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THE PROBLEM - WHEN TO STOP?

Neural beam search (e.g. NMT) is great, but nobody
knows when/how to stop!

- greedy search: easy, just stop at the first </s>

- beam search: has to return a complete hypothesis
which ends at </s>,

- but how to guarantee it’s the best-scoring one?

- it’s possible some currently incomplete hypothesis
can lead to high-scoring complete hypothesis

- when can you guarantee no other complete
hypotheses (in the future) can score better?

Existing approaches can’t establish optimality:

® RNNsearch: shrink beam heuristic: decrement
beam size for each complete hypothesis in beam

(too hacky)

® OpenNMT-py: stop whenever the top item at any
step is a complete one, and return it
(we’ll show it’s neither optimal nor efficient)

OUR CONTRIBUTIONS

Our first algorithm:

©® we devise the first provably-optimal neural beam
search algorithm (optimal modulo beam size)

® this means if you follow standard beam search
pruning, then for a given beam size, you can’t find a
higher-scoring complete hypothesis than ours

® our algorithm is not only optimal, but also efficient:
it finishes beam search earlier than OpenNMT-py

Our second algorithm:
o but higher model score leads to short translations!

® we devise a bounded length reward to encourage
longer translations

©® a variant of our optimal beam search is still optimal
with bounded length reward

BEAM SEARCH BACKGROUND

y" = argmax p(y | x) = argmax || p(y: | x,y<i)
y:comp(y) y:comp(y) i<|y

where comp(y) 2 (¥|y| = </s>) returns the completeness

of a hypothesis, and beam search expands B;_; to B;:

By=[{<s>, p(<s> | x))]

b
Bi=top{(yoy;, s-plyilx,y)) | (¥’,s) € Bi_1}
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FIRST ALGORITHM: OPTIMAL BEAM SEARCH (modulo beam size)

Current Candidate: define best 2 max{y € U;<;B; | comp(y)} to be best complete hypothesis so far.

Stopping Criteria: B;; < besty,, i.e., when the top-scoring item in the current step ¢ is already worse than
the best complete hypothesis so far. Then return the latter (best.;).

Optimality Proof: B; ; < B;; < best)y,; for all items B; ; in beam B,. Descendants of these items in future
steps are even worse, so all items in the current and future steps are no better than besty.;.

OpenNMT-py’s Method: comp(B; ;), i.e., when the top-scoring item in any step is complete. Return it.

Efficiency: Our algorithm terminates no later than OpenNMT-py (which is neither optimal nor efficient).

0 1 2 our optimal beam search
start —{ 1 O 4 . stops at step 3 (triggered by
P B < 0.36) and returns the
> hOW thlngs gomg </s> best candidate so far “hello
</s>" (score 0.36), while
14 {0.06 OpenNMT-py “stops at step
5 and returns “how are you
heIIo </s> you domg today doing </s>" (score 0.12).

SECOND ALGORITHM: Optimal Beam Search w/ Bounded Length Reward

The Problem: Higher-scoring hypotheses lead to extremely short translations.

Existing Solutions: However, both break the optimality of our optimal beam search algorithm!

©® score normalization: the score of a hypothesis / its length; aiming for optimal average per-step score.
used in RNNsearch (Bahdanau et al., 2014) and Google NMT (Wu et al., 2016).

® length reward: explicit reward for each word; used in Baidu NMT (He et al., 2016).

Our Bounded Length Reward: We only reward each target word up to an estimated “optimal” length,
proportional to source length |x|; in Chinese-to-English exps we use 1.27 - |x| estimated on the dev set.

Modified Optimal Beam Search: use new score sc(y) 2 sc(y) + r - min{c|x|, |y|}, where ¢ = 1.27, and we
tune the length reward r on dev set. Optimality Proof: similar to A* with admissible heuristics.

EXPERIMENTAL SETUP

o Based on OpenNMT-py, a PyTorch reimplementation of Torch-based OpenNMT (Klein et al., 2017).
PyTorch made it much easier than Theano-based RNNsearch.

® 1M Chinese-English sentence pairs (28M/23M tokens) for training (also tried 2M sentence pairs).

©® Used byte-pair encoding (BPE) (Senrich et al., 2015) to reduce vocabulary sizes from 112k /93k to
18k/10k. BPE improved BLEU score (by at least 2+) and reduced training time.

o Chinese to English: NIST 06 newswire portion (616 sentences) for dev; NIST 08 newswire portion
(691 sentences) for test; case-insensitive 4-reference BLEU-4 scores.

6 20 epochs local greedy training (excluding (15%) sentences w/ 50+ source tokens). About an hour
per epoch on Geforce 980 Ti, epoch 15 reaches the lowest perplexity on the dev set (9.10).

o Baseline is very competitive: 29.2 BLEU with b = 1 (greedy), 33.2 with default b = 5.

By-product: We also found and fixed an obscure but serious bug in OpenNMT-py’s beam search code (not
related to this paper), which boosts BLEU scores by about +0.7 in all cases.
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Figure 1: Comparison between optimal beam search and OpenNMT-py's

default search, in terms of search quality (model score, 1 is better).
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Figure 2: BLEU score and length ratio against beam size (on dev).

decoder b dev test

Moses 70 30.14 29.41

OpenNMT-py default 16 33.60 29.75
shrinking, len. norm. 17 33.71 30.11
shrinking, reward r=1.3 15 34.42 30.37
optimal beam search, r=1.2/15 34.70 30.61

Table 1: Final BLEU scores on test set using best settings from dev set.




