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Robotics
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RoboCup Challenges

• Simulation League
• Small League
• Medium-sized League (less interest)
• SONY Legged League
• Humanoid League
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Small League

• Overhead camera
• Central controlling computer for each team
• Fast and agile

– Winning teams have had the best hardware
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Small League: 
CMU vs. Cornell @ American Open (2003)
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Medium-Sized League

• Largest fully-autonomous robots
• Has been plagued by hardware challenges
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Humanoid League

• Still demonstrating technology and skills 
(kicking, vision, localization)
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SONY Legged League
CMU vs. New South Wales (1999)
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CMU vs. New South Wales (2002)
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Special Purpose Vision

Bright Light Dim Light
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What the Dog Sees
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Making Sense of Sensing
• P(Imaget | CameraPoset, Worldt)
• P(CameraPoset | BodyPoset)
• P(BodyPoset | BodyPoset-1, Actiont)
• P(Worldt | Worldt-1)

• argmaxWt P(Wt | It,At,)=
argmaxWt ∑Wt-1,Ct,Ct-1,Bt,Bt-1P(It|Wt,Ct) ·
P(Wt|Wt-1) · P(Ct | Bt) · P(Bt | Bt-1,At) =

• argmaxWt ∑CtP(It|Wt,Ct) · ∑Wt-1 P(Wt|Wt-
1) · ∑Bt P(Ct | Bt) · ∑Bt-1P(Bt | Bt-1,At)

Wt-1 Wt

It

Ct

Bt-1 Bt

At
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The World

• Locations (and orientations and velocities) 
of
– self
– ball
– other players on same team
– players on other team
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Actions

• Actions can be described at many levels of 
detail
– low level actions: moving body joints
– intermediate level actions: walking gaits, 

shooting and passing motions, localization 
motions, celebration dances
• learned or programmed prior to the game

– higher-level actions: “shoot on goal”, “pass to 
X”, “keep away from Y”
• decisions are made at this level during the game
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Choosing Actions to 
Maximize Utility

• Markov Decision Process
– Set of states X
– Set of actions A
– State transition function:  P(Xt | Xt-1,At)
– Reward function:  R(Xt-1,At,Xt)
– Discount factor γ
– Policy:  π: X a A

• maps from states to actions

• Value of a policy:
– E[R1 + γ R2 + γ2 R3 + L]
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The Reward Function

• Overall Reward function R(X)
– reward received when entering state X
– example: scoring goal  R = +1
– example: opponent scores: R = -1
– reward is zero most of the time.  We say that 

reward is “delayed”
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The Value Function

• Vπ(X) is the expected discounted reward of 
being in state X and executing policy π.

• Vπ(X) = ∑X’ P(X’|X,π(X)) ·
[R(X,π(X),X’) + γVπ(X’)]

X

a1

a2

X1

X2

X30.7

0.3

0.6

0.4

π

1.5

-2.0

4.0

Vπ(X) = 0.3 · γ (-2) + 0.7 · γ (1.5)

= 0.405

(γ = 0.9)
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Computing the Optimal Policy by 
Computing its Value Function

• Let V*(X) denote the expected discounted 
reward of following the optimal policy, π*, 
starting in state X.
V*(X) = maxa ∑X’ P(X’|X,a) [R(X,a,X’) + γ V*(X’)]

Value Iteration:
Initialize V(X) = 0 in all states X
repeat until V converges:

for each state X, compute
V*(X) := maxa ∑S’ P(X’|X,a) [R(X,a,X’) + γ V*(X’)]
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Computing the Optimal Policy 
from V*

π*(X) := argmaxa ∑X’ P(X’|X,a) [R(X,a,X’) + γ V*(X’)]

Perform a one-step lookahead, evaluate the resulting 
states X’ using V*, and choose the best action
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Scale-up Problems

• Value Iteration
– Requires O(|X| |A| B) time, where B is the 

branching factor (number of states resulting 
from an action)

– Not practical for more than 30,000 states
– Not practical for continuous state spaces

• Where do the probability distributions 
come from?
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Reinforcement Learning

• Learn the transition function and the 
reward function by experimenting with the 
environment

• Perform value iteration to compute π*
• Other methods compute V* or π* directly 

without learning P(X’|X,A) or R(X,A,X’)
– Q learning
– SARSA(λ)
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Scaling Methods

• Value Function Approximation
– Compact parameterizations of value functions 

(e.g., as linear, polynomial, or non-linear 
functions)

• Policy Approximation
– Compact representation of the policy
– Gradient descent in “policy space”
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Multiple Agents

• The Markov Decision Process is a model of only 
a single agent, but robocup involves multiple 
cooperative and competitive agents

• There is a separate reward function for each 
agent, but it depends on the actions of all of the 
other agents
– R1(X, a1, …, aN, X’)
– R2(X, a1, …, aN, X’)

…
– RN(X, a1, …, aN, X’)
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Game Theory
• Each agent (“player”) has a policy for choosing actions
• The combination of policies results in a value function for 

each player
• Each player seeks to optimize his/her own value function
• Stable solutions: Nash Equilibrium

– Each player’s current policy is a local optimum if all of the other 
players’ policies are kept fixed

– Each player has no incentive to change
• Computing Nash Equilibria in general is a research 

problem, although there are special cases where 
solutions are known.
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Stochastic Policies

• In games, the optimal policy may be 
stochastic (i.e., actions are chosen 
according to a probability distribution)
– π(X,A) = probability of choosing action A in 

state X
• Example: Rock, Paper, Scissors

– Nash equilibrium: choose randomly among 
the three actions
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How to choose actions when you 
don’t know your opponent’s policy

• Consider one or more policies that your 
opponent is likely to play

• Design a policy that works well against all 
of them
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The Segway League?
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Non-Mobile Robot Motion Planning

• Industrial robot arms
– Degrees of Freedom (one for each 

independent direction in which a robot or one 
of its effectors can move)

R

RR
P

R R

How many 
(internal) 
degrees of 
freedom does 
this arm have?
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Kinematics and Dynamics

• Kinematic State
– joint angle of each joint

• Dynamic State
– Kinematic State + velocities and accelerations 

of each joint
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Holonomic vs. Non-Holonomic

• Automobile (on a plane)
– 3 degrees of freedom (x,y,θ)
– only 2 controllable degrees of freedom

• wheels and steering

• Holonomic: number of degrees of freedom = 
number of controllable degrees of freedom
– easier to control, often more expensive

• Non-Holonomic: degrees of freedom > 
controllable degrees of freedom
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Path Planning 

• Want to move robot arm from one location 
(conf-1) to another (conf-2)
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Two Different Coordinate Systems

• Locations can be specified in two different 
coordinate systems
– Workspace Coordinates

• position of end-effector (x,y,z) and possibly its 
orientation (roll,pitch,yaw)

– Joint Coordinates
• angle of each joint
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Configuration Space
(C-Space)
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Forward and Inverse Kinematics

• Forward Kinematics
– Given joint angles compute workspace coordinates

• easy

• Inverse Kinematics
– Given workspace coordinates compute joint angles

• hard:  may exist multiple solutions (often infinitely many)

• Path planning involves
– finding a path

• easy to do in joint angle space
– avoiding obstacles

• easy to do in workspace
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Computing Obstacle 
Representations in C-Space

• Must convert each obstacle from a region 
of workspace to a region in configuration 
space

• Often done by sampling
– generate grid of points in C-space
– test if corresponding point is occupied by 

obstacle
• Interesting computational geometry 

challenge
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Path Planning in 
Configuration Space

• Cell Decomposition Methods
• Potential Field Methods
• Voronoi Graph Methods
• Probabilistic Roadmap Methods

• key problem: C-Space is continuous!
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Cell Decomposition

• Define a grid of cells for free space
– A path consists of a sequence of cells
– Legal moves: go from center of one cell to center of 8 

neighboring cells:

• Converts path planning to discrete search 
problem (use A* or Value Iteration)
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Cell Decomposition

cell color 
indicates optimal 
value function 
(distance to goal 
along optimal 
policy)
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Problems with Cell Decomposition

• How do we handle cells that overlap obstacles?
– ignore: algorithm is incomplete (possible plan will not 

be found)
– include: algorithm is unsound (plan may not work)

• Number of cells grows exponentially with 
number of joints (dimensionality of C-Space)

• Paths may touch (or pass too close to) obstacles
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Solutions to Cell Problems

• Cells too big/too small
– Use variable resolution cell size.  Degree cell 

size near obstacles
• Cell scaling

– Voronoi and Roadmap methods
• Touching obstacles

– Potential Field Methods
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Potential Field Method

• Define a “cost” for 
getting close to 
obstacles (“the 
potential”)

• Find optimal path that 
minimizes the 
combined path length 
+ cost
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Potential Field Result
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Voronoi Methods
(“skeletonization”)

• Define set of points 
equidistant from two or 
more obstacles

• This has lower 
dimensionality (often 1-
D).  Finitely-many 
intersections.

• Path: from start to 
Voronoi skeleton, along 
skeleton, from skeleton 
to end
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Problems with Voronoi Method

• Resulting paths maximize “clearance” from 
obstacles

• Does not work well in large open spaces
– Path goes through middle of space

• Computing the diagram can be difficult in 
C-Space.
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Probabilistic Roadmap

• Draw a sample of points in C-Space.  
• Keep those points that are in free space.
• Compute Delauney Triangulation of the 

sample points
• This gives a graph of points in free space
• Search in this graph
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Probabilistic Roadmap
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Scaling Problems

• All of these methods do not scale to very 
high dimensional spaces
– Probabilistic roadmap and Voronoi method 

scale best
– Probabilistic roadmap is cheapest to compute

• Sampling can be dynamically refined based on 
initial paths
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Executing Robot Plans

• Path only specifies the kinematic state of the 
robot arm

• Actually moving the arm must deal with 
dynamics: acceleration, mass, friction, etc.

• Control theory has well-developed methods for 
smoothly following a trajectory
– e.g., PID controllers (proportional integral derivative 

controllers)
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Robotics Summary

• Robots live in partially-observable, stochastic 
environments that may contain other 
cooperative and competitive agents

• Robot Tasks
– localization
– mapping
– action selection
– planning (single agent; multiple cooperative agents; 

multiple competitive agents; teams)
– action execution
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Robot Planning

• For single-agent stochastic environments
– MDP model

• Value Iteration
• Reinforcement Learning

• For multiple-agent stochastic environments
– Game theory model

• Still a research topic

• For single-agent deterministic (non-mobile) 
environment
– Configuration space planning


