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Forest  Algorithms

NLP is all about ambiguities

• to middle school kids: what does this sentence mean?

2

Aravind Joshi

I saw her duck.



Forest  Algorithms

NLP is all about ambiguities

• to middle school kids: what does this sentence mean?

2

Aravind Joshi

I saw her duck.



Forest  Algorithms

NLP is all about ambiguities

3

Aravind Joshi

I eat sushi with tuna.

• to middle school kids: what does this sentence mean?
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Forest  Algorithms

NLP is all about ambiguities

• how about...

• I saw her duck with a telescope.

• I saw her duck with a telescope in the garden...
4

...

I saw her duck.



Forest  Algorithms

NLP is HARD!

• exponential explosion of the search space

• non-local dependencies (context)
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Forest  Algorithms

Ambiguities in Translation
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   zi    zhu     zhong   duan
自   助      终      端

  self help terminal device

needs context to 
disambiguate!
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Evil Rubbish;   Safety Export
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needs context for fluency!
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Forest  Algorithms

Key Problem
• How to efficiently incorporate non-local information?

• Solution 1: pipelined reranking / rescoring

• postpone disambiguation by propagating k-best lists

• examples: tagging => parsing => semantics

• (open) need efficient algorithms for k-best search

• Solution 2: exact joint search on a much larger space 

• examples: head/parent annotations; often intractable

• Solution 3: approximate joint search (focus of this talk)

• (open) integrate non-local information on the fly 
8



Forest  Algorithms

Outline
• Forest: Packing Exponential Ambiguities

• Exact k-best Search in Forest (Solution 1)

• Approximate Joint Search with
Non-Local Features (Solution 3)

• Forest Reranking

• Forest Rescoring

• Forest-based Translation (Solutions 2+3+1)

• Tree-based Translation

• Forest-based Decoding
9
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Forest  Algorithms

Packed Forests
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

10
(Klein and Manning, 2001; Huang and Chiang, 2005)

0  I 1 saw  2  him  3  with 4 a 5 mirror 6
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Forest  Algorithms

Weight Functions

• Each hyperedge e has a weight function fe

• monotonic in each argument

• e.g. in CKY,   fe(a, b) = a x b x Pr (rule)

• optimal subproblem property in dynamic programming

• optimal solutions include optimal sub-solutions
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B: b C: c

A: f(b, c)

B: b’ ≤ b C: c

A: f(b’, c)
≤ f(b, c)



Forest  Algorithms

1-best  Viterbi on Forest
1. topological sort (assumes acyclicity)

2. visit each node v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O(V+E) = O(E)          for CKY: O(n3)
12
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Forest  Algorithms

Outline
• Forest: Packing Exponential Ambiguities

• Exact k-best Search in Forest (Solution 1)

• Approximate Joint Search with
Non-Local Features (Solution 3)

• Forest Reranking

• Forest Rescoring

• Forest-based Translation (Solutions 2+3)

• Tree-based Translation

• Forest-based Decoding
13
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Forest  Algorithms

k-best  Viterbi  Algorithm 0

• straightforward k-best extension

• a vector of k (sorted) values for each node

• now what’s the result of    fe (a, b) ?

• k x k = k2 possibilities! => then choose top k

• time complexity: O(k2 E)
14
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Forest  Algorithms

k-best  Viterbi  Algorithm 1
• key insight: do not need to enumerate all k2

• since vectors a and b are sorted

• and the weight function fe is monotonic

• (a1, b1) must be the best

• either (a2, b1) or (a1, b2) is the 2nd-best

• use a priority queue for the frontier

• extract best

• push two successors

• time complexity: O(k log k E)
15

 .1
a

b



Forest  Algorithms

k-best  Viterbi  Algorithm 1
• key insight: do not need to enumerate all k2

• since vectors a and b are sorted

• and the weight function fe is monotonic

• (a1, b1) must be the best

• either (a2, b1) or (a1, b2) is the 2nd-best

• use a priority queue for the frontier

• extract best

• push two successors

• time complexity: O(k log k E)
16

 .1
a

b



Forest  Algorithms

k-best  Viterbi  Algorithm 1
• key insight: do not need to enumerate all k2

• since vectors a and b are sorted

• and the weight function fe is monotonic

• (a1, b1) must be the best

• either (a2, b1) or (a1, b2) is the 2nd-best

• use a priority queue for the frontier

• extract best

• push two successors

• time complexity: O(k log k E)
17

 .1
a

b



Forest  Algorithms

k-best  Viterbi  Algorithm 1
• key insight: do not need to enumerate all k2

• since vectors a and b are sorted

• and the weight function fe is monotonic

• (a1, b1) must be the best

• either (a2, b1) or (a1, b2) is the 2nd-best

• use a priority queue for the frontier

• extract best

• push two successors

• time complexity: O(k log k E)
18

 .1
a

b



Forest  Algorithms

k-best  Viterbi Algorithm 2
• Algorithm 1 works on each hyperedge sequentially

• O(k log k E) is still too slow for big k

• Algorithm 2 processes all hyperedges in parallel

• dramatic speed-up: O(E + V k log k)

19

VP1, 6
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Forest  Algorithms

k-best  Viterbi Algorithm 3

• Algorithm 2 computes k-best for each node

• but we are only interested in k-best of the root node

• Algorithm 3 computes as many as really needed

• forward-phase

• same as 1-best Viterbi, but stores the forest 
(keeping alternative hyperedges)

• backward-phase

• recursively asking “what’s your 2nd-best”  top-down

• asks for more when need more

20



Forest  Algorithms

Summary of Algorithms

• Algorithms 1 => 2 => 3

• lazier and lazier (computation on demand)

• larger and larger locality

• Algorithm 3 is very fast, but requires storing forest

21

locality time space

Algorithm 1

Algorithm 2

Algorithm 3

hyperedge O( E k log k ) O(k V)
node O( E + V k log k ) O(k V)
global O( E + D k log k ) O(E + k D)

E - hyperedges: O(n3);   V - nodes: O(n2);  D - derivation: O(n)



Forest  Algorithms

Experiments - Efficiency

• on state-of-the-art Collins/Bikel parser (Bikel, 2004)

• average parsing time per sentence using Algs. 0, 1, 3

22

O( E + D k log k )



Forest  Algorithms

Reranking and Oracles
• oracle - the candidate closest to the correct parse

among the k-best candidates

• measures the potential of real reranking

23

Collins 2000
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Forest  Algorithms

Outline

• Packed Forests and Hypergraph Framework

• Exact k-best Search in Forest (Solution 1)

• Approximate Joint Search with
Non-Local Features (Solution 3)

• Forest Reranking

• Forest Rescoring

• Application: Forest-based Translation

• Tree-based Translation

• Forest-based Decoding
24
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Forest  Algorithms

Why not k-best reranking?

• too few variations (limited scope)

• 41% correct parses are not in ~30-best  (Collins, 2000)

• worse for longer sentences

• too many redundancies

• 50-best usually encodes 5-6 binary decisions (25<50<26)
25
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Redundancies in n-best lists

26

(TOP (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))

(TOP (S (RB Not) (NP (NP (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))

(TOP (S (NP (NP (RB Not) (DT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))

(TOP (S (RB Not) (NP (NP (DT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))

(TOP (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VB oppose) (NP (DT the) (NNS changes))) (. .)))

(TOP (S (NP (NP (RB Not) (RB all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))

(TOP (S (RB Not) (NP (NP (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VB oppose) (NP (DT the) (NNS changes))) (. .)))

Not all those who wrote oppose the changes.

...
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packed forest

...



Forest  Algorithms

Reranking on a Forest?

• with only local features (Solution 2)

• dynamic programming, exact, tractable (Taskar et al. 2004; 
McDonald et al., 2005)

• with non-local features (Solution 3)

• on-the-fly reranking at internal nodes

• top k derivations at each node

• use as many non-local features 
as possible at each node

• chart parsing + discriminative reranking

• we use perceptron for simplicity

27



Forest  Algorithms

Features

• a feature f is a function from tree y to a real number

• f1(y)=log Pr(y) is the log Prob from generative parser

• every other feature counts the number of times a 
particular configuration occurs in y

28

instances of Rule feature

f 100 (y) = f  S  → NP  VP . (y) = 1
f 200 (y) = f NP → DT NN (y) = 2
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Forest  Algorithms

Local vs. Non-Local Features

• a feature is local iff. it can be factored among local 
productions of a tree (i.e., hyperedges in a forest)

• local features can be pre-computed on each hyperedge 
in the forest;  non-locals can not

29

Rule is local

ParentRule is non-local
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Forest  Algorithms

Local vs. Non-Local: Examples

• CoLenPar feature captures the difference in lengths 
of adjacent conjuncts (Charniak and Johnson, 2005)

30
CoLenPar: 2

local!



Forest  Algorithms

Local vs. Non-Local: Examples

• CoPar feature captures the depth to which adjacent 
conjuncts are isomorphic (Charniak and Johnson, 2005)

31
CoPar: 4

non-local!

(violates DP
principle)



Forest  Algorithms

Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

32

unit instance of ParentRule 
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NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

unit instance of node A
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Approximate Decoding

• bottom-up, keeps top k derivations at each node

• non-monotonic grid due to non-local features

38
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Approximate Decoding

• bottom-up, keeps top k derivations at each node
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Algorithm 2 => Cube Pruning

• bottom-up, keeps top k derivations at each node

• non-monotonic grid due to non-local features
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Algorithm 2 => Cube Pruning

43

VP

PP1, 3 VP3, 6 PP1, 4 VP4, 6 PP3, 6VP2, 3

hyperedge

NP1, 2

• process all hyperedges simultaneously!
significant savings of computation 

there are search errors, but the trade-off is favorable.
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Forest vs. k-best Oracles
• on top of Charniak parser (modified to dump forest)

• forests enjoy higher oracle scores than k-best lists

• with much smaller sizes
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Main Results

baseline: 1-best Charniak parser 89.72 feature extract

approach training time F1% space time

50-best reranking 4 x 0.3h 91.43 2.4G 19h

100-best reranking 4 x 0.7h 91.49 5.3G 44h

forest reranking 4 x 6.1h 91.69 1.2G 2.9h

• forest reranking beats 50-best & 100-best reranking

• can be trained on the whole treebank in ~1 day even 
with a pure Python implementation!

• most previous work only scaled to short sentences 
(<=15 words) and local features
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Comparison with Others

46

type system F1%

D

G

S

 Collins (2000) 89.7

 Charniak and Johnson (2005) 91.0

                     updated (2006) 91.4

 Petrov and Klein (2008) 88.3

 this work 91.7

 Carreras et al. (2008) 91.1

 Bod (2000) 90.7

 Petrov and Klein (2007) 90.1

 McClosky et al. (2006) 92.1

best accuracy to date on the Penn Treebank, and fast training

n-best
reranking

dynamic
programming

semi-
supervised



on to Machine Translation...

applying the same ideas of non-locality...
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Translate Server Error

48
clear evidence that MT is used in real life.
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Context in Translation

49

xiaoxin

 小心  X   <=>  be careful not to X

syntax problem (SCFG)

Algorithm 2 => cube pruning

fluency problem (n-gram)

  小心 VP   <=>  be careful not to VP

  小心 NP  <=>  be careful of NP 
xiaoxin  gou

 小心  狗  <=>  be aware of  dog
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How do people translate?
1. understand the source language sentence

2. generate the target language translation

50
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with

meetingSharon [past.]

布什 举行与 会谈沙龙 了

Bùshí juxíngyu huìtánShalóng le
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Forest  Algorithms

How do people translate?
1. understand the source language sentence

2. generate the target language translation

50

Bush holdand/
with

meetingSharon [past.]

“Bush   held   a  meeting   with   Sharon”

布什 举行与 会谈沙龙 了

Bùshí juxíngyu huìtánShalóng le
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How do compilers translate?
1. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly
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Forest  Algorithms

How do compilers translate?
1. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly

51

x3 = y + 3;

LD     R1,  id2
ADDF   R1,  R1, #3.0  // add float
RTOI   R2,  R1        // real to int
ST     id1, R2

syntax-directed translation (~1960)
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Syntax-Directed Machine Translation

• get 1-best parse tree; then convert to English

52

Bush holdand/
with

meetingSharon [past.]

“Bush   held   a  meeting   with   Sharon”
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• recursive rewrite by pattern-matching

with

(Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)
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Syntax-Directed Machine Translation

• recursively solve unfinished subproblems
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Syntax-Directed Machine Translation

• recursively solve unfinished subproblems

54

held          

withBush

(Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)
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Syntax-Directed Machine Translation

• continue pattern-matching
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Syntax-Directed Machine Translation

• continue pattern-matching

55

Bush held with

a meeting Sharon

(Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)
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Bush held witha meeting Sharon
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Syntax-Directed Machine Translation

• continue pattern-matching

56

this method is simple, fast, and expressive.

but... crucial difference between PL and NL:

ambiguity!

using 1-best parse causes error propagation!

idea:  use k-best parses?

        use a parse forest!

Bush held witha meeting Sharon
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Forest-based Translation

57
“and” / “with”
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Forest  Algorithms

“and”

Forest-based Translation

58

pattern-matching on forest

“and” / “with”

directed by underspecified syntax
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Translation Forest

59

“held a meeting”

“Sharon”“Bush”

“Bush held a meeting with Sharon”
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The Whole Pipeline

60

parse forest

translation forest

translation+LM forest

parser

pattern-matching w/
translation rules (exact)

Algorithm 2 => cube pruning 
(approx.)

Algorithm 3 (exact)best derivation

(Huang and Chiang, 2005; 2007; Chiang, 2007)
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The Whole Pipeline

60

parse forest

translation forest

translation+LM forest

parser

pattern-matching w/
translation rules (exact)

Algorithm 2 => cube pruning 
(approx.)

Algorithm 3 (exact)best derivation

pa
ck

ed
 fo

re
st

s

(Huang and Chiang, 2005; 2007; Chiang, 2007)

input sentence

1-best translation k-best translations
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k-best trees vs. forest-based

61

1.7 Bleu improvement over 1-best, 
0.8 over 30-best, and even faster!
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forest as virtual ∞-best list
• how often is the ith-best tree picked by the decoder?

62

32
%

 b
ey

on
d 

10
0-

be
st

20
%

 b
ey
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d 

10
00

-b
es

t

1000

suggested by
Mark Johnson
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Larger Decoding Experiments
• 2.2M sentence pairs (57M Chinese and 62M English words)

• larger trigram models (1/3 of Xinhua Gigaword)

• also use bilingual phrases (BP) as flat translation rules

• phrases that are consistent with syntactic constituents

• forest enables larger improvement with BP

63

T2S T2S+BP
1-best tree

30-best trees
forest

improvement

0.2666 0.2939

0.2755 0.3084

0.2839 0.3149

1.7 2.1
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Conclusions: Dynamic Programming

• A general framework of DP on monotonic hypergraphs

• Exact k-best DP algorithms (monotonic)

•  Approximate DP with non-local features (non-monotonic)

• Forest Reranking for discriminative parsing

• Forest Rescoring for MT decoding

• Forest-based Translation

• translates a parse forest of millions of trees

• even faster than translating top-30 trees (and better)

• Future Directions: even faster search with richer info...
64



Forest is your friend.   Save the forest.

Thank you!
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Global Feature - RightBranch

66

• length of rightmost (non-punctuation) path

• English has a right-branching tendency

(Charniak and Johnson, 2005)

can not be factored anywhere
have to wait till root

(punctuation or not is ambiguous:
’: possessive or right quote?)


