

Example Problem: Cluster Wafers for HP

- We wish to learn
 <u>P</u>(C,X₁,X₂, ..., X₁₀₅)
- C is a hidden "class" variable

(c) 2003 Thomas G. Dietterich

Hard EM Example								
 Suppose we have 10 chips per wafer and 2 wafer classes. Suppose this is the "true" distribution: 								
		$P(X_i=1 C)$	0	1				
		X ₁	0.34	0.41				
	<u>C P(C)</u>	X ₂	0.19	0.83				
	0 0.58	X ₃	0.20	0.15				
	1 0.42	X ₄	0.69	0.19				
		X ₅	0.57	0.53				
		X ₆	0.71	0.93				
Draw 100 training	X ₇	0.34	0.68					
and 100 test exar		0.43	0.04					
this distribution			0.13	0.65				
	(a) 2002 Thomas C. Distant	X ₁₀	0.14	0.89	G			
	(c) 2003 Thomas G. Dietten	q <u>n * 10</u>		0.00	6			

EM Training and Testing Curve

(c) 2003 Thomas G. Dietterich

The Expectation-Maximization (EM) Algorithm

- · Initialize the probability tables randomly
- Repeat until convergence
 - E-Step: For each wafer, compute P'(C|W)
 - M-Step: Compute maximum likelihood estimates from weighted data (S)

$$P(C) = \frac{\sum_{i} P'(C|W_i)}{|S|}$$
$$P(X = x|C = c) = \frac{\sum_{i} |X_i = x|}{\sum_{i} P'(C = c|W_i)}$$

We treat P'(C|W) as fractional "counts". Each wafer W_i belongs to class C with probability P'(C|W).

(c) 2003 Thomas G. Dietterich

11

EM Training Curve

• Each iteration is guaranteed to increase the likelihood of the data. Hence, EM is guaranteed to converge to a *local* maximum of the likelihood.

(c) 2003 Thomas G. Dietterich

EM with Laplace Corrections

When correction is removed, EM overfits immediately • (c) 2003 Thomas G. Dietterich 15

Comparison of Results							
	Method	Training Set	Test Set				
	true model	-802.85	-816.40				
	hard-EM	-791.69	-826.94				
	soft-EM	-790.97	-827.27				
	soft-EM + Laplace	-794.31	-823.19				
	(c) 2(003 Thomas G. Dietteric	ch	16			

Case 3: Unknown structure AND hidden variables

• Structural EM algorithm (Friedman, 1997)

Repeat

- <u>E-step</u>: Compute "complete data" from current network structure and parameters
- <u>Structural M-Step</u>: Apply structure learning algorithm to find MAP structure from complete data
- <u>Standard M-Step</u>: Find ML estimate of the network parameters
- Until convergence
- Works ok if there are not too many hidden variables

(c) 2003 Thomas G. Dietterich

29

