
1

(c) 2003 Thomas G. Dietterich 1

Statistical Learning:
The Complex Cases

• Case 0: Bayesian Network structure known, all 
variables observed
– Easy: Just count!

• Case 1: Bayesian Network structure known, but 
some variables unobserved

• Case 2: Bayesian Network structure unknown, 
but all variables observed

• Case 3: Structure unknown, some variables 
unobserved
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Case 1: Known structure, 
unobserved variables

• Simplest case: Finite Mixture Model
• Structure: Naïve Bayes network
• Missing variable: The class!
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Example Problem: 
Cluster Wafers for HP

• We wish to learn 
P(C,X1,X2, …, X105)

• C is a hidden “class”
variable

C

X1 X2 X3 X4 X5 X6 X105
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Complete Data and 
Incomplete data

• The given data are incomplete.  If we could 
guess the values of C, we would have complete 
data, and learning would be easy
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“Hard” EM

• Let W = (X1, X2, …, X105) be the observed wafers
• Guess initial values for C (e.g., randomly)
• Repeat until convergence

– Hard M-Step: (Compute maximum likelihood estimates 
from complete data)
• Learn P(C)
• Learn P(Xi|C) for all I

– Hard E-Step: (Re-estimate the C values)
• For each wafer, set C to maximize P(W|C)
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Hard EM Example
• Suppose we have 10 chips per wafer and 2 

wafer classes.  Suppose this is the “true”
distribution:

0.580
0.421

P(C)C

0.14
0.13
0.43
0.34
0.71
0.57
0.69
0.20
0.19
0.34

0

0.04X8

0.68X7

0.19X4

0.15X3

0.83X2

0.41X1

0.93X6

0.53X5

0.65X9

0.89X10

1P(Xi=1|C)

Draw 100 training examples 
and 100 test examples from 
this distribution
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Fit of Model to Fully-Observed 
Training Data

• Hard-EM could achieve this if it could correctly guess 
C for each example
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EM Training and Testing Curve
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Hard EM Fitted Model

• Note that the classes are 
“reversed”:  The learned 
class 0 corresponds to 
the true class 1.  But the 
likelihoods are the same if 
the classes are reversed
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The search can get stuck in local 
minima

• Parameters can go to 
zero or one!

• Should use Laplace 
Estimates
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The Expectation-Maximization 
(EM) Algorithm

• Initialize the probability tables randomly
• Repeat until convergence

– E-Step: For each wafer, compute P’(C|W)
– M-Step: Compute maximum likelihood estimates from weighted 

data (S)

We treat P’(C|W) as fractional “counts”.  Each wafer Wi
belongs to class C with probability P’(C|W).  
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EM Training Curve

• Each iteration is guaranteed to increase the likelihood 
of the data.  Hence, EM is guaranteed to converge to a 
local maximum of the likelihood.
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EM Fitted Model
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Avoiding Overfitting

• Early stopping.  Hold out some of the data, 
monitor log likelihood on this holdout data, 
and stop when it starts to decrease

• Laplace estimates
• Full Bayes
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EM with Laplace Corrections

• When correction is removed, EM overfits immediately
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Comparison of Results

-823.19-794.31soft-EM + 
Laplace

-827.27-790.97soft-EM

-826.94-791.69hard-EM

-816.40-802.85true model

Test SetTraining SetMethod
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Graphical Comparison

• hard-EM and soft-EM overfit
• soft-EM + Laplace gives best test set result
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Unsupervised Learning of an HMM

• Suppose we are given only the Umbrella 
observations as our training data

• How can we learn P(Rt|Rt-1) and P(Ut|Rt)?
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EM for HMMs:
“The Forward-Backward Algorithm”
• Initialize probabilities randomly
• Repeat to convergence

– E-step: Run the forward-backward algorithm 
on each training example to compute 
P’(Rt|U1:N) for each time step t.

– M-step: Re-estimate P(Rt|Rt-1) and P(Ut|Rt) 
treating the P’(Rt|U1:N) as fractional counts

• Also known as the Baum-Welch algorithm
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Hard-EM for HMMs:
Viterbi Training

• EM requires forward and backward passes.  In 
the early iterations, just finding the single best 
path usually works well

• Initialize probabilities randomly
• Repeat to convergence

– E-step: Run the Viterbi algorithm on each training 
example to compute R’t = argmaxRt P(Rt|U1:N) for 
each time step t.

– M-step: Re-estimate P(Rt|Rt-1) and P(Ut|Rt) treating 
the R‘t as if they were correct labels
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Case 2: All variables observed; 
Structure unknown

• Search the space of structures
– For each potential structure

• Apply standard maximum likelihood method to fit 
the parameters

• Problem: How to score the structures?
– The complete graph will always give the best 

likelihood on the training data (because it can 
memorize the data)
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MAP Approach:
M = model; D = data

argmaxM P(M | D) = argmaxM P(D | M) · P(M)

argmaxM log P(M | D) = argminM – log P(D | M) – log P(M) 

–log P(M) = number of bits required to represent M (for 
some chosen representation scheme)

Therefore: 
– Choose a representation scheme
– Measure description length in this scheme
– Use this for – log P(M)
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Representation Scheme
• Representational cost of adding a parent p to a 

child node c that already has k parents
– Must specify link: log2 n(n-1)/2 bits
– c already requires 2k parameters.  Adding another 

(boolean) parent will make this 2k+1 parameters, so 
the increase is 2k+1 – 2k = 2k each of which requires, 
say, 8 bits.  This gives 8 · 2k bits

– Total:  8 · 2k  + log2 n(n-1)/2
• Min: – log P(D | M) + λ [8 · 2k  + log2 n(n-1)/2]

– λ is adjusted (e.g., by internal holdout data) to give 
best results
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Note: There are many other 
possible representation schemes

• Example: Use joint distribution plus the graph 
structure
– Joint distribution always has 2N parameters
– Describe graph by which edges are missing!
– This scheme would assign the smallest description 

length to the complete graph!
• The chosen representation scheme implies a 

prior belief that graphs that can be described 
compactly under the scheme have higher prior 
probability P(M)



13

(c) 2003 Thomas G. Dietterich 25

Search Algorithm
• Search space is all DAGs with N nodes

– Very large!
• Greedy method

– Operators:  Add an edge, Delete an edge, Reverse 
an edge

– At each step,
• Apply each operator to change the structure
• Fit the resulting graph to the data
• Measure total description length
• Take the best move

– Stop when local maximum is reached
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Alternative Search Algorithm

• Operator:
– Delete a node and all of its edges from the 

graph
– Compute the optimal set of edges for the 

node and re-insert it into the graph
• Surprisingly, this can be done efficiently!

• Apply this operator greedily
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Initializing the Search

• Compute the best tree-structured graph 
using Chou-Liu Algorithm
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Chou-Liu Algorithm
• for all pairs (Xi,Xj) of variables do

– compute mutual information: 

• Construct complete graph G such that the edge 
(Xi,Xj) has weight I(Xi;Xj)

• Compute maximum weight spanning tree
• Choose root node arbitrarily and direct edges 

away from it recursively

I(Xi;Xj) =
X
xi,xj

P (xi, xj) log
P(xi, xj)

P(xi)P (xj)
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Case 3: Unknown structure AND 
hidden variables

• Structural EM algorithm (Friedman, 1997)
• Repeat

– E-step: Compute “complete data” from current 
network structure and parameters

– Structural M-Step: Apply structure learning algorithm 
to find MAP structure from complete data

– Standard M-Step: Find ML estimate of the network 
parameters

• Until convergence
• Works ok if there are not too many hidden 

variables

(c) 2003 Thomas G. Dietterich 30

Statistical Learning Summary
• Case 0: Bayesian Network structure known, all variables 

observed
– Easy: Just count!

• Case 1: Bayesian Network structure known, but some 
variables unobserved
– EM Algorithm

• Case 2: Bayesian Network structure unknown, but all 
variables observed
– Greedy structure search with MDL to penalize complex networks

• Case 3: Structure unknown, some variables unobserved
– Structural EM: Combine greedy structure search with EM


