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| Short Version

» Transition-based dependency parsing has an

exponentially-large search space
* 0(n3) exact solutions exist
« In practice, however, we needed rich features = 0(n®)
* (This work) with bi-LSTMs, now we can do 0(n3)!

« And we get state-of-the-art results
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| Dependency Parsing
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I Transition-based Dependency Parsing
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I Transition-based Dependency Parsing

Goal:
max score( 0-0-0+ - +@)
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| Exact Decoding

* Dynamic programming (Huang and Sagae, 2010;
Kuhlmann, Gomez-Rodriguez and Satta, 2011)

... since transition (sub-)sequences can be reused
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| Exact Decoding

Goal:
max score( 0-0-0+ - +@)

= max ) score(®—®)

>‘ Terminal

. states

Initial state/v O O — O
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Exponential to polynomial 5
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| Transition Systems

DP Complexity # Transitions
Arc-standard EEeYETRY 3

Arc-eager 0 (n3) 4 g;;;'rr
Arc-hybrid 0 (n3) 3

Presentational convenience
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| Arc-hybrid Transition System

‘ Search State

L Isesifso| [bo[bs] - |
Stack Buffer

‘ Initial State
|:| | ROOT | She | wanted | ... |

‘ Terminal State

(Yamada and Matsumoto, 2003)
‘ ROOT‘ |:| (Gomez-Rodriguez et al., 2008)
(Kuhlmann et al., 2011) .
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| Arc-hybrid Transition System

Same as arc-standard

10



Background  O0(n®) in theory  0(n®) in practice  Back to O(n3®)  Results

| Arc-hybrid Transition System
‘—V' Transitions

(] CEEIE

l shift l reduce~

[ Tbo|[ ] ‘...\sg [ -]

Same as arc-standard
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| Arc-hybrid Transition System
‘—V‘ Transitions

k] CEHE EREE

l shift l reduce~ l reduce~

Same as arc-standard
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT [ She | wanted] to [eat | an [apple]

13



Background  O0(n®) in theory  0(n®) in practice  Back to O(n3®)  Results

| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT [ She | wanted] to [eat | an [apple]

shift | ROOT | | She [ wanted| to [ eat|an [apple]
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT [ She | wanted] to [eat | an [apple]

shift | ROOT | | She [ wanted| to [ eat|an [apple]

shift |ROOT | She | | wanted| to | eat| an | apple}
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT [ She | wanted] to [eat | an [apple]

shift | ROOT | | She [ wanted| to [ eat|an [apple]
shift |ROOT | She | | wanted| to | eat| an | apple}
reduce~ [ROOT | @nted\ to [ eat| an | apple]

She
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT [ She | wanted] to [eat | an [apple]

shift | ROOT | | She [ wanted| to [ eat|an [apple]

shift |ROOT | She | | wanted| to | eat| an | apple}

reduce~ [ROOT | @nted\ to [ eat| an | apple]
She

shift |ROOT | wanted | | to [ eat| an |apple]
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| Arc-hybrid Transition System

Stack Buffer
initial [ ] [ROOT [ She | wanted] to [eat | an [apple]

shift | ROOT | | She [ wanted| to [ eat|an [apple]

shift |ROOT | She | | wanted| to | eat| an | apple}

reduce~ [ROOT | @nted\ to [ eat| an | apple]
She

shift |ROOT | wanted | | to [ eat| an |apple]

shift |ROOT | wanted | to | | eat | an |apple ]
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| Arc-hybrid Transition System

Stack Buffer
reduce~ |ROOT | wanted | Fat | an |apple]

to

19



Background  O0(n®) in theory  0(n®) in practice  Back to O(n3®)  Results

| Arc-hybrid Transition System

Stack Buffer
reduce~ |ROOT | wanted | Fat | an |apple]
to
shift |ROOT | wanted | eat] | an [apple]
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| Arc-hybrid Transition System

Stack Buffer
reduce~ |ROOT | wanted | ?at | an |apple]
to
shift |ROOT | wanted | eat] | an [apple]

shift |ROOT | wanted | eat| an| lapple |
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| Arc-hybrid Transition System

Stack Buffer
reduce~ |ROOT | wanted | Eat | an |apple]
to
shift |ROOT | wanted | eat] | an [apple]
shift |ROOT | wanted | eat| an| lapple |

reduce~ [ROOT | wanted | eat] ‘apple\

dahn
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| Arc-hybrid Transition System

Stack Buffer
reduce~ |ROOT | wanted | ?at | an |apple]
to
shift |ROOT | wanted | eat] | an [apple]
shift |ROOT | wanted | eat| an| lapple |
reduce~ [ROOT | wanted | eat] ‘apple\
an

shift |ROOT | wanted | eat| apple | [ ]
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| Arc-hybrid Transition System

Stack Buffer
reduce~ [ROOT | wanted | eag [ ]
apple
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| Arc-hybrid Transition System

Stack Buffer
reduce~ [ROOT | wanted | eag [ ]
apple

reduce~ [ROOT [ wanted \ D

eat
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| Arc-hybrid Transition System

Stack Buffer
reduce~ [ROOT | wanted | eag [ ]
apple
reduce~ [ROOT [ wanted \ D
eat
reduce™ |ROOT [I

(terminal)
wanted

26



Background  0(n®) in theory  0(n®) in practice  Back to O(n3)  Results

| Deduction System for Arc-hybrid

0 1 2 3 4 5 6 (n)
| ] [ROOT] She| wanted | to | eat ] an | apple]
Stack Buffer

* Deduction Item « Goal

“lH]“ El‘n+1‘

|1, /] |0,n + 1]
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| Deduction System for Arc-hybrid

IERINEE

)]
shift TREEY l shift

A ER
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| Deduction System for Arc-hybrid

[k, j]
kvl

reduce~

l reduce~

7] \7]-‘ ]
k
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| Deduction System for Arc-hybrid

[k, j]
[4, ]

reduce~

Lo lifef ]~ |

l reduce~

¢ \7,-‘...‘
k
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| Deduction System for Arc-hybrid

e .]‘ I | 7

i, ] .

[i,/] ,l |
I FAER

l reduce~

¢ \7,-‘...‘
k

reduce~
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| Deduction System for Arc-hybrid
T -

In Kuhlmann et al.
(2011)’s notation *l i, k]
I B | )
reducen LK1 1T A NCTIR %)
ELIAEN
lreducem
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| Deduction System for Arc-hybrid
T -
<) [LK]

(i, k| [k, j]

reduce

Lo lifef ]~ |

l reduce~

| m‘ii VAN
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| Deduction System for Arc-hybrid

[i,/]

shift 77+ 1] Goal: [0,n + 1]
reduce~ l’lE_ [I;’]] ke j 3
T o)
n
reduce~ L k] Tk, J] i~k
[i,)]
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| Time Complexity in Practice

« Complexity depends on feature representation!

 Typical feature representation:

 Feature templates look at specific positionsin the
stack and in the buffer

35
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| Time Complexity in Practice

» Compare the following features

L Isof (ko] = | |dsifsof[bo] - |
« Time complexities are different!!!

EEEEIE A EN
Ssh (1, )) lshift ﬁssh(? 1, J) ‘Shlft
EEIEER HEEE

Information about s, is not available, needs extra bookkeeping

36
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| Time Complexity in Practice

« Complexity depends on feature representation!

 Typical feature representation:

 Feature templates look at specific positionsin the
stack and in the buffer

- Best-known complexity in practice: 0(n®)
(Huang and Sagae, 2010)

Stack Buffer

L s2] s | s Ubo\bl\ -]
N

si.lc ... si.rc sg.lc ... sy.rC
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I Best-known Time Complexities (recap)

0m®) . 00

Feature

representation

Theoretical Practical

H 38



Background  O0(n®) in theory  0(n®) in practice  Back to O(n3®)  Results

I In Practice, Instead of Exact Decoding ...

» Greedy search (Nivre, 2003, 2004, 2008; Chen and Manning, 2014)
« Beam search (zhang and Clark, 2011; Weiss et al.,2015)

« Best-first search (Sagae and Lavie, 2006; Sagae and Tsujii, 2007;
Zhao et al., 2013)

» Dynamic oracles (Goldberg and Nivre, 2012, 2013)

» "Global” normalization on the beam (zhou et al., 2015; Andor
et al,, 2016)

» Reinforcement learning (Lé and Fokkens, 2017)

 Learning to search (Daumé III and Marcu, 2005; Chang et al.,
2016; Wiseman and Rush, 2016)
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

Chen and Manning (2014)
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I How Many Positional Features Do We Need?

» Chen and Manning (2014)

Stack Buffer
| sz s | }%\bo\bl\bz\ -]
O\
si-lc; o s1.71Ci sg.lc; ... Sp.TC;

[ L

si.lcg.lcg S1.7Cy.TCy So-lco.lcg  So0-TCo-TCo
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

Chen and Manning (2014)

Stack LSTM Bi-LSTM
(Dyeretal., 2016) Kiperwasser and
Goldberg (2016)
Cross and
Huang (2016)

More tree-structureinformation
—

Exponential DP Slow DP Fast DP
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I How Many Positional Features Do We Need?

« LSTMs can be used to encode the entire stack
and buffer (Dyer et al., 2016)

Stack Buffer
‘Slal—l‘ ‘52 ‘ 51 ‘ SO‘ ‘ by ‘ bl‘bZ‘ ‘blﬁl—l‘

JANEEIVAVAVA
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I How Many Positional Features Do We Need?

* Bi-LSTMs give compact feature representations
(Kiperwasser and Goldberg, 2016; Cross and Huang, 2016)

 Features used in Kiperwasser and Goldberg (2016)
Stack Buffer

[szsi]sof[bof - |

» Features used in Cross and Huang (2016)
Stack Buffer

[silsof [bo] - |
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| Model Architecture

SshrSrews Sren

Multi-layer perceptron

ENENERTE

Bi-directional LSTM

[ Word embeddings + POS embeddings ]
She wanted to eat an apple..
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| Model Architecture

SshrSrews Sren

Multi-layer perceptron

ENERTE

Bi-directional LSTM

[ Word embeddings + POS embeddings ]
She wanted to eat an apple,
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| Model Architecture

SshrSrews Sren

Multi-layer perceptron

ENTE

Bi-directional LSTM

[ Word embeddings + POS embeddings ]
She wanted to eat an apple,
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| Model Architecture

SshrSrews Sren

Multi-layer perceptron

Lo )

Bi-directional LSTM

[ Word embeddings + POS embeddings ]
She wanted to eat an apple,
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I How Many Positional Features Do We Need?

» We answer the question empirically
.. experimented with greedy decoding

« Two positional feature vectors are enough!

94.08 94.08 94.03 52.39
100 +0.13 10.05 1+0.12 10.23

UAS gp

on

PTB 60

dev) e

{52151150! bO} {SliSO'bO} {So,bo} E {bO}

——

Considered in prior work 49
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I How Many Positional Features Do We Need?

e Our minimal feature set works
Stack Buffer

‘ ‘ So ‘ ‘ bo‘ ‘

» Counter-intuitive, but works for greedy decoding
L~ Isifsof|bof - |
l reduce

So 50
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| Implication of Minimal Feature Set

« The bare deduction items already contain
enough information to extract features

» We don't need extra book keeping

» Leads to the first 0(n?) implementation of
global decoders!

51
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I How Many Positional Features Do We Need?

Non-neural (manual engineering)

\

Chen and Manning (2014)

Stack LSTM Bi-LSTM
(Dyeretal., 2016) Kiperwasser and
Goldberg (2016)
Cross and
Huang (2016)

Our work

More tree-structureinformation
—

Exponential DP Slow DP Fast DP Fast(er) DP -
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I Best-known Time Complexities (recap)

0m®) . 00

Feature

representation

Theoretical Practical

| ;
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| Our contribution

Bi-directional 0, (n3)

LSTMs M

' ' Practical

0(n>)

Theoretical
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| Decoding
| S

Score of the sub-sequence

\ |t
[i,jl:v: _ —
TSI T[] = |

l shift

L~ lifjfpi+a] - |

shift
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| Decoding
A ]
*l[i,k]

[i’ k]:vl [k,j]:vz bt » »
d Vo X k, > 3 ,
requce li,jl:v; +v, + A l k.1 L]

A= 500+ syentle ) Ll ELR] [T ] ]
l reduce~

Enne

k 56
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| Training

» Cost-augmented decoding (Taskar et al., 2005)

max score(@-@- - ~@) + cost(:::: :;) - score(@-@~ - ~0)

i, k]: v, |k, jl: v,
Ljl:vi + v + sgp(i, k) + spenlk, j) + 1(head(k) # j)

- ‘i‘y‘ .
k

reduce~ [
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| Comparing with State-of-the-art
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| Comparing with State-of-the-art
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| Comparing with State-of-the-art
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| Comparing with State-of-the-art

90.5
- * [715 Qur all global
20.0 __ @ [120 KBKDS16 [ 15 Our arc-eager DP
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| Results — CoNLL'17 Shared Task

« Macro-average of 81 treebanks in 49 languages
e 2nd—highest overall performance

\ 75.00
/5
74. 32
74. oo
LAS 74 73.75
} I

Exact Exact  Graph-

Ensemble
Arc-eager Arc-hybrid based

(Shi, Wu, Chen and Cheng, 2017; Zeman et al., 2017) 62



| Conclusion

* Bi-LSTM feature set is minimal yet highly effective
* First 0(n?) implementation of exact decoders

« Global training and decoding gave high performance
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| More in Our Paper

 Description and analysis of three transition systems

(arc-standard, arc-hybrid, arc-eager)
« CKY-style representations of the deduction systems

 Theoretical analysis of the global methods
 Arc-eager models can “‘simulate” arc-hybrid models

« Arc-eager models can “simulate” edge-factored models
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| CKY-style Visualization

Axiom [0, 1] NA

Inference Rules
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