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Short Version

• Transition-based dependency parsing has an 
exponentially-large search space

• 𝑂 𝑛# exact solutions exist

• In practice, however, we needed rich features ⟹ 𝑂 𝑛%

• (This work) with bi-LSTMs, now we can do 𝑂(𝑛#)! 

• And we get state-of-the-art results
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Dependency Parsing

She wanted to eat an apple
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Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Transition-based Dependency Parsing

…

…

…

…

Initial state

Terminal
states

…

Goal:
max 	score(                  )…

= max 		∑	score(         )

Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Exact Decoding

• Dynamic programming (Huang and Sagae, 2010; 
Kuhlmann, Gómez-Rodríguez and Satta, 2011)

… since transition (sub-)sequences can be reused

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Exact Decoding
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Transition Systems
Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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DP Complexity # Transitions
Arc-standard 𝑂 𝑛. 3

Arc-eager 𝑶 𝒏𝟑 4
Arc-hybrid 𝑶 𝒏𝟑 3

In our 
paper

Presentational convenience



Arc-hybrid Transition System
Search State

Stack Buffer
𝑠3𝑠4𝑠5 𝑏3 𝑏4… …

Initial State

Terminal State

ROOT    She    wanted     …

ROOT (Yamada and Matsumoto, 2003)
(Gómez-Rodríguez et al., 2008) 

(Kuhlmann et al., 2011)

Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Arc-hybrid Transition System
Transitions

shift

𝑏3… …

reduce↷ reduce↶

𝑏3… …

𝑏3… …𝑠3

…

… …𝑠4 𝑠3

… 𝑠4 …

𝑠3𝑠3

Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Arc-hybrid Transition System
Transitions
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Stack Buffer
ROOT    She    wanted   to   eat   an   apple

Arc-hybrid Transition System
Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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shift

She    wanted   to   eat   an   appleROOT

wanted   to   eat   an   appleROOT    She
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She
shift to   eat   an   appleROOT    wanted
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ROOT    wanted    eat

Stack Buffer

Arc-hybrid Transition System
Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Stack Buffer

Arc-hybrid Transition System
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Stack Buffer

Arc-hybrid Transition System
Background 𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Deduction System for Arc-hybrid

• Deduction Item

27

Stack Buffer
ROOT   She   wanted    to    eat    an    apple

0        1         2        3      4       5      6 (𝑛)  

[𝑖, 𝑗]

𝑗… …𝑖

[0, 𝑛 + 1]

𝑛 + 10

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

• Goal



Deduction System for Arc-hybrid

[𝑖, 𝑗]
[𝑗, 𝑗 + 1]

shift shift

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

𝑗… …

𝑗… 𝑗 + 1 …

𝑖

𝑖
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Deduction System for Arc-hybrid

𝑖, 𝑘 	[𝑘, 𝑗]
[? , 𝑗]

reduce↶

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Deduction System for Arc-hybrid

𝑖, 𝑘 	[𝑘, 𝑗]
[𝑖, 𝑗]

reduce↶

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Deduction System for Arc-hybrid

𝑖, 𝑘 	[𝑘, 𝑗]
[𝑖, 𝑗]

reduce↶

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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reduce↶

𝑗… …𝑖

𝑘

𝑘… …𝑖

𝑗… …𝑘𝑖

*



Deduction System for Arc-hybrid

𝑖, 𝑘 	[𝑘, 𝑗]
[𝑖, 𝑗]

reduce↶

reduce↶

𝑗… …𝑖

𝑘

𝑘… …𝑖

𝑗… …𝑘𝑖

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

𝑖… …

* [𝑖, 𝑘]

* [𝑘, 𝑗]
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In Kuhlmann et al. 
(2011)’s notation



Deduction System for Arc-hybrid

𝑖, 𝑘 	[𝑘, 𝑗]
[𝑖, 𝑗]

reduce↷

reduce↶

𝑗… …𝑖

𝑘

𝑘… …𝑖

𝑗… …𝑘𝑖

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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* [𝑘, 𝑗]

33

* [𝑖, 𝑗]



Deduction System for Arc-hybrid

𝑖, 𝑘 	[𝑘, 𝑗]
[𝑖, 𝑗]

reduce↶

[𝑖, 𝑗]
[𝑗, 𝑗 + 1]

shift

𝑖, 𝑘 	[𝑘, 𝑗]
[𝑖, 𝑗]

reduce↷

𝑂 𝑛#

[0, 𝑛 + 1]Goal:

Background      𝑂(𝑛#) in theory 𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

𝑘 ↶ 𝑗

𝑖 ↷ 𝑘
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Time Complexity in Practice
• Complexity depends on feature representation! 

• Typical feature representation:
• Feature templates look at specific positions in the 

stack and in the buffer

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice Back to 𝑂(𝑛#) Results
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Time Complexity in Practice
• Compare the following features

• Time complexities are different!!!
𝑠3 𝑏3… …

Information about 𝑠4 is not available, needs extra bookkeeping

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice Back to 𝑂(𝑛#) Results

𝑠3𝑠4 𝑏3… …

shift

𝑗… …

𝑗… 𝑗 + 1 …

𝑖

𝑖

shift

𝑗 …

𝑗… 𝑗 + 1 …𝑖

𝑖… ?
𝑠CD 𝑖, 𝑗 𝑠CD ? , 𝑖, 𝑗
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Time Complexity in Practice
• Complexity depends on feature representation! 

• Typical feature representation:
• Feature templates look at specific positions in the 

stack and in the buffer

• Best-known complexity in practice: 𝑂(𝑛%)
(Huang and Sagae, 2010)

Stack Buffer
𝑠3𝑠4𝑠5 𝑏3 𝑏4… …

𝑠4. 𝑙𝑐 𝑠4. 𝑟𝑐… 𝑠3. 𝑙𝑐 𝑠3. 𝑟𝑐…

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice Back to 𝑂(𝑛#) Results
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Best-known Time Complexities (recap)

𝑂 𝑛# 𝑂 𝑛%
Theoretical Practical

Gap:
Feature 

representation

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice Back to 𝑂(𝑛#) Results
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In Practice, Instead of Exact Decoding …

• Greedy search (Nivre, 2003, 2004, 2008; Chen and Manning, 2014)

• Beam search (Zhang and Clark, 2011; Weiss et al.,2015)
• Best-first search (Sagae and Lavie, 2006; Sagae and Tsujii, 2007; 

Zhao et al., 2013)
• Dynamic oracles (Goldberg and Nivre, 2012, 2013)
• “Global” normalization on the beam (Zhou et al., 2015; Andor

et al., 2016) 
• Reinforcement learning (Lê and Fokkens, 2017)
• Learning to search (Daumé III and Marcu, 2005; Chang et al., 

2016; Wiseman and Rush, 2016)
• …

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice Back to 𝑂(𝑛#) Results
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How Many Positional Features Do We Need?
Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Chen	and	Manning	(2014)



How Many Positional Features Do We Need?

• Chen and Manning (2014)

Stack Buffer
𝑠3𝑠4𝑠5 𝑏3 𝑏4… …𝑏5

𝑠4. 𝑙𝑐I 𝑠4. 𝑟𝑐I… 𝑠3. 𝑙𝑐I 𝑠3. 𝑟𝑐I…

𝑠3. 𝑟𝑐3. 𝑟𝑐3𝑠3. 𝑙𝑐3. 𝑙𝑐3𝑠4. 𝑟𝑐3. 𝑟𝑐3𝑠4. 𝑙𝑐3. 𝑙𝑐3

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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How Many Positional Features Do We Need?
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Stack	LSTM
(Dyer	et	al.,	2016)

Bi-LSTM
Kiperwasser and	
Goldberg	(2016)

Cross	and	
Huang	(2016)

Exponential	DP													Slow	DP																Fast	DP

More	tree-structure	information



…

How Many Positional Features Do We Need?

• LSTMs can be used to encode the entire stack 
and buffer (Dyer et al., 2016)

Stack Buffer

𝑏3 𝑏4 …𝑏5

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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How Many Positional Features Do We Need?

• Bi-LSTMs give compact feature representations 
(Kiperwasser and Goldberg, 2016; Cross and Huang, 2016)

• Features used in Kiperwasser and Goldberg (2016)

• Features used in Cross and Huang (2016)

Stack Buffer
𝑠3𝑠4𝑠5 𝑏3… …

Stack Buffer
𝑠3𝑠4 𝑏3… …

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Model Architecture
Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

She wanted to eat an apple

Bi-directional LSTM

Word embeddings + POS embeddings

𝑠3 𝑏3𝑠4

Multi-layer perceptron

𝑠CD, 𝑠MN↶, 𝑠MN↷
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𝑠3 𝑏3
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Model Architecture
Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

She wanted to eat an apple

Bi-directional LSTM

Word embeddings + POS embeddings

𝑏3

Multi-layer perceptron

𝑠CD, 𝑠MN↶, 𝑠MN↷
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How Many Positional Features Do We Need?
• We answer the question empirically

… experimented with greedy decoding
• Two positional feature vectors are enough!

40

60

80

100

{𝑠5, 𝑠4, 𝑠3, 𝑏3} {𝑠4, 𝑠3, 𝑏3} {𝑠3, 𝑏3} {𝑏3}

𝟗𝟒.𝟎𝟖
±0.13

𝟗𝟒.𝟎𝟖
±0.05

𝟗𝟒.𝟎𝟑
±0.12

𝟓𝟐.𝟑𝟗
±0.23

UAS
on
PTB
(dev)

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

49Considered in prior work



• Our minimal feature set works 

• Counter-intuitive, but works for greedy decoding

Stack Buffer
𝑠3 𝑏3… …

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

How Many Positional Features Do We Need?

50

reduce↷

… 𝑠4 𝑠3

… 𝑠4

𝑠3

𝑏3 …

𝑏3 …



Implication of Minimal Feature Set

• The bare deduction items already contain 
enough information to extract features
• We don’t need extra book keeping

• Leads to the first 𝑂 𝑛# implementation of 
global decoders! 

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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How Many Positional Features Do We Need?
Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Stack	LSTM
(Dyer	et	al.,	2016)

Bi-LSTM
Kiperwasser and	
Goldberg	(2016)

Cross	and	
Huang	(2016)

Our	work

Exponential	DP													Slow	DP																Fast	DP										Fast(er)	DP

More	tree-structure	information



Best-known Time Complexities (recap)

𝑂 𝑛# 𝑂 𝑛%
Theoretical Practical

Gap:
Feature 

representation

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Our contribution

𝑂 𝑛# 𝑂 𝑛%
Theoretical Practical

𝑂 𝑛#Bi-directional

LSTMs

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Decoding

𝑖, 𝑗 : 𝑣
𝑗, 𝑗 + 1 : 0

shift

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

* [𝑖, 𝑗]

𝑖… …

shift

𝑗… …

𝑗… 𝑗 + 1 …

𝑖

𝑖

55

Score of the sub-sequence



Decoding

𝑖, 𝑘 : 𝑣4				 𝑘, 𝑗 : 𝑣5
𝑖, 𝑗 : 𝑣4 + 𝑣5 + Δ

reduce↶

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

Δ = 𝑠CD 𝑖, 𝑘 + 𝑠MN↶ 𝑘, 𝑗
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reduce↶

𝑗… …𝑖

𝑘

𝑘… …𝑖

𝑗… …𝑘𝑖

𝑖… …

* [𝑖, 𝑘]

* [𝑘, 𝑗] * [𝑖, 𝑗]



Training
• Cost-augmented decoding (Taskar et al., 2005)

max 	score(               ) + cost(               ) - score(               )… ……
…

𝑖, 𝑘 : 𝑣4								 𝑘, 𝑗 : 𝑣5
𝑖, 𝑗 : 𝑣4 + 𝑣5 + 𝑠CD 𝑖, 𝑘 + 𝑠MN↶ 𝑘, 𝑗 + 𝟏 ℎ𝑒𝑎𝑑 𝑘 ≠ 𝑗 	reduce↶

𝑗… …𝑖

𝑘
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Comparing with State-of-the-art
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Chinese
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UAS

English PTB UAS

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

58



Comparing with State-of-the-art

� BGDS16

� CH16

� DBLMS15
� KG16a

� KG16b

�CFHGD16

�DM17

�KG16a

�KBKDS16

�WC16

�Our arc-eager DP
�Our arc-hybrid DP

86.0
86.5
87.0
87.5
88.0
88.5
89.0
89.5
90.0
90.5

93.0 93.5 94.0 94.5 95.0 95.5 96.0

� Local � Global � Our Global

Chinese
CTB
UAS

English PTB UAS

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results

59



Comparing with State-of-the-art
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Comparing with State-of-the-art

� BGDS16

� CH16

� DBLMS15
� KG16a

� KG16b

�CFHGD16

�DM17

�KG16a

�KBKDS16

�WC16

� Our best local
�Our arc-eager DP
�Our arc-hybrid DP

�15 Our all global
�20 KBKDS16 �5 Our arc-eager DP

�5 Our arc-hybrid DP

86.0
86.5
87.0
87.5
88.0
88.5
89.0
89.5
90.0
90.5
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Results – CoNLL’17 Shared Task

75.00

74.32
74.00

73.75

73

74

75

LAS

Ensemble Exact
Arc-eager

Exact
Arc-hybrid

Graph-
based

(Shi, Wu, Chen and Cheng, 2017; Zeman et al., 2017)

• Macro-average of 81 treebanks in 49 languages
• 2nd–highest overall performance

Background      𝑂(𝑛#) in theory     𝑂(𝑛%) in practice     Back to 𝑂(𝑛#) Results
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Conclusion

• Bi-LSTM feature set is minimal yet highly effective

• First 𝑂 𝑛# implementation of exact decoders

• Global training and decoding gave high performance

63



More in Our Paper

• Description and analysis of three transition systems 
(arc-standard, arc-hybrid, arc-eager)

• CKY-style representations of the deduction systems

• Theoretical analysis of the global methods
• Arc-eager models can “simulate” arc-hybrid models

• Arc-eager models can “simulate” edge-factored models
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CKY-style Visualization
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