
CS534 — Homework Assignment 1 — Due Monday April 4, 2004

1. (Probability Decision Boundary). Consider a case where we have learned a conditional prob-
ability distribution P (y|x). Suppose there are only two classes, and let p0 = P (y = 0|x) and
p1 = P (y = 1|x). Consider the following loss matrix:

predicted true label y
label ŷ 0 1

0 0 10
1 5 0

Show that the decision ŷ that minimizes the expected loss is equivalent to setting a probability
threshold θ and predicting ŷ = 0 if p1 < θ and ŷ = 1 if p1 ≥ θ. What is this threshold for
this loss matrix? Show a loss matrix where the threshold is 0.1.

2. (Reject Option). In many applications, the classifier is allowed to “reject” a test example
rather than classifying it into one of the classes. Consider, for example, a case in which the
cost of a misclassification is $10 but the cost of having a human manually make the decision
is only $3. We can formulate this as the following loss matrix:

decision true label y
0 1

predict 0 0 10
predict 1 10 0

reject 3 3

Suppose P (y = 1|x) is predicted to be 0.2. Which decision minimizes the expected loss? Now
suppose P (y = 1|x) = 0.4. Now which decision minimizes the expected loss? Show that in
cases such as this there will be two thresholds θ0 and θ1 such that the optimal decision is to
predict 0 if p1 < θ0, reject if θ0 ≤ p1 ≤ θ1, and predict 1 if p1 > θ1.

What are the values of these thresholds for the following loss matrix?

decision true label y
0 1

predict 0 0 10
predict 1 5 0

reject 3 3

3. (Weighted hinge loss). In our derivation of the Perceptron algorithm, we used the hinge loss
to approximate the 0/1 loss. Suppose that we have a general loss matrix with the cost of a
false positive being L(1,−1) = c0 and the cost of a false negative L(−1, 1) = c1. Suppose we
used

J̃(w) =
1
N

N∑
i=1

zi max(0,−yiw · xi)

for our approximate objective function, where zi = c0 if y = −1 and zi = c1 if y = 1. Compute
the gradient using this approximation, and show how the batch Perceptron algorithm is
modified to incorporate this change.
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4. (Dual Perceptron Algorithm). Consider the following learning algorithm known as the dual
perceptron algorithm:

Let αi = 0 for i = 1, ..., N
Repeat forever

Accept training example 〈xi, yi〉
if

∑
` α`x` · xiyiy` < 0

αi = αi + 1

In other words, αi is a counter of the number of times training example xi has been misclas-
sified.

Prove that this algorithm is equivalent to the online perceptron algorithm with learning rate
1 and weight vector w =

∑
` α`x`y`.

5. In our definition of logistic regression, we defined

p1(x;w) =
expw · x

1 + expw · x
.

p0(x;w) = 1 − p1(x;w).

Show that this is equivalent to

log
p1(x;w)
p0(x;w)

= w · x.

Show also that
p1(xi;w) =

1
(1 + exp[−w · xi])

.

This is known as the logistic function.
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