Statistical Natural Language
Processing

Prasad Tadepalli
CS430 lecture

Natural Language Processing

Some subproblems are partially solved
— Spelling correction, grammar checking
— Information retrieval with keywords

— Semi-automatic translation in narrow
domains, e.g., travel planning

— Information extraction in narrow domains
— Speech recognition

Challenges

Common-sense reasoning

Language understanding at a deep level
Semantics-based information retrieval
Knowledge representation and inference
A model of learning semantics or meaning
Robust learning of grammars

Language Models

* Unigram models
For every word w, learn the prior P(w)
« Bigram models
For every word pair, (W, W,) learn the
probability of W, following W, : P(W, | W;)
» Trigram models: P(W,| W, W)
probability of W, following W, and W, . Of

None of these sufficiently capture grammar!

Context-free Grammars

Variables

— Noun Phrase, Verb Phrase, Noun, Verb etc.
Terminals (words)

— Book, a, smells, wumpus, the, etc.
Production Rules

— [Sentence] -> [Noun Phrase] [Verb Phrase]
— [Noun Phrase] -> [Article] [Noun]

— [Verb Phrase] -> [Verb] [Noun Phrase]

Start Symbol: [Sentence]

Parse Tree

[Sentence]

[Noun Ié’hrase] {Verb Fl’hrase}
- —

[Article N No;un M Velrb }
[The] [Wumpus} [Smells }

Natural language is ambiguous —
needs a “softer” grammar.

Probabilistic CFGs

« Context-free grammars with probabilities
attached to each production

» The probabilities of different productions
with the same left hand side sum to 1

« Semantics: the conditional probability of a
variable generating the right hand side

[Noun Phrase] -> [Noun] (0.1) |
[Article] [Noun] (0.8)|
[Article] [Adjective] [Noun] (0.1)

Learning PCFGs

* From Sentences and their parse trees:

Counting: Count the number of times
each variable occurs in the parse trees
and generates each possible r.h.s.

#of times A-> rhs occurs
Probability= -
#of times A occurs

Inside-Outside Algorithm

« Applicable when parse trees are not given
* An instance of the EM Algorithm: treat the
parse trees as “hidden variables” of EM
— Start with an intial random PCFG

—Repeat until convergence

 E-step: Estimate the probability that
each subsequence is generated by
each rule

» M-step: Estimate the probability of
each rule

Information Retrieval

« Given a query, how to retrieve documents
that answers the query?

« So far semantics-based methods are not
as successful as word-based methods

« The documents and the query are treated
as bags of words, disregarding the syntax.

« Stemming (removing suffixes like “ing”)
and “stop words” (eg, “the”) removal are
found useful.

Vector Space Model

TF-IDF computed for each word-doc pair
There are many versions of this measure

TF is the term frequency: the number of
times a term (word) occurs in the doc

IDF is “inverse document frequency” of the
word = log(|D|/DF(w)), where DF(w) is the
number of documents in which w occurs
and D is the set of all documents.

Common words like “all” “the” etc. have
high document frequency and low IDF

Rocchio Method

Each document is described as a vector in
an n-dimensional space, where

each dimension represents a term
Doc1 = [t(1,1),t(1,2),...,t(1,n)]
Doc2 = [t(2,1),t(2,2),...,t(2,n)]
t[l,j] is the tf-idf of document j and term j.

Two vectors are similar if their cosine
distance (normalized dot product) is small.

Cosine Distance

Doc1 = [t(1,1),t(1,2),...,t(1,n)]
Doc2 = [t(2,1),t(2,2),...,t(2,n)]
CosineDistance(Doc1,Doc2) =
(L) (2D +... +2t(Ln)*H(2n)
VD 4 (L Q. +2)
The documents are ranked by their cosine

distance to the query, treated as another
document

Nalive Bayes

Naive Bayes is very effective for document
retrieval

Naive Bayes assumes that the features X
are independent, given the class Y

Medical diagnosis: Class Y = disease
Features X = symptoms

Information retrieval: Class Y = document
Features X = words

Naive Bayes for Retrieval

* Build a unigram model for each document:
Estimate P(W, |D,) for each document D,
and W, (easily done by counting).

« Each document D; has a prior probability

P(D)) of being relevant regardless of any
query, e.g., today’s newspaper has much
higher prior than, say, yesterday’s paper.

Naive Bayes for Retrieval

» The posterior probability of a document’s
relevance given the query is P(D|W,...W,)

=a P, P(W,..W,_|D, [Bayes Rule]
=a P(D) P(W;| D) ... P(W,| D))
[conditional independence of features]

where a is a normalizing factor and the
same for all documents (so ignored)

» To avoid zero probabilities, a pseudo-
count of 1 is added for each W, -D; pair

(Laplace correction)

Evaluating IR Systems

Relevant Not relevant
Retrieved 15 10
Not retrieved 20 95

Accuracy = (15+55)/100 = 70%. It is misleading!
Accuracy if no docs are retrieved = 65%.

Recall = number of retrieved docs as a
percentage of relevant documents =15/35 = 43%

Precision = number of relevant docs as a
percentage of retrieved documents =15/25 = 60%

Precision Recall Curves

We want high precision and high recall.

Usually there is a controllable parameter
that can tradeoff one against the other
100

Precision
50

0 50 100
Recall

