be two nonnegative sequences such that bt is bounded,
∑∞

t=0 atbt
converges and

∑∞
t=0 at diverges, then we have

lim
t→∞

inf bt = 0.

To make our notations precise, let us denote ξ(r) as the random index of mode chosen at

iteration r and subsequently F (r)

(ξ(r))
is the random set of fibers chosen. Under Assumption 2, we

have ‖H(r)

(ξ(r))
‖22 ≤ L

(r)

(ξ(r))
where H

(r)

(ξ(r))
= �N

n′=1,n′ 6=ξ(r)A
(r)
(n′) and L

(r)

(ξ(r))
< ∞. Combining with

Fact 1, we observe the following bound:

f(θ(r+1))− f(θ(r))

≤
〈
∇A

(ξ(r))
f(θ(r)),A

(r+1)

(ξ(r))
−A(r)

(ξ(r))

〉
+
L

2

∥∥∥A(r+1)

(ξ(r))
−A(r)

(ξ(r))

∥∥∥2
F

= −α(r)
〈
∇A

(ξ(r))
f(θ(r)),G

(r)

(ξ(r))

〉
+

(α(r))2L

2

∥∥∥G(r)

(ξ(r))

∥∥∥2
F
,

where we denote
L = max

r=0,...,∞
L
(r)

(ξ(r))
<∞,

since A
(r)
(n) is bounded for all iterations.

Taking expectation conditioned on the filtration B(r) and the chosen mode index ξ(r), we have

E
[
f(θ(r+1)) | B(r), ξ(r)

]
− f(θ(r))

≤ −α(r)
∥∥∥∇A

(ξ(r))
f(θ(r))

∥∥∥2
+

(α(r))2L

2
E
[∥∥∥G(r)

(ξ(r))

∥∥∥2
F
| B(r), ξ(r)

]
≤ −α(r)

∥∥∥∇A
(ξ(r))

f(θ(r))
∥∥∥2 +

(α(r))2LM

2
. (23)

where the first inequality used the assumption that L
(r)

(ξ(r))
≤ L and Fact 2, and the second inequality

is again a consequence of Assumption 2, as we observe:∥∥∥G(r)

(ξ(r))

∥∥∥ =
1

|Fn|

∥∥∥A(r)

(ξ(r))
(H

(r)

(ξ(r))
(Fn))>H

(r)

(ξ(r))
(Fn)

−X>
(ξ(r))

(Fn)H
(r)

(ξ(r))
(Fn)

∥∥∥ (24)
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where in the right hand side we have dropped the superscript for n(r) for simplicity. As X(n) is

bounded for all n, and all the A
(r)
(n) are bounded under Assumption 2, we have ‖G(r)

(ξ(r))
‖2 ≤M for

all n, r and some M <∞. Now, taking the expectation w.r.t. ξ(r) yields

Eξ(r)
[
f(θ(r+1)) | B(r)

]
− f(θ(r))

≤ −α(r)Eξ(r)
[∥∥∥∇A

(n(r))
f(θ(r))

∥∥∥2]+
(α(r))2ML

2
. (25)

Finally, taking the total expectation, we have

E
[
f(θ(r+1))

]
− E

[
f(θ(r))

]
≤ −α(r)E

[
Eξ(r)

[∥∥∥∇A
(n(r))

f(θ(r))
∥∥∥2]]+

(α(r))2ML

2
. (26)

Summing up the above from t = 0 to t = r, we have

E
[
f(θ(t+1))

]
− f(θ(0))

≤
r∑
t=0

−α(t)E
[
Eξ(t)

[∥∥∥∇A
(n(t))

f(θ(t))
∥∥∥2]]

+
r∑
t=0

(α(t))2ML

2
. (27)

Taking r →∞, the above implies that

∞∑
r=0

α(r)E
[
Eξ(r)

[∥∥∥∇A
(ξ(r))

f(θ(r))
∥∥∥2]]

≤ f(θ(0))− f(θ(?)) +

∞∑
r=0

(α(r))2ML

2
, (28)

where f(θ(?)) denotes the global optimal value. Note that the right hand side above is bounded
from above because

∑∞
r=0(α

(r))2 <∞. Hence, using Lemma 1, we can conclude that

lim
r→0

inf E
[
Eξ(r)

[∥∥∥∇A
(n(r))

f(θ(r))
∥∥∥2]] = 0.

Finally, we conclude:

lim
r→0

inf E
[∥∥∥∇f(θ(r))

∥∥∥2] = 0,

since

Eξ(r)
[∥∥∥∇A

(ξ(r))
f(θ(r))

∥∥∥2] =
1

N

N∑
n=1

∥∥∥∇A(n)
f(θ(r))

∥∥∥2
by the fundamental theorem of expectation.
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C Proof of Proposition 2

C.1 Preliminaries

For the constrained case, let us denote Φ(θ) = f(θ)+
∑N

n=1 hn(θ) as the objective function. Unlike
the unconstrained case where we measure convergence via observing if the gradient vanishes, the
optimality condition of the constrained case is a bit more complicated. Here, the idea is to observe
the “generalized gradient”. To be specific, consider the following optimization problem

minimize
θ

f(θ) + h(θ),

where f(θ) is continuously differentiable while h is convex but possibly nonsmooth. The determin-
istic proximal gradient algorithm for handling this problem is as follows:

θ(r+1) ← Proxh

(
θ(r) − α(r)∇f(θ(r))

)
.

Define P (r) = 1
α(r)

(
θ(r+1) − θ(r)

)
, the update can also be represented as θ(r+1) ← θ(r) − α(r)P (r),

which is analogous to the gradient descent algorithm. It can be shown that P (r) = 0 implies that
the necessary optimality condition is satisfied, and thus P (r) can be considered as a “generalized
gradient”.

In our case, let us denote Φ(θ) = f(θ) +
∑N

n=1 hn(θ) as the objective function. Our optimality

condition amounts to P
(r)
(n) = 0, ∀ n, where

P
(r)
(n) =

1

α(r)

(
A

(r+1)
(n) − Proxhn

(
A

(r)
(n) − α

(r)∇A(n)
f(θ(r))

))
;

i.e., the optimality condition is satisfied in a blockwise fashion [30, 32]. Hence, our goal of this

section is to show that E
[
P

(r)
(n)

]
for all n vanishes when r goes to infinity.

C.2 Proof

Our update is equivalent to the following:

A
(r+1)
(n) ← arg min

A(n)

〈
G

(r)
(n),A(n) −A

(r)
(n)

〉
(29)

+
1

2α(r)

∥∥∥A(n) −A
(r)
(n)

∥∥∥2 + hn(A(n))

for a randomly selected n, which is a proximity operator. For a given ξ(r), we have

hξ(r)
(
A

(r+1)

(ξ(r))

)
− hξ(r)

(
A

(r)

(ξ(r))

)
≤−

〈
G

(r)

(ξ(r))
,A

(r+1)

(ξ(r))
−A(r)

(ξ(r))

〉
− 1

2α(r)

∥∥∥A(r+1)

(ξ(r))
−A(r)

(ξ(r))

∥∥∥2
by the optimality of A

(r+1)

(ξ(r))
for solving Problem (29).
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By the block Lipschitz continuity of the smooth part (cf. Fact 1), we have

f(θ(r+1))− f(θ(r)) ≤
〈
∇A

(ξ(r))
f(θ(r)),A

(r+1)

(ξ(r))
−A(r)

(ξ(r))

〉
+
L
(r)

(ξ(r))

2

∥∥∥A(r+1)

(ξ(r))
−A(r)

(ξ(r))

∥∥∥2 ,
where f denotes the smooth part in the objective function and

L
(r)

(ξ(r))
= λmax

((
H

(r)

(ξ(r))

)>
H

(r)

(ξ(r))

)
≤ L.

Combining the two inequalities, we have

Φ(θ(r+1)) ≤ Φ(θ(r))− α(r)
〈
∇A

(ξ(r))
f(θ(r))−G(r)

(ξ(r))
,p

(r)

(ξ(r))

〉
+

(
L(α(r))2

2
− α(r)

2

)
‖p(r)

(ξ(r))
‖2 (30)

where we define

p
(r)

(ξ(r))
=

1

α(r)

(
A

(r+1)

(ξ(r))
−A(r)

(ξ(r))

)
.

The inequality in (30) can be further written as

Φ(θ(r+1))− Φ(θ(r))

≤ −α(r)
〈
∇A

(ξ(r))
f(θ(r))−G(r)

(ξ(r))
,p

(r)

(ξ(r))
− P (r)

(ξ(r))

〉
− α(r)

〈
∇A

(ξ(r))
f(θ(r))−G(r)

(ξ(r))
,P

(r)

(ξ(r))

〉
+

(
L(α(r))2

2
− α(r)

2

)
‖p(r)

(ξ(r))
‖2, (31)

Again, taking expectation conditioning on the filtration B(r) and ξ(r), we have

Eζ(r)
[
Φ(θ(r+1))|B(r), ξ(r)

]
− Φ(θ(r))

≤ α(r)Eζ(r)
[〈
∇A

(ξ(r))
f(θ(r))−G(r)

(ξ(r))
,P

(r)

(ξ(r))
− p(r)

(ξ(r))

〉
|B(r), ξ(r)

]
+

(
L(α(r))2

2
− α(r)

2

)
Eζ(r)

[∥∥∥p(r)
(ξ(r))

∥∥∥2 ∣∣∣B(r), ξ(r)] , (32)

i.e., the second term on the right hand side of (31) becomes zero because of Fact 2. The first term
on the right hand side of (32) can be bounded via the following chain of inequalities:

Eζ(r)
[〈
∇A

(ξ(r))
f(θ(r))−G(r)

(ξ(r))
,P

(r)

(ξ(r))
− p(r)

(ξ(r))

〉 ∣∣∣B(r), ξ(r) ]
≤ Eζ(r)

[∥∥∥δ(r)∥∥∥∥∥∥P (r)

(ξ(r))
− p(r)

(ξ(r))

∥∥∥ ∣∣∣ B(r), ξ(r) ]
≤ Eζ(r)

[
‖δ(r)‖2 | B(r), ξ(r)

]
≤ (σ(r))2 (33)
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where for the first inequality we have applied the Cauchy-Schwartz inequality, and for the second
inequality we have used the non-expansiveness of the proximal operator of convex hn(·). Taking
expectation w.r.t. ξ(r) and then total expectation on both sides of (32), we have

E
[
Φ(θ(r+1))

]
− E

[
Φ(θ(r))

]
(34)

≤ α(r)(σ(r))2 +

(
L(α(r))2

2
− α(r)

2

)
E
[∥∥∥p(r)

(ξ(r))

∥∥∥2] .
Summing up through t = 0 to t = r − 1, we have

E
[
Φ(θ(r))

]
− Φ(θ(0)) (35)

≤
r∑
t=0

α(t)(σ(t))2 +
r∑
t=0

(
L(α(t))2

2
− α(t)

2

)
E
[∥∥∥p(t)

(ξ(t))

∥∥∥2] .
Since we have assumed α(r) < 1/L, we have L(α(r))2

2 − α(r)

2 < 0. Therefore, we have

r∑
t=0

(
α(t)

2
− L(α(t))2

2

)
E
[∥∥∥p(t)

(ξ(t))

∥∥∥2] .
≤ Φ(θ(0))− Φ(θ(?)) +

r∑
t=0

α(t)(σ(t))2 (36)

Taking r →∞, and by the assumption that
∑∞

r=0 α
(r)(σ(r))2 <∞, we can conclude that

lim
r→∞

inf E
[∥∥∥p(r)

(ξ(r))

∥∥∥2] = 0,

using Lemma 1.
One can see that

E
[∥∥∥P (r)

(ξ(r))

∥∥∥2] ≤ 2E
[∥∥∥p(r)

(ξ(r))

∥∥∥2]+ 2E
[∥∥∥p(r)

(ξ(r))
− P (r)

(ξ(r))

∥∥∥2]
≤ 2E

[∥∥∥p(r)
(ξ(r))

∥∥∥2]
+ 2E

[
Eζ(r)

[∥∥∥G(r)

(ξ(r))
−∇A

(ξ(r))
f(θ(r))

∥∥∥2 ∣∣∣B(r), ξ(r)]]
≤ 2E

[∥∥∥p(r)
(ξ(r))

∥∥∥2]+ 2(σ(r))2. (37)

where the last inequality is obtained via applying the nonexpansive property again. Note that both
terms on the right hand side converge to zero. Hence, this relationship implies that

lim
r→∞

inf E
[∥∥∥P (r)

(ξ(r))

∥∥∥2] = 0.
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Note that by our sampling strategy, we have

E
[∥∥∥P (r)

(ξ(r))

∥∥∥2] = E
[
Eξ(r)Eζ(r)

[∥∥∥P (r)

(ξ(r))

∥∥∥2 ∣∣∣B(r), ξ(r)]] .
However, since P

(r)

(ξ(r))
is not affected by the random seed ζ(r), we have

E
[∥∥∥P (r)

(ξ(r))

∥∥∥2] = E
[
Eξ(r)

[∥∥∥P (r)

(ξ(r))

∥∥∥2 ∣∣∣B(r)]]
= E

[
N∑
n=1

1

N

∥∥∥P (r)
(n)

∥∥∥2] .
This proves the proposition.

D Proof of Proposition 3

The insight of the proof largely follows the technique for single-block Adagrad [49], with some
careful modifications to multiple block updates. One will see that the block sampling strategy and
the block-wise unbiased gradient estimation are key to apply the proof techniques developed in [49]
to our case. To show convergence, let us first consider the following lemma:

Lemma 2 [49] Let a0 > 0, ai ≥ 0, i = 1, . . . , T and β > 1. Then, we have

T∑
t=1

at

(a0 +
∑t

i=1 ai)
β
≤ 1

(β − 1)aβ−10

.

The proof is simple and elegant; see [49, Lemma 4].

Lemma 3 [49] Consider a random variable X. If E[X] <∞, then Pr(X <∞) = 1.

Let us consider the block-wise again:

f(θ(r+1)) ≤ f(θ(r)) +
〈
∇A

(ξ(r))
f(θ(r)),A

(r+1)

(ξ(r))
−A(r)

(ξ(r))

〉
+
L
(r)

ξ(r)

2

∥∥∥A(r+1)

(ξ(r))
−A(r)

(ξ(r))

∥∥∥2 . (38)

Plugging in our update rule under AdaCPD, one can see that

f(θ(r+1)) ≤ f(θ(r)) +
〈
∇A

(ξ(r))
f(θ(r)),−η(r)

(ξ(r))
~G(r)

(ξ(r))

〉
+
L
(r)

ξ(r)

2

∥∥∥η(r)
(ξ(r))

~G(r)

(ξ(r))

∥∥∥2
= f(θ(r))−

〈
∇A

(ξ(r))
f(θ(r)),η

(r)

(ξ(r))
~∇A

(ξ(r))
f(θ(r))

〉
+
〈
∇A

(ξ(r))
f(θ(r)),η

(r)

(ξ(r))
~
(
∇A

(ξ(r))
f(θ(r))−G(r)

(ξ(r))

)〉
+
L
(r)

ξ(r)

2

∥∥∥η(r)
(ξ(r))

~G(r)

(ξ(r))

∥∥∥2 (39)
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Taking expectation w.r.t. ζ(r) (the random seed that is responsible for selecting fibers) condi-
tioning on the filtration B(r) and the selected block ξ(r), the middle term is zero—since the block
stochastic gradient is unbiased [cf. Fact 2]. Hence, we have reached the following

Eζ(r)
[
f(θ(r+1))|B(r), ξ(r)

]
≤ Eζ(r)

[
f(θ(r))|B(r), ξ(r)

]
− Eζ(r)

[〈
∇A

(ξ(r))
f(θ(r)),η

(r)

(ξ(r))
~∇A

(ξ(r))
f(θ(r))

〉
|B(r), ξ(r)

]
+
L
(r)

ξ(r)

2
Eζ(r)

[∥∥∥η(r)
(ξ(r))

~G(r)

(ξ(r))

∥∥∥2 ∣∣∣B(r), ξ(r)] (40)

Taking total expectation on both sides, we have

E
[
f(θ(r+1))

]
≤ E

[
f(θ(r))

]
− E

[〈
∇A

(ξ(r))
f(θ(r)),η

(r)

(ξ(r))
~∇A

(ξ(r))
f(θ(r))

〉]
+ E

L(r)

ξ(r)

2

∥∥∥η(r)
(ξ(r))

~G(r)

(ξ(r))

∥∥∥2
 . (41)

From the above inequality and the assumption that L
(r)
(n) is bounded from above by L, we can

conclude that

R∑
r=1

E
[〈
∇A

(ξ(r))
f(θ(r)),η

(r)

(ξ(r))
~∇A

(ξ(r))
f(θ(r))

〉]
≤ f(θ(0))− f(θ(?)) +

R∑
r=1

L

2
E
[∥∥∥η(r)

(ξ(r))
~G(r)

(ξ(r))

∥∥∥2]
which is by summing up all the inequalities in (40) from r = 1 to R.

Let us observe the last term on the right hand side and take R→∞:

E

[ ∞∑
r=1

∥∥∥η(r)
(ξ(r))

~G(r)

(ξ(r))

∥∥∥2] (42)

= E

 ∞∑
r=1

J
ξ(r)∑
i=1

F∑
f=1

[
η
(r)

(ξ(r))

]2
i,f

[
G

(r)

(ξ(r))

]2
i,f


= E

 ∞∑
r=1

J
ξ(r)∑
i=1

F∑
f=1

[
η
(r+1)

(ξ(r))

]2
i,f

[
G

(r)

(ξ(r))

]2
i,f

+

∞∑
r=1

J
ξ(r)∑
i=1

F∑
f=1

([
η
(r)

(ξ(r))

]2
i,f
−
[
η
(r+1)

(ξ(r))

]2
i,f

)[
G

(r)

(ξ(r))

]2
i,f

 .
Note that we have exchanged the order of the limits and expectations, since the expectation is
taking on nonnegative terms. Using Lemma 2, one can easily show the first term above satisfies is
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bounded from above by
C1

2εβ2ε

where 0 < C1 <∞ is a constant. To see the second term is also bounded, observe that

∞∑
r=1

([
η
(r)

(ξ(r))

]2
i,f
−
[
η
(r+1)

(ξ(r))

]2
i,f

)[
G

(r)

(ξ(r))

]2
i,f

≤ max
r≥0

[
G

(r)

(ξ(r))

]2
i,f

∞∑
r=1

([
η
(r)

(ξ(r))

]2
i,f
−
[
η
(r+1)

(ξ(r))

]2
i,f

)
≤ max

r≥0

[
G

(r)

(ξ(r))

]2
i,f

[
η
(r)

(ξ(r))

]2
i,f

≤
[
η
(r)

(ξ(r))

]2
i,f

([
∇A

(ξ(r))
f(θ(r))

]2
i,f

+

([
∇A

(ξ(r))
f(θ(r))

]
i,f
−
[
G

(r)

(ξ(r))

]
i,f

)2
)

(43)

Since we have assumed that A
(r)
(n)’s are bounded, the right hand side is bounded from above.

Therefore, we have reached the conclusion

E

[ ∞∑
r=1

〈
∇A

(ξ(r))
f(θ(r)),η

(r)

(ξ(r))
~∇A

(ξ(r))
f(θ(r))

〉]
<∞.

Applying Lemma 3, one can see that

Pr

( ∞∑
r=1

[
η
(r)

(ξ(r))

]
i,f

[
∇A

(ξ(r))
f(θ(r))

]2
i,f
<∞

)
= 1.

Since Pr(ξ(r) = n) > 0, one immediate result is that any n appears infinitely many times in the
sequence r = 1, . . . ,∞, according to the second Borel-Cantelli lemma. This leads to

Pr

 ∞∑
j=1

[
η
(rj(n))

(n)

]
i,f

[
∇A(n)

f(θ(rj(n)))
]2
i,f
<∞

 = 1,

holds for n = 1, . . . , N , where r1(n), . . . , rj(n), . . . is the subsequence of {r} such that block n is
sampled for updating.

Hence, with probability one there exists a subsequence r1(n), . . . , r∞(n) such that at the corre-
sponding iterations block n is sampled for updating. It is not hard to show that

∞∑
j=1

[
η
(rj(n))

(n)

]
i,f

=∞,

by the assumption that A
(r)
(n) are all bounded. This directly implies that

∞∑
r=1

[
η
(r)
(n)

]
i,f

=∞, ∀n.
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Hence, by Lemma 2, we have

lim
r→∞

[∇A(n)
f(θ(r))]2i,f = 0

with probability one.
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