Introduction to OpenDX

Mike Bailey

Oregon State University

OpenDX

- Started out life as IBM Visualization Data Explorer
- When the product was cancelled, IBM put it into Open Source and renamed it OpenDX
- Basic premise is a series of interconnected modules, living together in an environment called the Visual Program Editor (VPE)
- There are lots of provided modules
- You can also write your own
http://www. opendx.org
http://www. vizsolutions.com
http://eecs.oregonstate.edu/~mjb/opendx

Steps in Creating a Visualization

Seven Steps to Creating a Visualization

1. Get the data
2. Formulate a scientific strategy. What do you want to show? How do you want to show it?
3. Import the data
4. Create a simple OpenDX network
5. Incrementally embellish the network. Save it often!
6. Choose what quantities you want to interact with. Change the Interactor styles to match the quantities being modified.
7. Create the output.

Starting OpenDX in OSU's Computer Graphics Education Lab

Starting OpenDX on the OSU CGEL Systems

1. Start \rightarrow All Programs \rightarrow WRQ Reflection \rightarrow Reflection X
2. In the View menu, click off X Desktop
3. Minimize the Reflection X window (the _in the upper right corner)
4. Start \rightarrow All Programs \rightarrow OpenDX \rightarrow DX

Mew Tools Settings Help v Voolbar Refresh
Minimize On \times Client Connect Hide Taskbar Icon On Mirimize
Host Response
Connection Status
Connection Status
$\checkmark \times$ Server Management
Customize Views

\square

Quitting OpenDX on the OSU CGEL Systems

1. Select Quit from the OpenDX Main Menu
2. Maximize the Reflection X window by clicking here in the Task Bar
3. In the File menu, select Exit

The OpenDX Main Menu and Categories of Modules

Nine Categories of OpenDX Modules

Annotation	Interactor	Special
Debugging	Realization	Structuring
Import \& Export	Rendering	Transformation

Annotation OpenDX Modules

```
- AutoAxes - creates an axis box for whatever data you are plotting
- AutoGlyph - designs and produces glyphs for the data based on the data values
- Caption - creates caption text for an image
- ColorBar -- creates a colorbar to be displayed
-Format - creates a string from a number (used to create file names)
- Glyph - produces an identical glyph for every point in the data
- Legend - produces a legend to be displayed
- Plot - creates a 2D plot
-Ribbon - creates a flow field ribbon
- Text - displays text in 3D space
- Tube - creates a flowfield tube
```


Debugging OpenDX Modules

- Describe - describes an object
- Print - prints information about a field to the Message Window

Import \& Export OpenDX Modules

[^0]
Interactor OpenDX Modules

```
- FileSelector - presents a dialog box to let you select a file
- Integer - allows the user to input an integer number
- Scalar - allows the user to input a floating point number
- Selector - allows the user to select one of a number of options
- String - allows the user to input a string
- Toggle - allows the user to select one of two options
- Vector - allows the user to input a vector
```


Realization OpenDX Modules

```
- AutoGrid - maps a set of scattered points onto a grid
- Band - divides a field into bands
- Connect - creates triangle connections for scattered data points in a field
- IsoSurface - creates surfaces or lines of constant data value
- MapToPlane - projects a data field onto an arbitrary plane
- RubberSheet - deforms a surface field by the amount of the data value at each point
- ShowBox - creates a bounding box for display
- ShowConnections - displays the outline of connectivity elements in a field
- ShowPositions - displays the positions in a field
- Streakline - computes an advection path through a changing flow field
- Streamline - computes a path through a non-changing flow field
```


Rendering OpenDX Modules

```
- AmbientLight - specifies the ambient light
- Arrange - creates a single side-by-side image from a collection of images
-AutoCamera - selects a good camera view of the data
-Camera - specifies a camera view
-Display - a more elaborate image-rendering system than Image
-Image - renders and displays field data
-Light - specifies a distant (parallel) light source
-Normals - compute point or face normals for shading a surface
- Render - renders a field and creates an image
- Rotate - rotates field data
- Scale - scales field data
- Shade - specifies object-shading parameters
- Transform - performs a general matrix transform of an object
- Translate - translates field data
```

(4) Oregon State
University

Special OpenDX Modules

Colormap - presents an interactive tool for specifiying color vs. data value Receiver - receives the output of a Transmitter
Sequencer - creates an animation "VCR" display
Transmitter - "wirelessly" connects a network to a receiver

Structuring OpenDX Modules

```
- Collect - collects objects into a group
- Inquire - returns information about a field
- Mark - marks a new field component as "data" (e.g., for Compute)
-Remove - removes a specified component from a field
- Rename - renames a specified component in a field
- Unmark - undoes the effects of Mark
```


Transformation OpenDX Modules

> - AutoColor - automatically color a data field (blue \rightarrow green \rightarrow red)
> - Color - assign a color by name of by RGB values
> - Compute - perform point-by-point arithmetic on a field's "data" component
> - DivCurl - computes the divergence and curl of a flow field
> - Equalize - apply histogram equalization to a field
> - Gradient - computes the gradient of a scalar field
> - Histogram - creates a histogram that can be rendered with Plot
> - Map - projects one field's data onto another field's geometry
> - Measure - calculates surface area and volume of a geometry (e.g., isosurface)
> - SimplifySurface - reduces the size of the triangular mesh
> - Statistics - computes the mean, standard deviation, variance, minimum, and maximum of a field's data

Adding and Connecting Modules

Adding a Module into the Visual Editing Area

Oregon State
University

Connecting Modules in the Visual Editing Area

Some Modules Can Have Variable Numbers of Tabs

Terrain Visualization

The Image Window

Image Window Options

The Mode option lets you set what scene transformation the mouse will perform.

Debugging

Scalar Visualization

Vector Visualization

Animation

The output expression, in this case, a 3-vector with a newly-created \mathbf{Z} value

The Sequencer Module: "Percent Units Strategy"

The Sequencer Module: Setting a Scalar Isovalue

Oregon State
University

mjb - November 27, 2006

Converting a MIFF Animation File into an Animated GIF File using the ImageMagick Package

		${ }^{2}$ wnाzw		$\pm \mathrm{Mc}$	
		筒 Accessories		(iin Accessibility	
		Tin Metrowerks Codewarrior		Ti.j Communications	
(2)	a]	(i.1. Microsoft Visual Studio .NET 2003		(7i) Entertainment	
2ila Firefox	Shortcut to	-ivio Mozilla Thunderbird		Address Book	
		(in) Rational Software		固 Calculator	
	Shortcut to Proposals	Ti. Roxio Easy CD Creator 5		civ Command Prompt	
		-iin SSH Secure Shell		[Notepad	
		Tim Startup		6V) Paint	
		(i.l. WRQReflection		(0) Program Compatibility Wiza	
		C Internet Explorer		(3) Synchronize	
		(i) Outlook Express		(3) Tour Windows XP	
		D. Remote Assistance		Q Windows Explorer	
$\underset{0}{6}$		(C) Windows Media Player		WordPad	
Acrobat		3 Windows Messenger		(iin Games	
		(i) Microsoft Office		(2i.7. Symantec Client Security	
		(i. USAPhotoMaps		(-) Realone Player	
		\square PhotoMapper 3.52 Homeland Security Edition		(8) Windows Movie Maker	
		(i.i. Google Earth		(ien System Tools	,
		(4) Microsoft Baseline Security Analyzer 1.2.1		7-1. Alice	
5		(1. ActiveState ActivePerl 5.8		mixar	

Click on: Start \rightarrow All Programs \rightarrow Accessories \rightarrow Command Prompt

Converting a MIFF Animation File into an Animated GIF File using the ImageMagick Package

Type: convert anim.miff anim.gif
(where anim is the name of your MIFF animation file written from the Image module)

http://www.imagemagick.org

Animated GIF Files work in Windows Explorer

Animated GIF Files work in PowerPoint

Interactors

Ganging Interactors

You can place all Interactors in a single window by using the middle mouse button to drag them over. This copies them, not moves them. Then select the original Interactor in its original window and Edit-Delete it.

Transmitters and Receivers

It's Easy to Get Cluttered, Especially Around Import and ColorMap!

It's Also Easy to Get Un-cluttered with Transmitter and Receiver

Notice how this lets you create separate "regions" for different functions. Wouldn't it be nice if you could put each region on its own page?

Switching, Selecting, and Toggling

Selecting from Multiple Objects: Selector and Switch

The Switch module sends nothing through when its first input is 0 . It sends the second input through when the first input is 1. It sends the third input through when the first input is 2 , etc.

Toggling Objects On and Off : Toggle and Switch

Captions

Color Names you can use in the Color Module

aquamarine	darkturquoise	lightgrey	midnightblue	springgreen
black	dimgray	lightsteelblue	navy	steelblue
blue	dimgrey	limegreen	navyblue	tan
blueviolet	firebrick	magenta	orange	thistle
brown	forestgreen	maroon	orangered	turquoise
cadetblue	gold	mediumaquamarine	orchid	violet
coral	goldenrod	mediumblue	palegreen	violetred
cornflowerblue	gray	mediumforestgreen	pink	wheat
cyan	green	mediumgoldenrod	plum	white
darkgreen	greenyellow	mediumorchid	red	yellow
darkoliveggreen	grey	mediumseagreen	salmon	yellowgreen
darkorchid	indianred	mediumslateblue	seagreen	
darkslateblue	khaki	mediumspringgreen	sienna	
darkslategray	lightblue	mediumturquoise	skyblue	
darkslategrey	lightgray	mediumvioletred	slateblue	

Importing Your Own Data

Creating an OpenDX Data Descriptor File using the Data Prompter

This saves the .general file, which will eventually tell OpenDX where to find the data and how to handle it.

The OpenDX .general File for a 3D Scalar Dataset

```
file = Z:\CS419h\pts.dat
grid = 32 x 32 x 32 \longleftarrow 3D
format = ascii
interleaving = field
majority = row
field = field0
structure = scalar \longleftarrow Scalar
type = float
dependency = positions
positions = regular, regular, regular, 0, 1, 0, 1, 0, 1
end
end
Regular positions
```


Terrain Visualization .general File

```
file = Z:\OpenDX\or.dat
grid = 201 x 105\longleftrightarrow 2D
format = ascii
interleaving = record
majority = column
field = field0
structure = scalar \longleftarrow Scalar
type = float
dependency = positions
positions = regular, regular, 0, 1, 0, -1
end
Regular positions
```


Vector Field Visualization .general File

```
file = Z:\OpenDX\vecs.dat
grid = 16 x 16 x 16 \longleftarrow 3D
format = ascii
interleaving = record-vector
majority = column
field = velocity
structure = 3-vector «- 3-element Vector
type = float
dependency = positions
positions = regular, regular, regular, 0, 1, 0, 1, 0, 1
end
Regular positions
```

Visualizing Points on a Scattered Grid (e.g., Digital Elevation Mapping)
West \rightarrow East

-360.78	128.438	2.25
-360.75	128.428	2.31
-360.80	128.405	2.20
-360.81	128.370	1.99
-360.91	128.369	1.75
-361.00	128.359	1.65
-361.16	128.354	1.77
-361.21	128.344	1.70
-361.25	128.344	1.76
..		

A Scattered Grid .general File

Regridding a Dataset

(especially good for writing out a Connect'ed Scattered Grid as a Rectangular Array)

> You might be doing this to downsize a dataset or to create a regular grid from a scattered grid

Writing a .general Dataset as a Native OpenDX .dx Dataset

Send comments and suggestions on these notes to:

Mike Bailey
Professor, Computer Science Oregon State University
2117 Kelley Engineering Center
Corvallis, OR 97331-5501
541-737-2542
FAX: 541-737-1300
mjb@cs.oregonstate.edu
http://eecs.oregonstate.edu/~mjb

[^0]: - Export - writes data from OpenDX into a file
 - Import - reads data into OpenDX from a file
 - ImportSpreadsheet - reads data into OpenDX from a tabular file
 - Include - includes or excludes points in a field based on their data values
 - Readlmage - reads an image into OpenDX from a file
 - Reduce - filters and resamples a field into a lower resolution
 - Refine - interpolates a field into a higher resolution
 - Slab - takes a positional subset of the data
 - Slice - takes a positional slice through the data
 - Writelmage - writes an image from OpenDX into a file

