
11

CS534: Machine LearningCS534: Machine Learning

Thomas G. DietterichThomas G. Dietterich
221C Dearborn Hall221C Dearborn Hall

tgd@cs.orst.edutgd@cs.orst.edu
http://www.cs.orst.edu/~tgd/classes/534http://www.cs.orst.edu/~tgd/classes/534



22

Course OverviewCourse Overview
Introduction: Introduction: 

–– Basic problems and questions in machine learning.  Example appliBasic problems and questions in machine learning.  Example applicationscations
Linear ClassifiersLinear Classifiers
Five Popular AlgorithmsFive Popular Algorithms

–– Decision trees (C4.5)Decision trees (C4.5)
–– Neural networks (backpropagation)Neural networks (backpropagation)
–– Probabilistic networks (NaProbabilistic networks (Naïïve Bayes; Mixture models)ve Bayes; Mixture models)
–– Support Vector Machines (SVMs)Support Vector Machines (SVMs)
–– Nearest Neighbor MethodNearest Neighbor Method

Theories of Learning: Theories of Learning: 
–– PAC, Bayesian, BiasPAC, Bayesian, Bias--Variance analysisVariance analysis

Optimizing Test Set Performance: Optimizing Test Set Performance: 
–– Overfitting, Penalty methods, Holdout Methods, EnsemblesOverfitting, Penalty methods, Holdout Methods, Ensembles

Sequential and Spatial DataSequential and Spatial Data
–– Hidden Markov models, Conditional Random Fields; Hidden Markov SHidden Markov models, Conditional Random Fields; Hidden Markov SVMsVMs

Problem FormulationProblem Formulation
–– Designing Input and Output representationsDesigning Input and Output representations
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Supervised LearningSupervised Learning
–– Given: Training examples Given: Training examples hhxx, , ff((xx))ii for some unknown function for some unknown function ff..
–– Find: A good approximation to Find: A good approximation to ff. . 

Example ApplicationsExample Applications
–– Handwriting recognitionHandwriting recognition

x: data from pen motionx: data from pen motion
f(x): letter of the alphabetf(x): letter of the alphabet

–– Disease DiagnosisDisease Diagnosis
x: properties of patient (symptoms, lab tests)x: properties of patient (symptoms, lab tests)
f(x): disease (or maybe, recommended therapy)f(x): disease (or maybe, recommended therapy)

–– Face RecognitionFace Recognition
x: bitmap picture of personx: bitmap picture of person’’s faces face
f(x): name of personf(x): name of person

–– Spam DetectionSpam Detection
x: email messagex: email message
f(x): spam or not spamf(x): spam or not spam
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Appropriate Applications for Appropriate Applications for 
Supervised LearningSupervised Learning

Situations where there is no human expertSituations where there is no human expert
–– x: bond graph of a new moleculex: bond graph of a new molecule
–– f(x): predicted binding strength to AIDS protease moleculef(x): predicted binding strength to AIDS protease molecule

Situations were humans can perform the task but canSituations were humans can perform the task but can’’t describe how t describe how 
they do itthey do it
–– x: bitmap picture of handx: bitmap picture of hand--written characterwritten character
–– f(x): ascii code of the characterf(x): ascii code of the character

Situations where the desired function is changing frequentlySituations where the desired function is changing frequently
–– x: description of stock prices and trades for last 10 daysx: description of stock prices and trades for last 10 days
–– f(x): recommended stock transactionsf(x): recommended stock transactions

Situations where each user needs a customized function Situations where each user needs a customized function ff
–– x: incoming email messagex: incoming email message
–– f(x): importance score for presenting to the user (or deleting wf(x): importance score for presenting to the user (or deleting without ithout 

presenting)presenting)
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Formal Formal 
SettingSetting

Training examples are drawn Training examples are drawn 
independently at random according to independently at random according to 
unknown probability distribution P(unknown probability distribution P(xx,,yy))
The learning algorithm analyzes the The learning algorithm analyzes the 
examples and produces a classifier examples and produces a classifier ff
Given a new data point Given a new data point hhxx,,yyii drawn from P,  drawn from P,  
the classifier is given the classifier is given xx and predicts and predicts ŷŷ = = ff((xx))
The loss L(The loss L(ŷŷ,y,y) is then measured) is then measured
Goal of the learning algorithm: Find the Goal of the learning algorithm: Find the ff
that minimizes the that minimizes the expected lossexpected loss

P(x,y) hhxx,,yyii

Training 
sample

learning 
algorithm f

test point

x

loss 
function

y

yŷ

training points

L(ŷ,y)
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Formal Version of Spam DetectionFormal Version of Spam Detection

P(P(xx,,yy): distribution of email messages ): distribution of email messages xx and their and their 
true labels true labels yy ((““spamspam”” or or ““not spamnot spam””))
training sample: a set of email messages that have training sample: a set of email messages that have 
been labeled by the userbeen labeled by the user
learning algorithm: what we study in this course!learning algorithm: what we study in this course!
ff: the classifier output by the learning algorithm: the classifier output by the learning algorithm
test point: A new email message test point: A new email message xx (with its true, but (with its true, but 
hidden, label hidden, label yy))
loss function loss function L(L(ŷŷ,y),y)::

0011not spamnot spam

101000spamspam

not not 
spamspam

spamspam
true label true label yy

predicted predicted 
label label ŷŷ
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Three Main Approaches to Three Main Approaches to 
Machine LearningMachine Learning

Learn a classifier: a function Learn a classifier: a function ff..
Learn a conditional distribution: a conditional Learn a conditional distribution: a conditional 
distribution P(distribution P(yy | | xx))
Learn the joint probability distribution: P(Learn the joint probability distribution: P(xx,,yy))
In the first two weeks, we will study one example In the first two weeks, we will study one example 
of each method:of each method:
–– Learn a classifier: The LMS algorithmLearn a classifier: The LMS algorithm
–– Learn a conditional distribution: Logistic regressionLearn a conditional distribution: Logistic regression
–– Learn the joint distribution: Linear discriminant Learn the joint distribution: Linear discriminant 

analysisanalysis
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Infering a classifier Infering a classifier ff from P(from P(yy | | xx))

Predict the Predict the ŷŷ that minimizes the expected that minimizes the expected 
loss:loss:

f(x) = argmin
ŷ

Ey|x[L(ŷ, y)]

= argmin
ŷ

X
y
P(y|x)L(ŷ, y)
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Example: Making the spam decisionExample: Making the spam decision

Suppose our spam detector Suppose our spam detector 
predicts that P(predicts that P(yy==““spamspam”” | | xx) = ) = 
0.6.  What is the optimal 0.6.  What is the optimal 
classification decision classification decision ŷŷ??
Expected loss of Expected loss of ŷŷ = = ““spamspam”” is is 
0 * 0.6 + 10 * 0.4 = 40 * 0.6 + 10 * 0.4 = 4
Expected loss of Expected loss of ŷŷ = = ““no spamno spam””
is 1 * 0.6 + 0 * 0.4 = 0.6is 1 * 0.6 + 0 * 0.4 = 0.6
Therefore, the optimal Therefore, the optimal 
prediction is prediction is ““no spamno spam””

0011not spamnot spam

0.40.40.60.6P(P(yy||xx))

101000spamspam

not not 
spamspam

spamspam
true label true label yy

predicted predicted 
label label ŷŷ
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Inferring a classifier from Inferring a classifier from 
the joint distribution P(the joint distribution P(xx,,yy))

We can compute the conditional distribution We can compute the conditional distribution 
according to the definition of conditional according to the definition of conditional 
probability:probability:

In words, compute P(In words, compute P(xx,, y=ky=k) for each value of ) for each value of kk.  .  
Then normalize these numbers.Then normalize these numbers.
Compute Compute ŷŷ using the method from the previous using the method from the previous 
slideslide

P(y = k|x) = P(x, y = k)P
j P(x, y = j)

.
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Fundamental Problem of Machine Fundamental Problem of Machine 
Learning: It is illLearning: It is ill--posedposed

Example x1 x2 x3 x4 y
1 0 0 1 0 0
2 0 1 0 0 0
3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0
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Learning Appears ImpossibleLearning Appears Impossible

There are 2There are 21616 = 65536 = 65536 
possible boolean possible boolean 
functions over four input functions over four input 
features.  We canfeatures.  We can’’t figure t figure 
out which one is correct out which one is correct 
until weuntil we’’ve seen every ve seen every 
possible inputpossible input--output pair.  output pair.  
After 7 examples, we still After 7 examples, we still 
have 2have 299 possibilities.possibilities.

x1 x2 x3 x4 y
0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?
1 0 0 0 ?
1 0 0 1 1
1 0 1 0 ?
1 0 1 1 ?
1 1 0 0 0
1 1 0 1 ?
1 1 1 0 ?
1 1 1 1 ?
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Solution: Work with a restricted Solution: Work with a restricted 
hypothesis spacehypothesis space

Either by applying prior knowledge or by Either by applying prior knowledge or by 
guessing, we choose a space of hypotheses guessing, we choose a space of hypotheses HH
that is smaller than the space of all possible that is smaller than the space of all possible 
functions:functions:
–– simple conjunctive rulessimple conjunctive rules
–– mm--ofof--nn rulesrules
–– linear functionslinear functions
–– multivariate Gaussian joint probability distributionsmultivariate Gaussian joint probability distributions
–– etc.etc.
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Illustration: Simple Conjunctive Illustration: Simple Conjunctive 
RulesRules

There are only 16 There are only 16 
simple simple 
conjunctions (no conjunctions (no 
negation)negation)
However, no However, no 
simple rule simple rule 
explains the data.  explains the data.  
The same is true The same is true 
for simple clausesfor simple clauses

Rule Counterexample
true ⇔ y 1
x1 ⇔ y 3
x2 ⇔ y 2
x3 ⇔ y 1
x4 ⇔ y 7
x1 ∧ x2 ⇔ y 3
x1 ∧ x3 ⇔ y 3
x1 ∧ x4 ⇔ y 3
x2 ∧ x3 ⇔ y 3
x2 ∧ x4 ⇔ y 3
x3 ∧ x4 ⇔ y 4
x1 ∧ x2 ∧ x3 ⇔ y 3
x1 ∧ x2 ∧ x4 ⇔ y 3
x1 ∧ x3 ∧ x4 ⇔ y 3
x2 ∧ x3 ∧ x4 ⇔ y 3
x1 ∧ x2 ∧ x3 ∧ x4 ⇔ y 3
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A larger hypothesis space:A larger hypothesis space:
mm--ofof--nn rulesrules

At least At least mm of the of the 
nn variables must variables must 
be truebe true
There are 32 There are 32 
possible rulespossible rules
Only one rule is Only one rule is 
consistent!consistent!

Counterexample
variables 1-of 2-of 3-of 4-of
{x1} 3 – – –
{x2} 2 – – –
{x3} 1 – – –
{x4} 7 – – –

{x1, x2} 3 3 – –
{x1, x3} 4 3 – –
{x1, x4} 6 3 – –
{x2, x3} 2 3 – –
{x2, x4} 2 3 – –
{x3, x4} 4 4 – –

{x1, x2, x3} 1 3 3 –
{x1, x2, x4} 2 3 3 –
{x1, x3, x4} 1 *** 3 –
{x2, x3, x4} 1 5 3 –

{x1, x2, x3, x4} 1 5 3 3
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Two Views of LearningTwo Views of Learning

View 1: View 1: Learning is the removal of our Learning is the removal of our 
remaining uncertaintyremaining uncertainty
–– Suppose we Suppose we knewknew that the unknown function was an that the unknown function was an 

mm--ofof--nn boolean function.  Then we could use the boolean function.  Then we could use the 
training examples to training examples to deducededuce which function it is.which function it is.

View 2: View 2: Learning requires Learning requires guessingguessing a good, a good, 
small hypothesis classsmall hypothesis class
–– We can start with a very small class and enlarge it We can start with a very small class and enlarge it 

until it contains an hypothesis that fits the datauntil it contains an hypothesis that fits the data
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We could be wrong!We could be wrong!

Our prior Our prior ““knowledgeknowledge”” might be wrongmight be wrong
Our guess of the hypothesis class could Our guess of the hypothesis class could 
be wrongbe wrong
–– The smaller the class, the more likely we are The smaller the class, the more likely we are 

wrongwrong
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Two Strategies for Machine Two Strategies for Machine 
LearningLearning

Develop Languages for Expressing Prior Develop Languages for Expressing Prior 
KnowledgeKnowledge
–– Rule grammars, stochastic models, Bayesian Rule grammars, stochastic models, Bayesian 

networksnetworks
–– (Corresponds to the Prior Knowledge view)(Corresponds to the Prior Knowledge view)

Develop Flexible Hypothesis SpacesDevelop Flexible Hypothesis Spaces
–– Nested collections of hypotheses:  decision trees, Nested collections of hypotheses:  decision trees, 

neural networks, cases, SVMsneural networks, cases, SVMs
–– (Corresponds to the Guessing view)(Corresponds to the Guessing view)

In either case we must develop algorithms for In either case we must develop algorithms for 
finding an hypothesis that fits the datafinding an hypothesis that fits the data
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TerminologyTerminology
Training exampleTraining example.  An example of the form .  An example of the form hhxx,,yyii.  .  xx is is 
usually a vector of features, usually a vector of features, yy is called the is called the class labelclass label.  .  
We will index the features by We will index the features by jj, hence x, hence xjj is the is the jj--th feature th feature 
of of xx.  The number of features is .  The number of features is nn..
Target functionTarget function.  The true function .  The true function ff, the true conditional , the true conditional 
distribution P(distribution P(y y | | xx), or the true joint distribution P(), or the true joint distribution P(xx,,yy).).
HypothesisHypothesis.  A proposed function or distribution .  A proposed function or distribution hh
believed to be similar to believed to be similar to ff or or PP..
ConceptConcept.  A boolean function.  Examples for which .  A boolean function.  Examples for which ff((xx)=1 )=1 
are called are called positive examplespositive examples or or positive instancespositive instances of the of the 
concept.  Examples for which concept.  Examples for which ff((xx)=0 are called )=0 are called negative negative 
examplesexamples or or negative instancesnegative instances..
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TerminologyTerminology
ClassifierClassifier.  A discrete.  A discrete--valued function.  The possible valued function.  The possible 
values values ff((xx) ) ∈∈ {1, {1, ……, K} are called the , K} are called the classesclasses or or class class 
labelslabels..
Hypothesis spaceHypothesis space.  The space of all hypotheses that .  The space of all hypotheses that 
can, in principle, be output by a particular learning can, in principle, be output by a particular learning 
algorithm.algorithm.
Version Space.Version Space. The space of all hypotheses in the The space of all hypotheses in the 
hypothesis space that have not yet been ruled out by a hypothesis space that have not yet been ruled out by a 
training example.training example.
Training SampleTraining Sample (or (or Training SetTraining Set or or Training DataTraining Data): a set ): a set 
of of NN training examples drawn according to P(training examples drawn according to P(xx,,yy).).
Test SetTest Set: A set of training examples used to evaluate a : A set of training examples used to evaluate a 
proposed hypothesis proposed hypothesis hh..
Validation SetValidation Set: A set of training examples (typically a : A set of training examples (typically a 
subset of the training set) used to guide the learning subset of the training set) used to guide the learning 
algorithm and prevent overfitting.algorithm and prevent overfitting.
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Key Issues in Machine LearningKey Issues in Machine Learning
What are good hypothesis spaces?What are good hypothesis spaces?
–– which spaces have been useful in practical applications?which spaces have been useful in practical applications?

What algorithms can work with these spaces?What algorithms can work with these spaces?
–– Are there general design principles for learning algorithms?Are there general design principles for learning algorithms?

How can we optimize accuracy on future data points?How can we optimize accuracy on future data points?
–– This is related to the problem of This is related to the problem of ““overfittingoverfitting””

How can we have confidence in the results? (the How can we have confidence in the results? (the 
statistical question)statistical question)
–– How much training data is required to find an accurate How much training data is required to find an accurate 

hypotheses?hypotheses?
Are some learning problems computational intractable? Are some learning problems computational intractable? 
(the (the computational questioncomputational question))
How can we formulate application problems as machine How can we formulate application problems as machine 
learning problems?  (the learning problems?  (the engineering questionengineering question))
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A framework for hypothesis spacesA framework for hypothesis spaces
SizeSize: Does the hypothesis space have a : Does the hypothesis space have a fixed sizefixed size or a or a variable variable 
sizesize??
–– fixedfixed--sized spaces are easier to understand, but variablesized spaces are easier to understand, but variable--sized spaces sized spaces 

are generally more useful.  Variableare generally more useful.  Variable--sized spaces introduce the problem sized spaces introduce the problem 
of overfittingof overfitting

StochasticityStochasticity.  Is the hypothesis a classifier, a conditional .  Is the hypothesis a classifier, a conditional 
distribution, or a joint distribution?distribution, or a joint distribution?
–– This affects how we evaluate hypotheses.  For a deterministic This affects how we evaluate hypotheses.  For a deterministic 

hypothesis, a training example is either hypothesis, a training example is either consistentconsistent (correctly predicted) (correctly predicted) 
or or inconsistentinconsistent (incorrectly predicted).  For a stochastic hypothesis, a (incorrectly predicted).  For a stochastic hypothesis, a 
trianing example is trianing example is more likelymore likely or or less likelyless likely..

ParameterizationParameterization.. Is each hypothesis described by a set of Is each hypothesis described by a set of symbolicsymbolic
(discrete) choices or is it described by a set of (discrete) choices or is it described by a set of continuouscontinuous
parameters?  If both are required, we say the space has a parameters?  If both are required, we say the space has a mixedmixed
parameterization.parameterization.
–– Discrete parameters must be found by combinatorial search methodDiscrete parameters must be found by combinatorial search methods; s; 

continuous parameters can be found by numerical search methodscontinuous parameters can be found by numerical search methods
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A Framework for Hypothesis A Framework for Hypothesis 
Spaces (2)Spaces (2)
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A Framework for Learning A Framework for Learning 
AlgorithmsAlgorithms

Search ProcedureSearch Procedure
–– Direct ComputationDirect Computation: solve for the hypothesis directly: solve for the hypothesis directly
–– Local SearchLocal Search: start with an initial hypothesis, make small : start with an initial hypothesis, make small 

improvements until a local maximumimprovements until a local maximum
–– Constructive SearchConstructive Search: start with an empty hypothesis, gradually : start with an empty hypothesis, gradually 

add structure to it until a local optimumadd structure to it until a local optimum
TimingTiming
–– EagerEager: analyze training data and construct an explicit hypothesis: analyze training data and construct an explicit hypothesis
–– LazyLazy: store the training data and wait until a test data point is : store the training data and wait until a test data point is 

presented, then construct an ad hoc hypothesis to classify that presented, then construct an ad hoc hypothesis to classify that 
one data pointone data point

Online vs. Batch (for eager algorithms)Online vs. Batch (for eager algorithms)
–– OnlineOnline: analyze each training example as it is presented: analyze each training example as it is presented
–– BatchBatch: collect examples, analyze them in a batch, output an : collect examples, analyze them in a batch, output an 

hypothesishypothesis
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A Framework for Learning A Framework for Learning 
Algorithms (2)Algorithms (2)
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Linear Threshold UnitsLinear Threshold Units

We assume that each feature xWe assume that each feature xjj and each weight and each weight 
wwjj is a real number (we will relax this later)is a real number (we will relax this later)
We will study three different algorithms for We will study three different algorithms for 
learning linear threshold units:learning linear threshold units:
–– Perceptron: classifierPerceptron: classifier
–– Logistic Regression: conditional distributionLogistic Regression: conditional distribution
–– Linear Discriminant Analysis: joint distributionLinear Discriminant Analysis: joint distribution

h(x) =

(
+1 if w1x1 + . . .+wnxn ≥ w0
−1 otherwise
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What can be represented by an What can be represented by an 
LTU:LTU:

ConjunctionsConjunctions

At least At least mm--ofof--nn

x1 ∧ x2 ∧ x4 ⇔ y

1 · x1+ 1 · x2+ 0 · x3+ 1 · x4 ≥ 3

at-least-2-of{x1, x3, x4} ⇔ y

1 · x1+ 0 · x2+ 1 · x3+ 1 · x4 ≥ 2
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Things that cannot be represented:Things that cannot be represented:

NonNon--trivial disjunctions:trivial disjunctions:

ExclusiveExclusive--OR:OR:

(x1 ∧ x2) ∨ (x3 ∧ x4)⇔ y

1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 ≥ 2 predicts
f(h0110i) = 1.

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)⇔ y
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A canonical representationA canonical representation
Given a training example of the form Given a training example of the form 
((hhxx11, x, x22, x, x33, x, x44ii, y), y)

transform it to transform it to 
((1, x1, x11, x, x22, x, x33, x, x44ii, y), y)

The parameter vector will then beThe parameter vector will then be
ww = = hhww00, w, w11, w, w22, w, w33, w, w44ii..

We will call the We will call the unthresholdedunthresholded hypothesis hypothesis uu((xx,,ww))
uu((xx,,ww) = ) = ww ·· xx

Each hypothesis can be written Each hypothesis can be written 
hh((xx) = sgn() = sgn(uu((xx,,ww))))

Our goal is to find Our goal is to find ww..
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The LTU Hypothesis SpaceThe LTU Hypothesis Space

Fixed size:  There are              distinct Fixed size:  There are              distinct 
linear threshold units over linear threshold units over nn boolean boolean 
featuresfeatures
DeterministicDeterministic
Continuous parametersContinuous parameters

O

µ
2n
2
¶
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Geometrical ViewGeometrical View
Consider three training examples:Consider three training examples:

We want a classifier that looks like We want a classifier that looks like 
the following:the following:

(h1.0,1.0i,+1)
(h0.5,3.0i,+1)
(h2.0,2.0i,−1)
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The Unthresholded Discriminant The Unthresholded Discriminant 
Function is a HyperplaneFunction is a Hyperplane

The equation The equation 
uu((xx) = ) = ww ·· xx
is a planeis a plane

ŷ =

(
+1 if u(x) ≥ 0
−1 otherwise
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Machine Learning and OptimizationMachine Learning and Optimization
When learning a classifier, the natural way to When learning a classifier, the natural way to 
formulate the learning problem is the following:formulate the learning problem is the following:
–– Given: Given: 

A set of A set of NN training examplestraining examples
{({(xx11,y,y11), (), (xx22,y,y22), ), ……, (, (xxNN,y,yNN)})}

A loss function A loss function LL
–– Find:Find:

The weight vector The weight vector ww that minimizes the expected loss on the that minimizes the expected loss on the 
training datatraining data

In general, machine learning algorithms apply In general, machine learning algorithms apply 
some optimization algorithm to find a good some optimization algorithm to find a good 
hypothesis.  In this case, hypothesis.  In this case, JJ is is piecewisepiecewise
constantconstant, which makes this a difficult problem, which makes this a difficult problem

J(w) =
1

N

NX
i=1

L(sgn(w · xi), yi).
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Approximating the expected loss by Approximating the expected loss by 
a smooth functiona smooth function

Simplify the optimization problem by replacing the Simplify the optimization problem by replacing the 
original objective function by a smooth, differentiable original objective function by a smooth, differentiable 
function.  For example, consider the function.  For example, consider the hinge losshinge loss::

When y = 1

J̃(w) =
1

N

NX
i=1

max(0,1− yiw · xi)
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Minimizing    by Gradient Descent SearchMinimizing    by Gradient Descent Search

Start with weight vector Start with weight vector ww00
Compute gradientCompute gradient

Compute Compute ww11 = = ww00 –– ηη
where where ηη is a is a ““step sizestep size”” parameterparameter
Repeat until convergenceRepeat until convergence

J̃

∇J̃(w0) =
Ã
∂ J̃(w0)

∂w0
,
∂J̃(w0)

∂w1
, . . . ,

∂ J̃(w0)

∂wn

!
∇J̃(w0)
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Computing the GradientComputing the Gradient
Let J̃i(w) = max(0,−yiw · xi)

∂J̃(w)

∂wk
=

∂

∂wk

⎛⎝ 1
N

NX
i=1

J̃i(w)

⎞⎠
=

1

N

NX
i=1

Ã
∂

∂wk
J̃i(w)

!

∂J̃i(w)

∂wk
=

∂

∂wk
max

⎛⎝0,−yiX
j

wjxij

⎞⎠
=

(
0 if yi

P
j wjxij > 0

−yixik otherwise
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Batch Perceptron AlgorithmBatch Perceptron Algorithm

Simplest case:  η = 1, don’t normalize g: “Fixed Increment Perceptron”

Given: training examples (xi, yi), i= 1 . . .N

Let w = (0,0, 0,0, . . . , 0) be the initial weight vector.

Let g = (0, 0, . . . , 0) be the gradient vector.

Repeat until convergence

For i= 1 to N do

ui = w · xi
If (yi · ui < 0)

For j = 1 to n do

gj = gj − yi · xij
g := g/N

w := w− ηg
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Online Perceptron AlgorithmOnline Perceptron Algorithm

This is called stochastic gradient descent because the 
overall gradient is approximated by the gradient from each 
individual example

Let w = (0,0, 0,0, . . . , 0) be the initial weight vector.

Repeat forever

Accept training example i: hxi, yii
ui = w · xi
If (yiui < 0)

For j = 1 to n do

gj := yi · xij
w := w+ ηg
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Learning Rates and ConvergenceLearning Rates and Convergence
The learning rate The learning rate ηη must decrease to zero in order to guarantee must decrease to zero in order to guarantee 
convergence.  The online case is known as the Robbinsconvergence.  The online case is known as the Robbins--Munro Munro 
algorithm.  It is guaranteed to converge under the following algorithm.  It is guaranteed to converge under the following 
assumptions:assumptions:

The learning rate is also called the The learning rate is also called the step sizestep size.  Some algorithms (e.g., .  Some algorithms (e.g., 
NewtonNewton’’s method, conjugate gradient) choose the stepsize s method, conjugate gradient) choose the stepsize 
automatically and converge fasterautomatically and converge faster
There is only one There is only one ““basinbasin”” for linear threshold units, so a local for linear threshold units, so a local 
minimum is the global minimum.  Choosing a good starting point cminimum is the global minimum.  Choosing a good starting point can an 
make the algorithm converge fastermake the algorithm converge faster

lim
t→∞ηt = 0

∞X
t=0

ηt = ∞
∞X
t=0

η2t < ∞
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Decision BoundariesDecision Boundaries
A classifier can be viewed as partitioning the A classifier can be viewed as partitioning the input spaceinput space or or feature feature 
spacespace X into decision regionsX into decision regions

A linear threshold unit always produces a linear decision boundaA linear threshold unit always produces a linear decision boundary.  ry.  
A set of points that can be separated by a linear decision boundA set of points that can be separated by a linear decision boundary ary 
is said to be is said to be linearly separablelinearly separable..
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ExclusiveExclusive--OR is Not Linearly OR is Not Linearly 
SeparableSeparable
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Extending Perceptron to More than Extending Perceptron to More than 
Two ClassesTwo Classes

If we have K > 2 classes, we can learn a If we have K > 2 classes, we can learn a 
separate LTU for each class.  Let separate LTU for each class.  Let wwkk be the be the 
weight vector for class k.  We train it by treating weight vector for class k.  We train it by treating 
examples from class examples from class y = ky = k as the positive as the positive 
examples and treating the examples from all examples and treating the examples from all 
other classes as negative examples.  Then we other classes as negative examples.  Then we 
classify a new data point classify a new data point xx according toaccording to

ŷ = argmax
k

wk · x.
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Summary of Perceptron algorithm Summary of Perceptron algorithm 
for LTUsfor LTUs

Directly Learns a ClassifierDirectly Learns a Classifier
Local SearchLocal Search
–– Begins with an initial weight vector.  Modifies it Begins with an initial weight vector.  Modifies it 

iterative to minimize an error function.  The error iterative to minimize an error function.  The error 
function is loosely related to the goal of minimizing function is loosely related to the goal of minimizing 
the number of classification errorsthe number of classification errors

EagerEager
–– The classifier is constructed from the training The classifier is constructed from the training 

examplesexamples
–– The training examples can then be discardedThe training examples can then be discarded

Online or BatchOnline or Batch
–– Both variants of the algorithm can be usedBoth variants of the algorithm can be used
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Logistic RegressionLogistic Regression
Learn the conditional distribution P(Learn the conditional distribution P(yy | | xx))
Let Let ppyy((xx; ; ww) be our estimate of P() be our estimate of P(yy | | xx), where ), where ww is a is a 
vector of adjustable parameters.  Assume only two vector of adjustable parameters.  Assume only two 
classes classes y y = 0 and = 0 and yy = 1, and= 1, and

On the homework, you will show that this is equivalent to On the homework, you will show that this is equivalent to 

In other words, the log odds of class 1 is a linear function In other words, the log odds of class 1 is a linear function 
of of xx..

p1(x;w) =
expw · x

1+ expw · x.

p0(x;w) = 1 − p1(x;w).

log
p1(x;w)

p0(x;w)
= w · x.
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Why the exp function?Why the exp function?

One reason: A linear function has a range from One reason: A linear function has a range from 
[[––∞∞, , ∞∞] and we need to force it to be positive ] and we need to force it to be positive 
and sum to 1 in order to be a probability:and sum to 1 in order to be a probability:
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Deriving a Learning AlgorithmDeriving a Learning Algorithm
Since we are fitting a conditional probability distribution, we Since we are fitting a conditional probability distribution, we no no 
longer seek to minimize the loss on the training data.  Instead,longer seek to minimize the loss on the training data.  Instead, we we 
seek to find the probability distribution seek to find the probability distribution hh that is most likely given the that is most likely given the 
training datatraining data
Let S be the training sample.  Our goal is to find Let S be the training sample.  Our goal is to find hh to maximize P(to maximize P(hh | | 
S):S):

argmax
h

P(h|S) = argmax
h

P(S|h)P(h)
P (S)

by Bayes’ Rule

= argmax
h

P (S|h)P(h) because P(S) doesn’t depend on h

= argmax
h

P (S|h) if we assume P(h) = uniform

= argmax
h

logP(S|h) because log is monotonic

The distribution P(S|h) is called the likelihood function.  The log 
likelihood is frequently used as the objective function for learning.  It is 
often written as  ℓ(w).

The h that maximizes the likelihood on the training data is called the 
maximum likelihood estimator (MLE)
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Computing the LikelihoodComputing the Likelihood
In our framework, we assume that each training In our framework, we assume that each training 
example (example (xxii,,yyii) is drawn from the same (but ) is drawn from the same (but 
unknown) probability distribution P(unknown) probability distribution P(xx,,yy).  This ).  This 
means that the log likelihood of S is the sum of means that the log likelihood of S is the sum of 
the log likelihoods of the individual training the log likelihoods of the individual training 
examples:examples:

logP(S|h) = log
Y
i

P (xi, yi|h)

=
X
i

logP(xi, yi|h)
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Computing the Likelihood (2)Computing the Likelihood (2)

Recall that Recall that anyany joint distribution P(a,b) can be joint distribution P(a,b) can be 
factored as P(a|b) P(b).  Hence, we can writefactored as P(a|b) P(b).  Hence, we can write

In our case, P(In our case, P(xx | | hh) = P() = P(xx), because it does not ), because it does not 
depend on depend on hh, so, so

argmax
h

logP (S|h) = argmax
h

X
i

logP (xi, yi|h)

= argmax
h

X
i

logP (yi|xi, h)P(xi|h)

argmax
h

logP (S|h) = argmax
h

X
i

logP (yi|xi, h)P(xi|h)

= argmax
h

X
i

logP (yi|xi, h)
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Log Likelihood for Conditional Log Likelihood for Conditional 
Probability EstimatorsProbability Estimators

We can express the log likelihood in a compact We can express the log likelihood in a compact 
form known as the form known as the cross entropycross entropy..
Consider an example (Consider an example (xxii,,yyii))
–– If If yyii = 0, the log likelihood is log [1 = 0, the log likelihood is log [1 –– pp11((xx;; ww)])]
–– if if yyii = 1, the log likelihood is log [p= 1, the log likelihood is log [p11((xx;; ww)])]

These cases are mutually exclusive, so we can These cases are mutually exclusive, so we can 
combine them to obtain:combine them to obtain:
ℓℓ((yyii; ; xxii,,ww) = log P() = log P(yyii | | xxii,,ww) = (1 ) = (1 –– yyii) log[1 ) log[1 –– pp11((xxii;;ww)] + y)] + yii log plog p11((xxii;;ww))

The goal of our learning algorithm will be to find The goal of our learning algorithm will be to find 
ww to maximizeto maximize
J(J(ww) = ) = ∑∑ii ℓℓ((yyii; ; xxii,,ww))
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Fitting Logistic Regression by Fitting Logistic Regression by 
Gradient AscentGradient Ascent

∂J(w)

∂wj
=

X
i

∂

∂wj
`(yi; xi,w)

∂

∂wj
`(yi;xi,w) =

∂

∂wj
((1− yi) log[1− p1(xi;w)] + y1 logp1(xi;w))

= (1− yi)
1

1− p1(xi;w)

Ã
−∂p1(xi;w)

∂wj

!
+ yi

1

p1(xi;w)

Ã
∂p1(xi;w)

∂wj

!

=

"
yi

p1(xi;w)
− (1− yi)
1− p1(xi;w)

#Ã
∂p1(xi;w)

∂wj

!

=

"
yi(1− p1(xi;w)) − (1− yi)p1(xi;w)

p1(xi;w)(1 − p1(xi;w))

# Ã
∂p1(xi;w)

∂wj

!

=

"
yi− p1(xi;w)

p1(xi;w)(1− p1(xi;w))

# Ã
∂p1(xi;w)

∂wj

!
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Gradient Computation (continued)Gradient Computation (continued)

Note that Note that pp11 can also be written ascan also be written as

From this, we obtain:From this, we obtain:

p1(xi;w) =
1

(1+ exp[−w · xi])
.

∂p1(xi;w)

∂wj
= − 1

(1+ exp[−w · xi])2
∂

∂wj
(1+ exp[−w · xi])

= − 1

(1+ exp[−w · xi])2
exp[−w · xi]

∂

∂wj
(−w · xi)

= − 1

(1+ exp[−w · xi])2
exp[−w · xi](−xij)

= p1(xi;w)(1− p1(xi;w))xij
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Completing the Gradient Completing the Gradient 
ComputationComputation

The gradient of the log likelihood of a The gradient of the log likelihood of a 
single point is thereforesingle point is therefore

The overall gradient isThe overall gradient is

∂

∂wj
`(yi;xi,w) =

"
yi− p1(xi;w)

p1(xi;w)(1− p1(xi;w))

# Ã
∂p1(xi;w)

∂wj

!

=

"
yi− p1(xi;w)

p1(xi;w)(1− p1(xi;w))

#
p1(xi;w)(1− p1(xi;w))xij

= (yi − p1(xi;w))xij

∂J(w)

∂wj
=

X
i

(yi− p1(xi;w))xij
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Batch Gradient Ascent for Logistic RegressionBatch Gradient Ascent for Logistic Regression

An online gradient ascent algorithm can be constructed, of coursAn online gradient ascent algorithm can be constructed, of coursee
Most statistical packages use a secondMost statistical packages use a second--order (Newtonorder (Newton--Raphson) Raphson) 
algorithm for faster convergence.  Each iteration of the secondalgorithm for faster convergence.  Each iteration of the second--order order 
method can be viewed as a weighted least squares computation, somethod can be viewed as a weighted least squares computation, so
the algorithm is known as Iterativelythe algorithm is known as Iteratively--Reweighted Least Squares Reweighted Least Squares 
(IRLS)(IRLS)

Given: training examples (xi, yi), i= 1 . . .N

Let w = (0,0, 0,0, . . . , 0) be the initial weight vector.

Repeat until convergence

Let g = (0, 0, . . . ,0) be the gradient vector.

For i= 1 to N do

pi= 1/(1+ exp[−w · xi])
errori = yi− pi
For j = 1 to n do

gj = gj+ errori · xij
w := w+ ηg step in direction of increasing gradient
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Logistic Regression Implements a Logistic Regression Implements a 
Linear Discriminant FunctionLinear Discriminant Function

In the 2In the 2--class 0/1 loss function case, we should class 0/1 loss function case, we should 
predict predict ŷŷ = 1 if= 1 if

Ey|x[L(0, y)] > Ey|x[L(1, y)]X
y
P(y|x)L(0, y) >

X
y
P(y|x)L(1, y)

P (y = 0|x)L(0,0)+ P(y = 1|x)L(0,1) > P(y = 0|x)L(1,0)+ P(y = 1|x)L(1, 1)
P(y = 1|x) > P (y = 0|x)
P(y= 1|x)
P(y= 0|x) > 1 if P(y = 0|X) 6= 0

log
P(y= 1|x)
P(y= 0|x) > 0

w · x > 0

A similar derivation can be done for arbitrary A similar derivation can be done for arbitrary 
L(0,1) and L(1,0).L(0,1) and L(1,0).
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Extending Logistic Regression to K > 2 classesExtending Logistic Regression to K > 2 classes

Choose class K to be the Choose class K to be the ““reference classreference class”” and and 
represent each of the other classes as a logistic represent each of the other classes as a logistic 
function of the odds of class function of the odds of class kk versus class K:versus class K:

log
P(y = 1|x)
P(y= K|x) = w1 · x

log
P(y = 2|x)
P(y= K|x) = w2 · x

...

log
P (y = K − 1|x)
P (y = K |x) = wK−1 · x

Gradient ascent can be applied to Gradient ascent can be applied to 
simultaneously train all of these weight vectors simultaneously train all of these weight vectors 
wwkk
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Logistic Regression for K > 2 (continued)Logistic Regression for K > 2 (continued)

The conditional probability for class k The conditional probability for class k ≠≠ K can be K can be 
computed ascomputed as

For class K, the conditional probability isFor class K, the conditional probability is

P(y = k|x) = exp(wk · x)
1+

PK−1
`=1 exp(w` · x)

P (y = K|x) = 1

1+
PK−1
`=1 exp(w` · x)
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Summary of Logistic RegressionSummary of Logistic Regression

Learns conditional probability distribution P(Learns conditional probability distribution P(yy | | xx))
Local SearchLocal Search
–– begins with initial weight vector.  Modifies it iteratively begins with initial weight vector.  Modifies it iteratively 

to maximize the log likelihood of the datato maximize the log likelihood of the data

EagerEager
–– the classifier is constructed from the training the classifier is constructed from the training 

examples, which can then be discardedexamples, which can then be discarded

Online or BatchOnline or Batch
–– both online and batch variants of the algorithm existboth online and batch variants of the algorithm exist
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Linear Discriminant AnalysisLinear Discriminant Analysis
Learn P(Learn P(xx,,yy).  This is sometimes ).  This is sometimes 
called the called the generativegenerative approach, approach, 
because we can think of P(because we can think of P(xx,,yy) as a ) as a 
model of how the data is generated.model of how the data is generated.
–– For example, if we factor the joint For example, if we factor the joint 

distribution into the formdistribution into the form
P(P(xx,,yy) = P() = P(yy) P() P(xx | | yy))

–– we can think of P(we can think of P(yy) as ) as ““generatinggenerating”” a a 
value for value for yy according to P(according to P(yy).  Then we ).  Then we 
can think of P(can think of P(xx | | yy) as generating a value ) as generating a value 
for for xx given the previouslygiven the previously--generated generated 
value for value for yy..

–– This can be described as a Bayesian This can be described as a Bayesian 
networknetwork

y

x
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Linear Discriminant Analysis (2)Linear Discriminant Analysis (2)

P(P(yy) is a discrete multinomial distribution) is a discrete multinomial distribution
–– example: P(example: P(yy = 0) = 0.31, P(= 0) = 0.31, P(yy = 1) = 0.69 will = 1) = 0.69 will 

generate 31% negative examples and 69% generate 31% negative examples and 69% 
positive examplespositive examples

For LDA, we assume that P(For LDA, we assume that P(xx | | yy) is a ) is a 
multivariate normal distribution with multivariate normal distribution with 
mean mean µµkk and covariance matrix and covariance matrix ΣΣ

y

x

P (x|y = k) =
1

(2π)n/2|Σ|1/2
exp

µ
−1
2
[x− µk]TΣ−1[x− µk]

¶
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Multivariate Normal Distributions:Multivariate Normal Distributions:
A tutorialA tutorial

Recall that the univariate normal (Gaussian) distribution has thRecall that the univariate normal (Gaussian) distribution has the formulae formula

where where µµ is the mean and is the mean and σσ22 is the varianceis the variance
Graphically, it looks like this:Graphically, it looks like this:

p(x) =
1

(2π)1/2σ
exp

"
−1
2

(x− µ)2
σ2

#
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The Multivariate GaussianThe Multivariate Gaussian

A 2A 2--dimensional Gaussian is defined by a dimensional Gaussian is defined by a 
mean vector mean vector µµ = (= (µµ11,,µµ22) and a covariance ) and a covariance 
matrix matrix 

where where σσ22
i,ji,j = E[(x= E[(xii –– µµii)(x)(xjj -- µµjj)] is the )] is the 

variance (if variance (if i = ji = j) or co) or co--variance (if variance (if ii ≠≠ j).  j).  ΣΣ
is symmetrical and positiveis symmetrical and positive--definite.definite.

Σ =

"
σ21,1 σ21,2
σ21,2 σ22,2

#
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The Multivariate Gaussian (2)The Multivariate Gaussian (2)
If If ΣΣ is the identity matrix                         and is the identity matrix                         and 

µµ = (0, 0), we get the standard normal = (0, 0), we get the standard normal 
distribution:distribution:

Σ =

"
1 0
0 1

#
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The Multivariate Gaussian (3)The Multivariate Gaussian (3)
If If ΣΣ is a diagonal matrix, then is a diagonal matrix, then xx11, and , and xx22 are independent random are independent random 
variables, and lines of equal probability are ellipses parallel variables, and lines of equal probability are ellipses parallel to the to the 
coordinate axes.  For example, when coordinate axes.  For example, when 

andand

we obtainwe obtain

Σ =

"
2 0
0 1

#
µ = (2,3)
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The Multivariate Gaussian (4)The Multivariate Gaussian (4)
Finally, if Finally, if ΣΣ is an arbitrary matrix, then xis an arbitrary matrix, then x11 and xand x22 are are 
dependent, and lines of equal probability are ellipses dependent, and lines of equal probability are ellipses 
tilted relative to the coordinate axes.  For example, whentilted relative to the coordinate axes.  For example, when

andand

we obtainwe obtainµ = (2,3)

Σ =

"
2 0.5
0.5 1

#
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Estimating a Multivariate GaussianEstimating a Multivariate Gaussian
Given a set of N data points {Given a set of N data points {xx11, , ……, , xxNN}, we can compute }, we can compute 
the maximum likelihood estimate for the multivariate the maximum likelihood estimate for the multivariate 
Gaussian distribution as follows:Gaussian distribution as follows:

µ̂ =
1

N

X
i

xi

Σ̂ =
1

N

X
i

(xi− µ̂) · (xi− µ̂)T

Note that the dot product in the second equation is an Note that the dot product in the second equation is an 
outer productouter product.  The outer product of two vectors is a .  The outer product of two vectors is a 
matrix:matrix:

x·yT =

⎡⎢⎣ x1x2
x3

⎤⎥⎦·[y1 y2 y3] =
⎡⎢⎣ x1y1 x1y2 x1y3
x2y1 x2y2 x2y3
x3y1 x3y2 x3y3

⎤⎥⎦
For comparison, the usual dot product is written as For comparison, the usual dot product is written as xxTT·· yy
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The LDA ModelThe LDA Model
Linear discriminant analysis assumes that the Linear discriminant analysis assumes that the 
joint distribution has the formjoint distribution has the form

P (x, y) = P(y)
1

(2π)n/2|Σ|1/2
exp

µ
−1
2
[x− µy]TΣ−1[x− µy]

¶

where each where each µµyy is the mean of a multivariate is the mean of a multivariate 
Gaussian for examples belonging to class Gaussian for examples belonging to class yy and and 
ΣΣ is a single covariance matrix is a single covariance matrix shared by all shared by all 
classesclasses..
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Fitting the LDA ModelFitting the LDA Model
It is easy to learn the LDA model in a single pass It is easy to learn the LDA model in a single pass 
through the data:through the data:
–– Let         be our estimate of P(Let         be our estimate of P(yy = = kk))
–– Let NLet Nkk be the number of training examples belonging to class be the number of training examples belonging to class kk..

π̂k

Note that each Note that each xxii is subtracted from its corresponding    is subtracted from its corresponding    
prior to taking the outer product.  This gives us the prior to taking the outer product.  This gives us the 
““pooledpooled”” estimate of estimate of ΣΣ

µ̂yi

π̂k =
Nk
N

µ̂k =
1

Nk

X
{i:yi=k}

xi

Σ̂ =
1

N

X
i

(xi− µ̂yi) · (xi− µ̂yi)T
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LDA learns an LTULDA learns an LTU
Consider the 2Consider the 2--class case with a 0/1 loss function.  Recall thatclass case with a 0/1 loss function.  Recall that

Also recall from our derivation of the Logistic Regression classAlso recall from our derivation of the Logistic Regression classifier ifier 
that we should classify into class that we should classify into class ŷŷ = 1 if= 1 if

Hence, for LDA, we should classify into Hence, for LDA, we should classify into ŷŷ = 1 if= 1 if

because the denominators cancelbecause the denominators cancel

P(y = 0|x) = P(x, y = 0)

P(x, y = 0)+ P(x, y = 1)

P(y = 1|x) = P(x, y = 1)

P(x, y = 0)+ P(x, y = 1)

log
P (y = 1|x)
P (y = 0|x) > 0

log
P(x, y = 1)

P(x, y = 0)
> 0
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LDA learns an LTU (2)LDA learns an LTU (2)
P(x, y) = P (y)

1

(2π)n/2|Σ|1/2
exp

µ
−1
2
[x− µy]TΣ−1[x− µy]

¶

P (x, y = 1)

P (x, y = 0)
=

P(y = 1) 1
(2π)n/2|Σ|1/2 exp

³
−12[x− µ1]TΣ−1[x− µ1]

´
P(y = 0) 1

(2π)n/2|Σ|1/2 exp
³
−12[x− µ0]TΣ−1[x− µ0]

´
P (x, y = 1)

P (x, y = 0)
=

P(y = 1) exp
³
−12[x− µ1]TΣ−1[x− µ1]

´
P(y = 0) exp

³
−12[x− µ0]TΣ−1[x− µ0]

´
log

P (x, y = 1)

P (x, y = 0)
= log

P (y = 1)

P (y = 0)
− 1
2

³
[x− µ1]TΣ−1[x− µ1]− [x− µ0]TΣ−1[x− µ0]

´
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LDA learns an LTU (3)LDA learns an LTU (3)
LetLet’’s focus on the term in brackets:s focus on the term in brackets:³
[x− µ1]TΣ−1[x− µ1] − [x− µ0]TΣ−1[x− µ0]

´
Expand the quadratic forms as follows:Expand the quadratic forms as follows:

[x− µ1]TΣ−1[x− µ1] = xTΣ−1x− xTΣ−1µ1 − µT1Σ−1x+ µT1Σ
−1µ1

[x− µ0]TΣ−1[x− µ0] = xTΣ−1x− xTΣ−1µ0 − µT0Σ−1x+ µT0Σ
−1µ0

Subtract the lower from the upper line and collect similar Subtract the lower from the upper line and collect similar 
terms.  Note that the quadratic terms cancel!  This terms.  Note that the quadratic terms cancel!  This 
leaves only terms linear in leaves only terms linear in xx..

xTΣ−1(µ0−µ1)+(µ0−µ1)Σ−1x+µT1Σ−1µ1−µT0Σ−1µ0
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LDA learns an LTU (4)LDA learns an LTU (4)
xTΣ−1(µ0−µ1)+(µ0−µ1)Σ−1x+µT1Σ−1µ1−µT0Σ−1µ0

Note that since Note that since ΣΣ--11 is symmetric                                      is symmetric                                      
for any two vectors for any two vectors aa and and bb.  Hence, the first two terms .  Hence, the first two terms 
can be combined to givecan be combined to give

aTΣ−1b = bTΣ−1a

2xTΣ−1(µ0− µ1)+ µT1Σ
−1µ1− µT0Σ−1µ0.

Now plug this back inNow plug this back in……

log
P (x, y = 1)

P (x, y = 0)
= log

P (y = 1)

P (y = 0)
− 1
2

h
2xTΣ−1(µ0 − µ1)+ µT1Σ

−1µ1− µT0Σ−1µ0
i

log
P (x, y = 1)

P (x, y = 0)
= log

P (y = 1)

P (y = 0)
+ xTΣ−1(µ1− µ0)−

1

2
µT1Σ

−1µ1+
1

2
µT0Σ

−1µ0
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LDA learns an LTU (5)LDA learns an LTU (5)
log

P (x, y = 1)

P (x, y = 0)
= log

P (y = 1)

P (y = 0)
+ xTΣ−1(µ1− µ0)−

1

2
µT1Σ

−1µ1+
1

2
µT0Σ

−1µ0

Let

w = Σ−1(µ1− µ0)
c = log

P (y = 1)

P (y = 0)
− 1
2
µT1Σ

−1µ1+
1

2
µT0Σ

−1µ0

Then we will classify into class ŷ = 1 if

w · x+ c > 0.

This is an LTU.
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The quantity                                                    The quantity                                                    is known as is known as 
the (squared) Mahalanobis distance between the (squared) Mahalanobis distance between xx and and uu.  We can think .  We can think 
of the matrix of the matrix ΣΣ--11 as a linear distortion of the coordinate system that as a linear distortion of the coordinate system that 
converts the standard Euclidean distance into the Mahalanobis converts the standard Euclidean distance into the Mahalanobis 
distancedistance
Note thatNote that

Therefore, we can view LDA as computingTherefore, we can view LDA as computing
–– and and 

and then classifying and then classifying xx according to which mean according to which mean µµ00 or or µµ11 is closest in is closest in 
Mahalanobis distance (corrected by log Mahalanobis distance (corrected by log ππkk))

Two Geometric Views of LDATwo Geometric Views of LDA
View 1: Mahalanobis DistanceView 1: Mahalanobis Distance

DM(x,u)
2 = (x− u)TΣ−1(x− u)

DM(x, µ0)
2 DM(x, µ1)

2

logP (x|y = k) ∝ logπk−
1

2
[(x− µk)TΣ−1(x− µk)]

logP (x|y = k) ∝ logπk−
1

2
DM(x, µk)

2
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View 2: Most Informative LowView 2: Most Informative Low--
Dimensional ProjectionDimensional Projection

LDA can also be viewed as finding a hyperplane of LDA can also be viewed as finding a hyperplane of 
dimension K dimension K –– 1 such that 1 such that xx and the {and the {µµkk} are projected } are projected 
down into this hyperplane and then down into this hyperplane and then xx is classified to the is classified to the 
nearest nearest µµkk using Euclidean distance inside this using Euclidean distance inside this 
hyperplanehyperplane
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Generalizations of LDAGeneralizations of LDA
General Gaussian ClassifierGeneral Gaussian Classifier
–– Instead of assuming that all classes share the same Instead of assuming that all classes share the same 
ΣΣ, we can allow each class , we can allow each class kk to have its own to have its own ΣΣkk.  In .  In 
this case, the resulting classifier will be a quadratic this case, the resulting classifier will be a quadratic 
threshold unit (instead of an LTU)threshold unit (instead of an LTU)

NaNaïïve Gaussian Classifierve Gaussian Classifier
–– Allow each class to have its own Allow each class to have its own ΣΣkk, but require that , but require that 

each each ΣΣkk be diagonal.  This means that be diagonal.  This means that withinwithin each each 
class, any pair of features xclass, any pair of features xj1j1 and xand xj2j2 will be assumed will be assumed 
to be statistically independent.  The resulting classifier to be statistically independent.  The resulting classifier 
is still a quadratic threshold unit (but with a restricted is still a quadratic threshold unit (but with a restricted 
form)form)
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Summary of Summary of 
Linear Discriminant AnalysisLinear Discriminant Analysis

Learns the joint probability distribution P(Learns the joint probability distribution P(xx, , yy). ). 
Direct Computation.  The maximum likelihood estimate Direct Computation.  The maximum likelihood estimate 
of P(of P(xx,,yy) can be computed from the data without search.  ) can be computed from the data without search.  
However, inverting the However, inverting the ΣΣ matrix requires O(nmatrix requires O(n33) time.) time.
Eager.  The classifier is constructed from the training Eager.  The classifier is constructed from the training 
examples.  The examples can then be discarded.examples.  The examples can then be discarded.
Batch.  Only a batch algorithm is available.  An online Batch.  Only a batch algorithm is available.  An online 
algorithm could be constructed if there is an online algorithm could be constructed if there is an online 
algorithm for incrementally updated algorithm for incrementally updated ΣΣ--11.  [This is easy for .  [This is easy for 
the case where the case where ΣΣ is diagonal.] is diagonal.] 
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Comparing Perceptron, Logistic Comparing Perceptron, Logistic 
Regression, and LDARegression, and LDA

How should we choose among these three How should we choose among these three 
algorithms?algorithms?
There is a big debate within the machine There is a big debate within the machine 
learning community!learning community!
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Issues in the DebateIssues in the Debate
Statistical Efficiency.Statistical Efficiency. If the generative model If the generative model 
P(P(xx,,yy) is correct, then LDA usually gives the ) is correct, then LDA usually gives the 
highest accuracy, particularly when the amount highest accuracy, particularly when the amount 
of training data is small.  If the model is correct, of training data is small.  If the model is correct, 
LDA requires 30% less data than Logistic LDA requires 30% less data than Logistic 
Regression in theoryRegression in theory
Computational EfficiencyComputational Efficiency.  Generative models .  Generative models 
typically are the easiest to learn.  In our typically are the easiest to learn.  In our 
example, LDA can be computed directly from the example, LDA can be computed directly from the 
data without using gradient descent.data without using gradient descent.
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Issues in the DebateIssues in the Debate
Robustness to changing loss functionsRobustness to changing loss functions.  Both generative .  Both generative 
and conditional probability models allow the loss function and conditional probability models allow the loss function 
to be changed at run time without reto be changed at run time without re--learning.  learning.  
Perceptron requires rePerceptron requires re--training the classifier when the training the classifier when the 
loss function changes.loss function changes.
Robustness to model assumptionsRobustness to model assumptions.  The generative .  The generative 
model usually performs poorly when the assumptions model usually performs poorly when the assumptions 
are violated.  For example, if P(are violated.  For example, if P(xx | | yy) is very non) is very non--
Gaussian, then LDA wonGaussian, then LDA won’’t work well.  Logistic t work well.  Logistic 
Regression is more robust to model assumptions, and Regression is more robust to model assumptions, and 
Perceptron is even more robust.Perceptron is even more robust.
Robustness to missing values and noiseRobustness to missing values and noise.  In many .  In many 
applications, some of the features xapplications, some of the features xijij may be missing or may be missing or 
corrupted in some of the training examples.  Generative corrupted in some of the training examples.  Generative 
models typically provide better ways of handling this than models typically provide better ways of handling this than 
nonnon--generative models.generative models.


