(CS534 — Homework Assignment 1 — Due Monday April 4, 2004

1. (Probability Decision Boundary). Consider a case where we have learned a conditional prob-
ability distribution P(y|x). Suppose there are only two classes, and let pg = P(y = 0|x) and
p1 = P(y = 1|x). Consider the following loss matrix:

predicted | true label y
label g 0 1
0 10
1 5 0

Show that the decision ¢ that minimizes the expected loss is equivalent to setting a probability
threshold 6 and predicting § = 0 if p1 < § and g = 1 if p; > 0. What is this threshold for
this loss matrix? Show a loss matrix where the threshold is 0.1.

2. (Reject Option). In many applications, the classifier is allowed to “reject” a test example
rather than classifying it into one of the classes. Consider, for example, a case in which the
cost of a misclassification is $10 but the cost of having a human manually make the decision
is only $3. We can formulate this as the following loss matrix:

decision | true label y
0 1
predict 0 0 10
predict 1 10 0
reject 3 3

Suppose P(y = 1|x) is predicted to be 0.2. Which decision minimizes the expected loss? Now
suppose P(y = 1|x) = 0.4. Now which decision minimizes the expected loss? Show that in
cases such as this there will be two thresholds 8y and 6; such that the optimal decision is to
predict 0 if p; < 69, reject if 6y < p; < 01, and predict 1 if p; > 6.

What are the values of these thresholds for the following loss matrix?

decision | true label y
0 1

predict 0 0 10
predict 1 ) 0
reject 3 3

3. (Weighted hinge loss). In our derivation of the Perceptron algorithm, we used the hinge loss
to approximate the 0/1 loss. Suppose that we have a general loss matrix with the cost of a
false positive being L(1,—1) = ¢ and the cost of a false negative L(—1,1) = ¢;. Suppose we

used
N

= 1
J(w)=— Z zimax (0, —y;w - X;)
N =
for our approximate objective function, where z; = ¢g if y = —1 and z; = ¢q if y = 1. Compute

the gradient using this approximation, and show how the batch Perceptron algorithm is
modified to incorporate this change.



4. (Dual Perceptron Algorithm). Consider the following learning algorithm known as the dual
perceptron algorithm:

Let a;=0fori=1,....N
Repeat forever
Accept training example (x;,y;)
if > apxg - xyiy0 < 0
a; =a; +1

In other words, «; is a counter of the number of times training example x; has been misclas-

sified.

Prove that this algorithm is equivalent to the online perceptron algorithm with learning rate
1 and weight vector w = >, ayxyy.

5. In our definition of logistic regression, we defined

eXpWw - X

p1(x;w) = TTopw x

po(x;w) =1 —p(x;w).

Show that this is equivalent to

log pi(x; w) =W-X
pO(X7 )
Show also that )
p1(xi;w) = e —

This is known as the logistic function.



