
1

(c) 2003 Thomas G. Dietterich 1

Robotics

(c) 2003 Thomas G. Dietterich 2

RoboCup Challenges

• Simulation League
• Small League
• Medium-sized League (less interest)
• SONY Legged League
• Humanoid League

2

(c) 2003 Thomas G. Dietterich 3

Small League

• Overhead camera
• Central controlling computer for each team
• Fast and agile

– Winning teams have had the best hardware

(c) 2003 Thomas G. Dietterich 4

Small League:
CMU vs. Cornell @ American Open (2003)

3

(c) 2003 Thomas G. Dietterich 5

Medium-Sized League

• Largest fully-autonomous robots
• Has been plagued by hardware challenges

(c) 2003 Thomas G. Dietterich 6

Humanoid League

• Still demonstrating technology and skills
(kicking, vision, localization)

4

(c) 2003 Thomas G. Dietterich 7

SONY Legged League
CMU vs. New South Wales (1999)

(c) 2003 Thomas G. Dietterich 8

CMU vs. New South Wales (2002)

5

(c) 2003 Thomas G. Dietterich 9

Special Purpose Vision

Bright Light Dim Light

(c) 2003 Thomas G. Dietterich 10

What the Dog Sees

6

(c) 2003 Thomas G. Dietterich 11

Making Sense of Sensing
• P(Imaget | CameraPoset, Worldt)
• P(CameraPoset | BodyPoset)
• P(BodyPoset | BodyPoset-1, Actiont)
• P(Worldt | Worldt-1)

• argmaxWt P(Wt | It,At,)=
argmaxWt ∑Wt-1,Ct,Ct-1,Bt,Bt-1P(It|Wt,Ct) ·
P(Wt|Wt-1) · P(Ct | Bt) · P(Bt | Bt-1,At) =

• argmaxWt ∑CtP(It|Wt,Ct) · ∑Wt-1 P(Wt|Wt-
1) · ∑Bt P(Ct | Bt) · ∑Bt-1P(Bt | Bt-1,At)

Wt-1 Wt

It

Ct

Bt-1 Bt

At

(c) 2003 Thomas G. Dietterich 12

The World

• Locations (and orientations and velocities)
of
– self
– ball
– other players on same team
– players on other team

7

(c) 2003 Thomas G. Dietterich 13

Actions

• Actions can be described at many levels of
detail
– low level actions: moving body joints
– intermediate level actions: walking gaits,

shooting and passing motions, localization
motions, celebration dances
• learned or programmed prior to the game

– higher-level actions: “shoot on goal”, “pass to
X”, “keep away from Y”
• decisions are made at this level during the game

(c) 2003 Thomas G. Dietterich 14

Choosing Actions to
Maximize Utility

• Markov Decision Process
– Set of states X
– Set of actions A
– State transition function: P(Xt | Xt-1,At)
– Reward function: R(Xt-1,At,Xt)
– Discount factor γ
– Policy: π: X a A

• maps from states to actions

• Value of a policy:
– E[R1 + γ R2 + γ2 R3 + L]

8

(c) 2003 Thomas G. Dietterich 15

The Reward Function

• Overall Reward function R(X)
– reward received when entering state X
– example: scoring goal R = +1
– example: opponent scores: R = -1
– reward is zero most of the time. We say that

reward is “delayed”

(c) 2003 Thomas G. Dietterich 16

The Value Function

• Vπ(X) is the expected discounted reward of
being in state X and executing policy π.

• Vπ(X) = ∑X’ P(X’|X,π(X)) ·
[R(X,π(X),X’) + γVπ(X’)]

X

a1

a2

X1

X2

X30.7

0.3

0.6

0.4

π

1.5

-2.0

4.0

Vπ(X) = 0.3 · γ (-2) + 0.7 · γ (1.5)

= 0.405

(γ = 0.9)

9

(c) 2003 Thomas G. Dietterich 17

Computing the Optimal Policy by
Computing its Value Function

• Let V*(X) denote the expected discounted
reward of following the optimal policy, π*,
starting in state X.
V*(X) = maxa ∑X’ P(X’|X,a) [R(X,a,X’) + γ V*(X’)]

Value Iteration:
Initialize V(X) = 0 in all states X
repeat until V converges:

for each state X, compute
V*(X) := maxa ∑S’ P(X’|X,a) [R(X,a,X’) + γ V*(X’)]

(c) 2003 Thomas G. Dietterich 18

Computing the Optimal Policy
from V*

π*(X) := argmaxa ∑X’ P(X’|X,a) [R(X,a,X’) + γ V*(X’)]

Perform a one-step lookahead, evaluate the resulting
states X’ using V*, and choose the best action

10

(c) 2003 Thomas G. Dietterich 19

Scale-up Problems

• Value Iteration
– Requires O(|X| |A| B) time, where B is the

branching factor (number of states resulting
from an action)

– Not practical for more than 30,000 states
– Not practical for continuous state spaces

• Where do the probability distributions
come from?

(c) 2003 Thomas G. Dietterich 20

Reinforcement Learning

• Learn the transition function and the
reward function by experimenting with the
environment

• Perform value iteration to compute π*
• Other methods compute V* or π* directly

without learning P(X’|X,A) or R(X,A,X’)
– Q learning
– SARSA(λ)

11

(c) 2003 Thomas G. Dietterich 21

Scaling Methods

• Value Function Approximation
– Compact parameterizations of value functions

(e.g., as linear, polynomial, or non-linear
functions)

• Policy Approximation
– Compact representation of the policy
– Gradient descent in “policy space”

(c) 2003 Thomas G. Dietterich 22

Multiple Agents

• The Markov Decision Process is a model of only
a single agent, but robocup involves multiple
cooperative and competitive agents

• There is a separate reward function for each
agent, but it depends on the actions of all of the
other agents
– R1(X, a1, …, aN, X’)
– R2(X, a1, …, aN, X’)

…
– RN(X, a1, …, aN, X’)

12

(c) 2003 Thomas G. Dietterich 23

Game Theory
• Each agent (“player”) has a policy for choosing actions
• The combination of policies results in a value function for

each player
• Each player seeks to optimize his/her own value function
• Stable solutions: Nash Equilibrium

– Each player’s current policy is a local optimum if all of the other
players’ policies are kept fixed

– Each player has no incentive to change
• Computing Nash Equilibria in general is a research

problem, although there are special cases where
solutions are known.

(c) 2003 Thomas G. Dietterich 24

Stochastic Policies

• In games, the optimal policy may be
stochastic (i.e., actions are chosen
according to a probability distribution)
– π(X,A) = probability of choosing action A in

state X
• Example: Rock, Paper, Scissors

– Nash equilibrium: choose randomly among
the three actions

13

(c) 2003 Thomas G. Dietterich 25

How to choose actions when you
don’t know your opponent’s policy

• Consider one or more policies that your
opponent is likely to play

• Design a policy that works well against all
of them

(c) 2003 Thomas G. Dietterich 26

The Segway League?

14

(c) 2003 Thomas G. Dietterich 27

Non-Mobile Robot Motion Planning

• Industrial robot arms
– Degrees of Freedom (one for each

independent direction in which a robot or one
of its effectors can move)

R

RR
P

R R

How many
(internal)
degrees of
freedom does
this arm have?

(c) 2003 Thomas G. Dietterich 28

Kinematics and Dynamics

• Kinematic State
– joint angle of each joint

• Dynamic State
– Kinematic State + velocities and accelerations

of each joint

15

(c) 2003 Thomas G. Dietterich 29

Holonomic vs. Non-Holonomic

• Automobile (on a plane)
– 3 degrees of freedom (x,y,θ)
– only 2 controllable degrees of freedom

• wheels and steering

• Holonomic: number of degrees of freedom =
number of controllable degrees of freedom
– easier to control, often more expensive

• Non-Holonomic: degrees of freedom >
controllable degrees of freedom

(c) 2003 Thomas G. Dietterich 30

Path Planning

• Want to move robot arm from one location
(conf-1) to another (conf-2)

16

(c) 2003 Thomas G. Dietterich 31

Two Different Coordinate Systems

• Locations can be specified in two different
coordinate systems
– Workspace Coordinates

• position of end-effector (x,y,z) and possibly its
orientation (roll,pitch,yaw)

– Joint Coordinates
• angle of each joint

(c) 2003 Thomas G. Dietterich 32

Configuration Space
(C-Space)

17

(c) 2003 Thomas G. Dietterich 33

Forward and Inverse Kinematics

• Forward Kinematics
– Given joint angles compute workspace coordinates

• easy

• Inverse Kinematics
– Given workspace coordinates compute joint angles

• hard: may exist multiple solutions (often infinitely many)

• Path planning involves
– finding a path

• easy to do in joint angle space
– avoiding obstacles

• easy to do in workspace

(c) 2003 Thomas G. Dietterich 34

Computing Obstacle
Representations in C-Space

• Must convert each obstacle from a region
of workspace to a region in configuration
space

• Often done by sampling
– generate grid of points in C-space
– test if corresponding point is occupied by

obstacle
• Interesting computational geometry

challenge

18

(c) 2003 Thomas G. Dietterich 35

Path Planning in
Configuration Space

• Cell Decomposition Methods
• Potential Field Methods
• Voronoi Graph Methods
• Probabilistic Roadmap Methods

• key problem: C-Space is continuous!

(c) 2003 Thomas G. Dietterich 36

Cell Decomposition

• Define a grid of cells for free space
– A path consists of a sequence of cells
– Legal moves: go from center of one cell to center of 8

neighboring cells:

• Converts path planning to discrete search
problem (use A* or Value Iteration)

19

(c) 2003 Thomas G. Dietterich 37

Cell Decomposition

cell color
indicates optimal
value function
(distance to goal
along optimal
policy)

(c) 2003 Thomas G. Dietterich 38

Problems with Cell Decomposition

• How do we handle cells that overlap obstacles?
– ignore: algorithm is incomplete (possible plan will not

be found)
– include: algorithm is unsound (plan may not work)

• Number of cells grows exponentially with
number of joints (dimensionality of C-Space)

• Paths may touch (or pass too close to) obstacles

20

(c) 2003 Thomas G. Dietterich 39

Solutions to Cell Problems

• Cells too big/too small
– Use variable resolution cell size. Degree cell

size near obstacles
• Cell scaling

– Voronoi and Roadmap methods
• Touching obstacles

– Potential Field Methods

(c) 2003 Thomas G. Dietterich 40

Potential Field Method

• Define a “cost” for
getting close to
obstacles (“the
potential”)

• Find optimal path that
minimizes the
combined path length
+ cost

21

(c) 2003 Thomas G. Dietterich 41

Potential Field Result

(c) 2003 Thomas G. Dietterich 42

Voronoi Methods
(“skeletonization”)

• Define set of points
equidistant from two or
more obstacles

• This has lower
dimensionality (often 1-
D). Finitely-many
intersections.

• Path: from start to
Voronoi skeleton, along
skeleton, from skeleton
to end

22

(c) 2003 Thomas G. Dietterich 43

Problems with Voronoi Method

• Resulting paths maximize “clearance” from
obstacles

• Does not work well in large open spaces
– Path goes through middle of space

• Computing the diagram can be difficult in
C-Space.

(c) 2003 Thomas G. Dietterich 44

Probabilistic Roadmap

• Draw a sample of points in C-Space.
• Keep those points that are in free space.
• Compute Delauney Triangulation of the

sample points
• This gives a graph of points in free space
• Search in this graph

23

(c) 2003 Thomas G. Dietterich 45

Probabilistic Roadmap

(c) 2003 Thomas G. Dietterich 46

Scaling Problems

• All of these methods do not scale to very
high dimensional spaces
– Probabilistic roadmap and Voronoi method

scale best
– Probabilistic roadmap is cheapest to compute

• Sampling can be dynamically refined based on
initial paths

24

(c) 2003 Thomas G. Dietterich 47

Executing Robot Plans

• Path only specifies the kinematic state of the
robot arm

• Actually moving the arm must deal with
dynamics: acceleration, mass, friction, etc.

• Control theory has well-developed methods for
smoothly following a trajectory
– e.g., PID controllers (proportional integral derivative

controllers)

(c) 2003 Thomas G. Dietterich 48

Robotics Summary

• Robots live in partially-observable, stochastic
environments that may contain other
cooperative and competitive agents

• Robot Tasks
– localization
– mapping
– action selection
– planning (single agent; multiple cooperative agents;

multiple competitive agents; teams)
– action execution

25

(c) 2003 Thomas G. Dietterich 49

Robot Planning

• For single-agent stochastic environments
– MDP model

• Value Iteration
• Reinforcement Learning

• For multiple-agent stochastic environments
– Game theory model

• Still a research topic

• For single-agent deterministic (non-mobile)
environment
– Configuration space planning

