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NLP is all about ambiguities

® to middle school kids: what does this sentence mean?
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NLP is all about ambiguities

| saw her duck.

AN AN AN

® how about...

® | saw her duck with a telescope.

® | saw her duck with a telescope in the garden...

Forest Algorithms




NLP is HARD!

® exponential explosion of the search space

® non-local dependencies (context)

% SN2
ANV =

PRP VBD NP PP

PN T
I saw PRP$ NN IN NP

I I | N
her duck with DT NN

a telescope
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Ambiguities in Translation

nu zhong duan
A

self help terminal device

needs context to
disambiguate!

www.engrish.com
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Evil Rubbish; Safety Export

wWww.engrish.com

needs context for fluency!
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Key Problem

® How to efficiently incorporate non-local information?
® Solution |: pipelined reranking / rescoring
® postpone disambiguation by propagating k-best lists
® examples: tagging => parsing => semantics
® (open) need efficient algorithms for k-best search

® Solution 2: exact joint search on a much larger space

® examples: head/parent annotations; often intractable
® Solution 3:approximate joint search (focus of this talk)

® (open) integrate non-local information on the fly
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Qutline

® Forest: Packing Exponential Ambiguities

® Approximate Joint Search with

Non-Local Features (Solution 3) ™" “"* = = -
I saw DT | NN IN NP

| | | —
the boy with DT NN

® Forest Reranking C

a telescope

® Forest Rescoring

IPo,s

® Forest-based Translation (Solutions 2+3+J5Jm

NPy, 3

VP3 6

® Tree-based Translation

VV; 4 ASy 5 NP5 ¢

® FO I’eSt-based DeCOd | ng ushi '/ Shaléng j:‘ix’fng l!e hui‘tcin
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Packed Forests

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set

nodes > VP16 hyperedges

a hypergraph VBD12 NPo3 PPsg

- ~ ¢
NPs 3 PP3 ¢ ! VP ¢

oI | SAW hlm 3 With4asmirr0r6

(Klein and Manning, 2001; Huang and Chiang, 2005)
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Weight Functions

® Each hyperedge e has a weight function f.

® monotonic in each argument

e e.g.in CKY, fe(a,b) =a x b x Pr (rule)

® optimal subproblem property in dynamic programming

® optimal solutions include optimal sub-solutions
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| -best Viterbi on Forest

|. topological sort (assumes acyclicity)

2. visit each node v in sorted order and do updates
® for each incoming hyperedge e = ((ui, .., uj|), v, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

0} o L@ e L) )
O e
@

® time complexity: O(V+E) = O(E) for CKY: O(n3)
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Qutline

® Exact k-best Search in Forest (Solution 1) o

|
S

® Approximate Joint Search with
Non-Local Features (Solution 3) P& VB> [AF PP

I saw DT | NN IN NP

| | | —

® Forest Reranking the figEpudy DT NN

a telescope

® Forest Rescoring

® Forest-based Translation (Solutions 2+3)

NPy, 3

p
€3

PPy 33—~~~ TTTT=VPss
A

-~

® Tree-based Translation

|
|
|
|
|
|
i
| - ~
NPy, 1 CCy,2 Py NP3, 5 VV3 4 ASy 5 NP5 ¢

® Forest-based Decoding T VA R

yii Shalong  jixing

huitan
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k-best Viterbi Algorithm O

® straightforward k-best extension
® a vector of k (sorted) values for each node

® now what’s the result of fe (a,b) !

k x k = k? possibilities! => then choose top k

00
b

Q:QQ fe N
o ©

® time complexity: O(k? E)
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k-best Viterbi Algorithm

® key insight: do not need to enumerate all k?
® since vectors a and b are sorted
® and the weight function f. is monotonic

® (aj,b1) must be the best

® either (a2, by) or (ai, b2) is the 2nd-best

® use a priority queue for the frontier

® extract best

® push two successors

® time complexity: O(k log k E)
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k-best Viterbi Algorithm |

® key insight: do not need to enumerate all k?
® since vectors a and b are sorted
® and the weight function f. is monotonic

® (aj,b1) must be the best

® either (a2, bi) or (ai, b2) is the 2nd-best

® use a priority queue for the frontier

® extract best

® push two successors

® time complexity: O(k log k E)
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k-best Viterbi Algorithm 2

® Algorithm | works on each hyperedge sequentially
® O(k log k E) is still too slow for big k
® Algorithm 2 processes all hyperedges in parallel

® dramatic speed-up: O(E +V k log k)

hyperedge %
/ \
o ole

S
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k-best Viterbi Algorithm 3

® Algorithm 2 computes k-best for each node

® but we are only interested in k-best of the root node
® Algorithm 3 computes as many as really needed

® forward-phase

same as |-bestViterbi, but stores the forest
(keeping alternative hyperedges)

® backward-phase

recursively asking “what’s your 2"4-best” top-down

asks for more when need more

Forest Algorithms



Summary of Algorithms

® Algorithms | =>2 =>3
® lazier and lazier (computation on demand)
® |arger and larger locality

® Algorithm 3 is very fast, but requires storing forest

locality
Allloldidalaat I hyperedge O(E k log k')

Algorithm 2 node O(E+V klog k)

Algorithm 3 global O(E+ D klog k)

E - hyperedges: O(n3); V - nodes: O(n?); D - derivation: O(n)
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Experiments - Efficiency

® on state-of-the-art Collins/Bikel parser (Bikel, 2004)

® average parsing time per sentence using Algs. 0, I, 3
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Reranking and Oracles

® oracle - the candidate closest to the correct parse
among the k-best candidates

measures the potential of real reranking
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Qutline

TOP
® |
S

® Approximate Joint Search with @

PRP VBD NP BB

Non-Local Features (Solution 3) I e DTSSR T

| | | —
the boy with DT NN

® Forest Reranking -

a telescope

® Forest Rescoring

P
Vs
/
NPy, 3
€3

® Application: Forest-based Translation

PPy 33—~~~ TTTT=VPss
A

-~

|
|
|
|
|
|
i
| - ~
NPy, 1 CCy,2 Py NP3, 5 VV3 4 ASy 5 NP5 ¢

NS
® F ore St' b ase d D eco d in g Bishi yii Shaléng  jixing le huitén
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Why not k-best reranking?

® too few variations (limited scope)
® 4]% correct parses are not in ~30-best (Collins, 2000)
® worse for longer sentences

® too many redundancies

® 50-best usually encodes 5-6 binary decisions (2°<50<26)

Forest Algorithms 25




Redundancies in n-best lists

Not all those who wrote oppose the changes.

(TOP (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .))
(TOP (S (RB Not) (NP (NP (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .))
(TOP (S (NP (NP (RB Not) (DT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))
(TOP (S (RB Not) (NP (NP (DT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))
(TOP (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VB oppose) (NP (DT the) (NNS changes))) (. .)))
(TOP (S (NP (NP (RB Not) (RB all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))
(TOP (S (RB Not) (NP (NP (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VB oppose) (NP (DT the) (NNS changes))) (. .)))
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Redundancies in n-best lists

Not all those who wrote oppose the changes.

(TOP (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .))
(TOP (S (RB Not) (NP (NP (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .))
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(TOP (S (NP (NP (RB Not) (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VB oppose) (NP (DT the) (NNS changes))) (. .)))
(TOP (S (NP (NP (RB Not) (RB all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VBP oppose) (NP (DT the) (NNS changes))) (. .)))
(TOP (S (RB Not) (NP (NP (PDT all) (DT those)) (SBAR (WHNP (WP who)) (S (VP (VBD wrote))))) (VP (VB oppose) (NP (DT the) (NNS changes))) (. .)))

packed forest

=
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Reranking on a Forest!

® with only local features (Solution 2)

® dynamic programming, exact, tractable (Taskar et al. 2004;
McDonald et al., 2005)

® with non-local features (Solution 3)
® on-the-fly reranking at internal nodes
top k derivations at each node

use as many non-local features
as possible at each node

chart parsing + discriminative reranking

® we use perceptron for simplicity

Forest Algorithms



Features

® a feature fis a function from tree y to a real number
® fi(y)=log Pr(y) is the log Prob from generative parser

® every other feature counts the number of times a
particular configuration occurs in y

TOP our features are from

é (Charniak & Johnson, 2005)
(Collins, 2000)

NP VP

l — | instances of Rule feature
PRP VBD NP PP

/\. _— —_
} sa!w DT/\NN IN NP froo(y) =f s~npve.(y) = |

— = . =
de oy with (DT Ny, [ 2000) = fwe-ora(y) =2

| |
a telescope
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|l ocal vs. Non-Local Features

® a feature is local iff. it can be factored among local
productions of a tree (i.e., hyperedges in a forest)

® |ocal features can be pre-computed on each hyperedge
in the forest; non-locals can not

TOP
I

ParentRule is non-local

N
NP VP

I — I
PRP VBD NP PP

| | o~ — Rule is local
I saw (DT NN  IN NP

I I I —
the boy with [|DT NN

I I
a telescope
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Local vs. Non-Local: Examples

® ColenPar feature captures the difference in lengths
of adjacent conjuncts (Charniak and Johnson, 2005)

local!
PRP

They VBD VP and VDB

-
| - o | T

were VBN PP  were VB

T

consulted IN NP surprised IN

| | | T T~
in NN at NP VP

| ,—fﬂ“& |
advance| DT NN VBN

4 words | the action taken

6 words

ColenPar: 2
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Local vs. Non-Local: Examples

® CoPar feature captures the depth to which adjacent
conjuncts are isomorphic (Charniak and Johnson, 2005)

ROQOT
| ) _Isu’mu*r‘phic trees to depth 4

i | non-local!

v_l:_};ix& CC ‘ifa__H:

PRP - ~ :
e (violates DP
UE "-\-..H

They U]jf) -%’-‘EﬁP&“&;ld ! DE‘- d . .
L,__ P t'— T principle)

were V ﬁN I?’ P . were V ﬁN

-'"-...-
e
"

o

x — -
consulted, IN NP ‘ SurpriSf&j\ IN
|

in NN at NP
| ;-*'/ﬁ\
advance DT NN VBN

the action taken

6 words

CoPar: 4
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

unit instance of ParentRule
feature at VP node

VBD NP PP .
| T~ _—— across statically

local features factor

saw DT NN IN NP

| | | T~ )
the boy with DT NN non-local features factor

| | across nodes dynamically

a telescope
Forest Algorithms 32
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

unit instance of ParentRule

/-\ feature at VP node
L o = local features facto!*
| S _— across hyperedges statically

saw DT NN IN NP

| | | T~ )
the boy with DT NN non-local features factor

| | across nodes dynamically

a telescope
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

Q unit instance of ParentRule
feature at S node

NP VP

| ]
PRP VBD NP PP . .
| | T~ _ across statically

local features factor

I saw DT NN IN NP

| | | T~ )
the boy with DT NN non-local features factor

| | across nodes dynamically

a telescope
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

TOP

| unit instance of ParentRule

feature at TOP node

NP VP

| - |
PRP VBD NP PP non-local features factor

| | ~ —— _
I saw DT NN IN NP across nodes dynamically

| | | T
the boy with DT NN local features factor

| | across statically
a telescope
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

unit instance of ParentRule
feature at TOP node

NP VP

| - |
PRP VBD NP PP non-local features factor

| | ~ —— '
I saw DT NN IN NP across nodes dynamically

| | | T
the boy with DT NN local features factor

| | across statically
a telescope
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

NP :
I I

PRP VBD NP 2Ps
| | -, fnet o A Wi... Wj—1 Wj...WE—-1
I saw DT I NN  IN NP

| | | _— unit instance of node A
the boy with DT NN

I I
a telescope
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® unit instances are boundary words between subtrees

VP
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VBD NP PP
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that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

VBD 2
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

TOP

NP VP :
| — |

PRP VBD NP PP .
I I /\ /\ ’LUZ'...UJj_l wj...wk_]_
I saw DT NN IN NP

| l | _— unit instance of node A
the boy with DT NN

I I
a telescope
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

TOP

NP

I -
PRP VBD NP PP

o~ . Wi... Wj—1 Wj...WE—-1

DT NN IN NP

| | l T unit instance of node A
the boy with DT N

I
a ( telescope b
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Approximate Decoding

® bottom-up, keeps top k derivations at each node

® non-monotonic grid due to non-local features

™
j B
! aa do®
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)

L
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Approximate Decoding

® bottom-up, keeps top k derivations at each node

® non-monotonic grid due to non-local features

§;\}Z§
w-‘T'
/
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Algorithm 2 => Cube Pruning

® bottom-up, keeps top k derivations at each node

® non-monotonic grid due to non-local features
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Algorithm 2 => Cube Pruning

® bottom-up, keeps top k derivations at each node

® non-monotonic grid due to non-local features

w - fin( ) =0.5 ” ¢ E\;‘E
1{;} b , : ma‘;‘:
Ak N é i \f;_,m‘ i ““w‘]

/\ h
2, ’
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Algorithm 2 => Cube Pruning

® process all hyperedges simultaneously!
significant savings of computation

hyperedge ?
/ \

u Sm

there are search errors, but the trade-off is favorable.
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Forest vs. k-best Oracles

® on top of Charniak parser (modified to dump forest)
® forests enjoy higher oracle scores than k-best lists

e with much smaller sizes

99.0
97.0 |
950 | | %67
93.0 |
91.0 |
89.0

forest oracle
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| | | I | —

0 500 1000 1500 2000
average # of hyperedges or brackets per sentence
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Main Results

® forest reranking beats 50-best & |100-best reranking

® can be trained on the whole treebank in ~| day even
with a pure Python implementation!

® most previous work only scaled to short sentences
(<=15 words) and local features

baseline: |-best Charniak parser| 89.72
approach training time  FI%
50-best reranking

|00-best reranking

forest reranking

Forest Algorithms




Main Results

® forest reranking beats 50-best & |100-best reranking

® can be trained on the whole treebank in ~| day even
with a pure Python implementation!

® most previous work only scaled to short sentences
(<=15 words) and local features

baseline: | -best Charniak parser| 89.72 |feature extract
approach training time Fl%  space time
50-best reranking

|00-best reranking

forest reranking
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Comparison with Others

type system
Collins (2000)
Charniak and Johnson (2005)
updated (2006)
Petrov and Klein (2008)

this work

Carreras et al. (2008)
Bod (2000)

Petrov and Klein (2007)
McClosky et al. (2006) semi-

supervised

n-best
reranking

dynamic
programming

Forest Algorithggst accuracy to date on the Penn Treebank, and fast training .



on to Machine Translation...

applying the same ideas of non-locality...




Translate Server Error
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Translate Server Error

i _clear evidence that MT is used in real life.
orest Algorithms



Context in Translation

Poisonous & Evil Rubbish

ymun®

— Slip ca
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Context in Translation

Algorithm 2 => cube pruning

fluency problem (n-gram)

ESHELR

Poisonous & Evil Rubbish
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Context in Translation

Xiaoxin

Algorithm 2 => cube pruning JJVGy X <=> be careful not to X

fluency problem (n-gram) syntax problem (SCFG)

ARRENR

Poisonous & Evil Rubbish

\.,“
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Context in Translation

xiaoxin gou
/By J8) <=> be aware of dog
Xiaoxin

Algorithm 2 => cube pruning JJVGy X <=> be careful not to X

fluency problem (n-gram) syntax problem (SCFG)

>y

¥

- 4 = -~
e Gl e £ 9
. N -
A "

LR A

ESEENR

Poisonous & Evil Rubbish

b"\’f)l:’\
& 0 % W'
I~

V -
. \
=

’ SR 7y

¥ b ’ (] \
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Context in Translation

JNOVWP <=> be careful not to VP
xiaoxin gou
IJ\VEy 3] <=> be aware of dog /J\BY NP <=> be careful of NP
Xiaoxin

Algorithm 2 => cube pruning JJVGy X <=> be careful not to X

fluency problem (n-gram) syntax problem (SCFG)

TR F"'

ARREUR

Poisonous & Evil Rubbish

\.r“

“WWW.engrish.com
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How do people translate!?

|. understand the source language sentence

2. generate the target language translation
mir 5 Ak BT T =K
Bushi  yu  Shalong juxing e huitdn

Bush an.d/ Sharon hold [past] meeting
with

Forest Algorithms



How do people translate!?

|. understand the source language sentence

2. generate the target language translation
it 5 Ak #BfT T W
Bushi  yu  Shalong juxing e huitdn

Bush aer/ Sharon hold [past] meeting
with

Forest Algorithms



How do people translate!?

|. understand the source language sentence

2. generate the target language translation
it 5 Ak #BfT T W
Bushi  yu  Shalong juxing e huitdn

Bush an.d/ Sharon hold [past] meeting
with

“Bush held a meeting with Sharon”

Forest Algorithms



How do compilers translate!?

|. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly

X3 =y + 3;

Forest Algorithms



How do compilers translate!?

|. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly

assngnment

<3 » / statement \

identifier expression ;

expression 4 expression
l |
identifier number
I I

y 3

Forest Algorithms



How do compilers translate!?

|. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly

assngnment

<3 » / statement \

identifier expression ;

expression

expression 4
I I
/ identifier number
I I
id2 y 3
R1, #3.0 // add float

R1 // real to int
, R2

Forest Algorithms



How do compilers translate!?

|. parse high-level language program into a syntax tree

2. generate intermediate or machine code accordingly

assignment

%3 » / statement \

identifier expression

- / Comp |Iers

Prmcuples Techniques,

exprelsswn hés, " ond ool
identifier & ' a"; |
I WY (B
R1, id2 y 3 9"
R1, R1l, #3.0 // add float <
R2, // real to int
idl,
Alfred V. Aho

Ravi Sethi

syntax-directed translation (~1960) [t

Forest Algorithms




Syntax-Directed Machine Translation

® get |-best parse tree; then convert to English

)

NP VPB
—_— 7 T — [
NPB CC NPB VV AS NPB
I I I I I I
Bushi yu Shalong jixing le huitén

Bush 29" Sharon  hold [past.] meeting
with

“Bush held a meeting with Sharon”

Forest Algorithms



Syntax-Directed Machine Translation

® recursive rewrite by pattern-matching

.--"'---_—-T_-_---"‘--_
L) rz1:NPB CC z,:NPB
|

NP VPB — x1 z3 with 9
—] T ]
NPB CC NPB VV AS NPB

I I I I I I
Bushi yu Shalong jixing le huitén

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® recursive rewrite by pattern-matching

e
) D EBESCCs SrrINED
|
yi

NP VPB 21 2 with 2
et A S |
NPB CC NPB VV AS NPB

I | I I I I
Bushi yu Shalong jixing le huitdn

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® recursive rewrite by pattern-matching

z1:NPB CC ' z,:NPB
I
yil

NP VPB 21 2 with 2
,,_.—-—"""—7-\\\ M
NPBY CC " NPB' VV AS NPB

| | | I I I
Bushi yuu Shalong jixing le huitan

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® recursive rewrite by pattern-matching

NP

e | Ty
z1:NPB CC ' z,:NPB
I

yi

NP VPB — @ |23 with |z
et e S — |
NPB CC NPB VV AS NPB
| | | I I I
Bushi yuu Shalong jixing le huitan

)\

I VV AS NPB
Biishi | | | Shalong

Jlixing le huitdn

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)




Syntax-Directed Machine Translation

® recursively solve unfinished subproblems

NPB VPB with  NPB
VV AS NPB Shalong
I I I
juxing le huitdn

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® recursively solve unfinished subproblems

NPB VPB with  NPB
VV AS NPB Shalong
I I I
juxing le huitdn

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® recursively solve unfinished subproblems

Bush VPB with  NPB
M |
VV AS NPB Shaléng
I I I
juxing le huitdn PR
e S
VV AS x1:NPB
| |
Jjlxing e

— held o

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® recursively solve unfinished subproblems

Bush VPB with  NPB
PO e e S0 |
I I I
Juixing le hultan o
’ : vmm
| |

4
h c I d NPB Juxing le

| — held| &
huitan

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® continue pattern-matching

Bush held NPB with NPB
| |
huitdn Shalong

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® continue pattern-matching

Bush held NPB with NPB
| |
huitdn Shalong

v v

a meeting Sharon

Forest Algorithms (Galley et al. 2004; Liu et al., 2006; Huang, Knight, Joshi 2006)



Syntax-Directed Machine Translation

® continue pattern-matching

Bush held a meeting with Sharon

Forest Algorithms



Syntax-Directed Machine Translation

® continue pattern-matching

Bush held a meeting with Sharon

this method is simple, fast, and expressive.

‘.'_______..--"'--..________‘-

but... crucial difference between PL and NL:
r1:NPB CC z::NPB

ambiguity! |

yii
using |-best parse causes error propagation! s i
idea: use k-best parses!?

use a parse forest!

Forest Algorithms



Forest-based Translation

\

NPB[}: 1 CCL 9 NPB& 3

\ \

Bushi yu Shaléng
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest

—

“VPB3 ¢

—k

- N ~~
CCL 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
N,
f.r"
Bushi yu Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest IP

NP
— T
z1:NPB CC z45:NPB

|
yil — x1 x3 with z9

“and”

—

“VPB3 ¢

—k

- N N\
CCL 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
N,
f.r"
Bushi yu Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest IP

NP
— T
z1:NPB CC z45:NPB

|
yil — x1 x3 with z9

“and”

—

“VPB3 ¢

—k

- N ~~
CCL 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
N,
f.r"
Bushi yu Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest =

NP
— T
z1:NPB CC z45:NPB

|
yil — x1 x3 with z9

“and”

——

~VPB3 6

—

- N ~~
CCL 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
N,
f.r"
Bushi yu Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest =

NP
T g
z1:NPB CC z,:NPB

|
yil — x1 x3 with z9

“and”

——

~VPB3 6

—

- b N
CC]_! 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
N,
f.r"
Bushi yu Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest =

NP
T g
z1:NPB CC z,:NPB

|
yil — x1 x3 with z9

“and”

——

~VPB3 6

—

- b N
CC]_! 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
|
f.r"
Bushi YU Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Forest-based Translation

pattern-matching on forest =

NP

directed by underspecified syntax sl
z1:NPB CC z,:NPB

|
yil — x1 x3 with z9

“and”

—

~VPB3 6

—

- b N
CCL 9 Pl, 9 NPBQ: 3 VVE,: A4 AS4J_ 5 NPBE,! 6
|
f.r"
Bushi YU Shaléng  juzing le huitdn
“and” / “with”
Forest Algorithms




Translation Forest

IP
..-"'-..-ﬁ-‘-""-.
NPB r3:VPB
T —+ L] L3 with .
z1:NPB CC z.:NPB

! ,
NPBgy CC;2 P12 NPBaz  VVsas

Forest Algorithms



Translation Forest

IP
..-"'-..-.“-‘-""-.
NPB r3:VPB
—T — '] I3 with I
z1:NPB CC z.:NPB

VPB3 ¢

- t
H‘xr L\H_ \
T~

V7 ,
NPBpy CCi2 P12 (NPBzs VVss  ASys “6NPBsg

Forest Algorithms



Translation Forest

IP
..-"'-..-ﬁ-‘-"‘-.
NPB r3:VPB
1 — '] I3 with .
z1:NPB CC z.:NPB

./ “held a meeting”
VPB4

t

)

V7 T~
NPBg 1. ASy5 ©6 NPB; ¢
“Bush”

Forest Algorithms



Translation Forest

IP
..--"".-ﬁ-"“--.
NPB r3:VPB
T — &1 x3 with z
. . z1:NPB CC z4:NPB
“Bush held a meeting with Sharon”

IPp ¢

Vs
NPBg 1
“BUSh”

Forest Algorithms




The Whole Pipeline

Input sentence

parser

parse forest

l pattern-matching w/

translation rules (exact)

translation forest

Algorithm 2 => cube pruning

(approx.)
translation+LM forest

best derivation Algorithm 3 (exact)

| -best translation k-best translations

Forest Algorithms

(Huang and Chiang, 2005; 2007; Chiang, 2007)



The Whole Pipeline

Input sentence

parser

parse forest

l pattern-matching w/

translation rules (exact)

translation forest

Algorithm 2 => cube pruning
(approx.)

packed forests

translationtLM forest

best derivation Algorithm 3 (exact)

| -best translation k-best translations

Forest Algorithms (Huang and Chiang, 2005; 2007; Chiang, 2007)




k-best trees vs. forest-based

|.7 Bleu improvement over |-best,
0.8 over 30-best, and even faster!

| I I I I I I

Pi=12

Pi> k=30
k=10

=
-
Q
o
-
0
—
m

decoding on forest

L 1-best on k-best trees
=2 | 1 1 | | | |

0 5 10 15 20 25 30 35

average decoding time (secs/sentence)

Forest



forest as virtual oo-best list

® how often is the i*"-best tree picked by the decoder?

]
N

I I | | | I I I | suggested b)’
30-best trees Mark Johnson

b
-

forest decoding

[—
N

[—
-

W
32% beyond
| 00-best
20% beyond
|000-best

©
S
o 8]
L
(2
=
L
el
=
QL
o
—
-
L
2l
I
=
Q
5
al

0 I
0 10 20 30 40 50 60 70 80 90 100

Rank of the tree picked in n-best list




Larger Decoding Experiments

® 2.2M sentence pairs (57M Chinese and 62M English words)
® larger trigram models (1/3 of Xinhua Gigaword)

® also use bilingual phrases (BP) as flat translation rules

® phrases that are consistent with syntactic constituents

® forest enables larger improvement with BP

| -best tree
30-best trees

forest
imprevement

Forest Algorithms



Conclusions: Dynamic Programming

® A general framework of DP on monotonic hypergraphs
® Exact k-best DP algorithms (monotonic)
® Approximate DP with non-local features (non-monotonic)
® Forest Reranking for discriminative parsing
® Forest Rescoring for MT decoding

® Forest-based Translation

® translates a parse forest of millions of trees
® even faster than translating top-30 trees (and better)

® Future Directions: even faster search with richer info...

Forest Algorithms 64



Forest is your friend. Save the forest.




Global Feature - RightBranch

® |ength of rightmost (non-punctuation) path

® English has a right-branching tendency

ROOT can not be factored anywhere

&L, have to wait till root

Npﬁ; (punctuation or not is ambiguous:

WDT Vg-ﬁ"f/\\PP | ': possessive or right quote?)
____d__,’”!ﬂ‘\-‘___\h
That went IN NP

| __-——-""__fﬁhh“‘“——-_q
over NTP e

//\\

D|T J|.] NN IN NP
the permissible line for ADJ NNB
T |
CC JJ feelings

warm and fuzzy

Forest Algorithms (Charniak and Johnson, 2005)



