CS534: Machine Learning

Thomas G. Dietterich
221C Dearborn Hall
tgd@cs.orst.edu
http://www.cs.orst.edu/~tgd/classes/534

Course Overview

Introduction:
— Basic problems and questions in machine learning. Example applications
Linear Classifiers
Five Popular Algorithms
— Decision trees (C4.5)
Neural networks (backpropagation)
Probabilistic networks (Naive Bayes; Mixture models)
Support Vector Machines (SVMs)
Nearest Neighbor Method
Theories of Learning:
— PAC, Bayesian, Bias-Variance analysis
Optimizing Test Set Performance:
— Overfitting, Penalty methods, Holdout Methods, Ensembles
Sequential and Spatial Data
— Hidden Markov models, Conditional Random Fields; Hidden Markov SVMs
Problem Formulation
— Designing Input and Output representations

Supervised Learning

— Given: Training examples (x, f(x)) for some unknown function f.
— Find: A good approximation to f.

1 Example Applications
— Handwriting recognition
1 x: data from pen motion
1 f(x): letter of the alphabet

— Disease Diagnosis

1 X: properties of patient (symptoms, lab tests)

1 f(x): disease (or maybe, recommended therapy)
— Face Recognition

1 X: bitmap picture of person’s face

1 f(x): name of person
— Spam Detection

1 X: email message

1 f(x): spam or not spam

Appropriate Applications for
Supervised Learning

Situations where there is no human expert
— X: bond graph of a new molecule
— f(x): predicted binding strength to AIDS protease molecule

Situations were humans can perform the task but can’t describe how
they do it

— X: bitmap picture of hand-written character

— f(x): ascii code of the character

Situations where the desired function is changing frequently
— X: description of stock prices and trades for last 10 days
— f(x): recommended stock transactions

Situations where each user needs a customized function f

— X: incoming email message

— f(x): importance score for presenting to the user (or deleting without
presenting)

test point

Formal P(cy)

training pointsl

Setting

Training | learning
sample algorithm

1 Training examples are drawn
independently at random according to oss
unknown probability distribution P(x,y) e

1 The learning algorithm analyzes the
examples and produces a classifier f

1 Given a new data point (x,y) drawn from P,
the classifier is given x and predicts y = f(x)

1 The loss L(y,y) is then measured

1 Goal of the learning algorithm: Find the f
that minimizes the expected loss

L(V.y)

Formal Version of Spam Detection

P(x,y): distribution of email messages x and their
true labels y (“spam” or “not spam”)

training sample: a set of email messages that have
been labeled by the user

learning algorithm: what we study in this course!
f. the classifier output by the learning algorithm

test point: A new email message x (with its true, but
hidden, label y)

loss function L(y,y): true label y
predicted | spam not
label y spam

spam 0 10

not spam 1 0)

Three Main Approaches to
Machine Learning

1 Learn a classifier: a function f.

1 _earn a conditional distribution: a conditional
distribution P(y | x)

1 Learn the joint probability distribution: P(x,y)

1 In the first two weeks, we will study one example
of each method:
— Learn a classifier: The LMS algorithm
— Learn a conditional distribution: Logistic regression

— Learn the joint distribution: Linear discriminant
analysis

Infering a classifier f from P(y | X)

1 Predict the y that minimizes the expected
loss:

argmin B [L(y, y)]
Yy

argmin) P(y|x) L(g, y)
gy

Example: Making the spam decision

1 Suppose our spam detector
predicts that P(y="spam” | X) =
0.6. What is the optimal true label y
classification decision y? predicted | spam | not

1 Expected loss of y = “spam” is 'a:e'ai’n SR
0"06+10*04=4 2

| | Expected IOSS Of y — uno Spamu not spam 1 0
is1*06+0*04=0.6 P(yx) | 0.6 | 0.4

1 Therefore, the optimal
prediction is “no spam”

Inferring a classifier from
the joint distribution P(Xx,y)

8 \We can compute the conditional distribution
according to the definition of conditional
probabillity:

P(y = k|x) = Py =5

1 In words, compute P(x, y=k) for each value of k.
Then normalize these numbers.

1 Compute y using the method from the previous
slide

Fundamental Problem of Machine
Learning: It is ill-posed

—>
| Unknown
—>
| Function

—» y=1{(x1, x2, x3, x4)

Example =z

ocoror org
—oorr=oolf

O OO RrKFH OO

Learning Appears Impossible

1 There are 2% = 65536
possible boolean
functions over four input
features. We can't figure
out which one is correct
until we've seen every
possible input-output pair.
After 7 examples, we still
have 29 possibilities.

I—‘I—*I—‘I—‘I—‘I—‘I—‘I—‘OOOOOOOO,§
I—‘I—‘I—‘I—‘OOOOI—‘I—‘I—‘I—‘OOOOS
Hl—tOOl—tl—tOOl—*l—tOOl—ll—lOOﬁ
—OrORrRORHORORORORO|F

~N N VO NN NNV O OO O N YR

Solution: Work with a restricted
hypothesis space

1 Either by applying prior knowledge or by
guessing, we choose a space of hypotheses H
that is smaller than the space of all possible
functions:

— simple conjunctive rules

— m-of-n rules

— linear functions

— multivariate Gaussian joint probability distributions
— etc.

lllustration: Simple Conjunctive
Rules

1 There are Only 16 Rule Counterexample
true &y

simple R
conjunctions (no T2 &Y

L3 <Y

negation) z4 <y

T1 Nxo2 &Y

1 However, no r1 ATz Sy

T1N\NTg =Y

simple rule 22 A 3 5

" o N\ g &
explains th_e data. 2o o)
The same Is true i, &5 1\ 7y =

. T1INTONT4 S Y
for simple clauses w1resnz ey
IO NT3INTg &Y

T1INTONT3INTH4 S Y

WWWWwwPLPrwWwwwwWwwWwNELENWE

A larger hypothesis space:
m-of-n rules

Counterexample
variables 1-of 2-of 3-of 4-of

{1}
1 At least m of the {22}

n variables must el

be true o 22

{1, 23}
1 There are 32 e
possible rules {x2, 24}
_ {3337334}
1 Only one rule is L 0, 3
. {$1,$2,$4}
consistent! {21, 23, 24}
{372,%3,2174}
{x1,20, 23, 4}

R RPENNEDRANNMNODPDPWONEDNDW
¥

OO XxWWPrWWWWW I | |
¥

WWwWwww I I

R S e e e e e e e B B

—

Two Views of Learning

1 View 1: Learning is the removal of our
remaining uncertainty

— Suppose we knew that the unknown function was an
m-of-n boolean function. Then we could use the
training examples to deduce which function it is.

1 View 2: Learning requires guessing a good,
small hypothesis class

— We can start with a very small class and enlarge it
until it contains an hypothesis that fits the data

We could be wrong!

1 Our prior “knowledge” might be wrong
1 Our guess of the hypothesis class could
be wrong

— The smaller the class, the more likely we are
wrong

Two Strategies for Machine
Learning

1 Develop Languages for Expressing Prior
Knowledge

— Rule grammars, stochastic models, Bayesian
networks

— (Corresponds to the Prior Knowledge view)

1 Develop Flexible Hypothesis Spaces

— Nested collections of hypotheses: decision trees,
neural networks, cases, SVMs

— (Corresponds to the Guessing view)

1 In either case we must develop algorithms for
finding an hypothesis that fits the data

Terminology

Training example. An example of the form (x,y). X is
usually a vector of features, y is called the class label.
We will index the features by j, hence x; is the j-th feature
of Xx. The number of features is n.

Target function. The true function f, the true conditional
distribution P(y | x), or the true joint distribution P(x,y).

Hypothesis. A proposed function or distribution h
believed to be similar to f or P.

Concept. A boolean function. Examples for which f(x)=1
are called positive examples or positive instances of the
concept. Examples for which f(x)=0 are called negative
examples or negative instances.

Terminology

Classifier. A discrete-valued function. The possible
values f(x) € {1, ..., K} are called the classes or class

labels.

Hypothesis space. The space of all hypotheses that
can, in principle, be output by a particular learning
algorithm.

Version Space. The space of all hypotheses in the
hypothesis space that have not yet been ruled out by a
training example.

Training Sample (or Training Set or Training Data): a set
of N training examples drawn according to P(x,y).

Test Set: A set of training examples used to evaluate a
proposed hypothesis h.

Validation Set: A set of training examples (typically a
subset of the training set) used to guide the learning
algorithm and prevent overfitting.

Key Issues in Machine Learning

What are good hypothesis spaces?

— which spaces have been useful in practical applications?
What algorithms can work with these spaces?

— Are there general design principles for learning algorithms?
How can we optimize accuracy on future data points?
— This is related to the problem of “overfitting”

How can we have confidence in the results? (the
statistical question)

— How much training data is required to find an accurate
hypotheses?

Are some learning problems computational intractable?
(the computational question)

How can we formulate application problems as machine
learning problems? (the engineering question)

A framework for hypothesis spaces

ze?

1 Size: Does the hypothesis space have a fixed size or a variable
Si

— fixed-sized spaces are easier to understand, but variable-sized spaces
are generally more useful. Variable-sized spaces introduce the problem
of overfitting

Stochasticity. Is the hypothesis a classifier, a conditional
distribution, or a joint distribution?
— This affects how we evaluate hypotheses. For a deterministic
hypothesis, a training example is either consistent (correctly predicted)

or inconsistent (incorrectly predicted). For a stochastic hypothesis, a
trianing example is more likely or less likely.

Parameterization. Is each hypothesis described by a set of symbolic
(discrete) choices or is it described by a set of continuous
parameters? If both are required, we say the space has a mixed
parameterization.

— Discrete parameters must be found by combinatorial search methods;
continuous parameters can be found by numerical search methods

A Framework for Hypothesis
Spaces (2)

Hypothesis Space

/\

Fixed Size Variable Size

/\ /\

Deterministic Stochastic Deterministic Stochastic

PN PN

Symbolic Continuous Mixed Symbolic Continuous Mixed

Conjunctions LTUs Naive Bayes Rule Sets Neural Nets Var Bayes Nets

| \ l
Logistic Regression Decision Trees | | CP Trees

l \ l
Multivariate Gaussian Cases SVMs

A Framework for Learning
Algorithms

1 Search Procedure
— Direct Computation: solve for the hypothesis directly

— Local Search: start with an initial hypothesis, make small
improvements until a local maximum

— Constructive Search: start with an empty hypothesis, gradually
add structure to it until a local optimum
1 Timing
— Eager: analyze training data and construct an explicit hypothesis

— Lazy: store the training data and wait until a test data point is
presented, then construct an ad hoc hypothesis to classify that

one data point
1 Online vs. Batch (for eager algorithms)
— Online: analyze each training example as it is presented

— Batch: collect examples, analyze them in a batch, output an
hypothesis

A Framework for Learning
Algorithms (2)

Direct

Computation

SN N N

Eager

Lazy

Algorithms

e

Constructive

Local
Search

Eager

Lazy

Eager

Search

Lazy

Naive Bayes

K-NN

BackProp

Bottou

C4.5

Lazy C4

Multi Gaussian

\
SVM
|

Logistic Regression

Eager Algorithms

/\

Online

‘ Online BackProp ‘

LMS

Batch
|

‘ Batch BackProp ‘
\

Naive Bayes

C4.5

SVM

Linear Threshold Units

) +1 if wizy + ... +wpTn = wo
h(x) _{ —1 otherwise

1 \We assume that each feature x; and each weight
w; is a real number (we will relax this later)

1 We will study three different algorithms for
learning linear threshold units:
— Perceptron: classifier
— Logistic Regression: conditional distribution
— Linear Discriminant Analysis: joint distribution

What can be represented by an
LTU:

1 Conjunctions

1 N\ o N Tq4 =Y
l-x14+1-20+0-234+1-24> 3

1 At least m-of-n

at-least-2-of{x1,x3,24} < y
l-x1+0-20+1- 3+ 1-24> 2

Things that cannot be represented:

1 Non-trivial disjunctions:

(1 A zo) V(23 A 3g) Sy

l - x1+1-20+ 1 -3+ 1-x24 > 2 predicts
£({(0110)) = 1.

1 Exclusive-OR:
(x1 A mz2) V (021 A 22) &y

A canonical representation

1 Given a training example of the form
((X1, X25 X3, X4), Y)

i transform it to
(1, X4, X9, X3, X4),)

1 The parameter vector will then be
W = (W, Wy, Wy, W3, Wy).

1 We will call the unthresholded hypothesis u(x,w)
u(xX,w)=w - X

1 Each hypothesis can be written
h(x) = sgn(u(x,w))

1 Our goal is to find w.

The LTU Hypothesis Space

¥ Fixed size: There are O (2”2)distinct
linear threshold units over n boolean
features

1 Deterministic
1 Continuous parameters

Geometrical View

1 Consider three training examples: ((1.0,1.0),+1)

((0.5,3.0),+1)
((2.0,2.0),—1)
1 \We want a classifier that looks like
the following:

The Unthresholded Discriminant
Function is a Hyperplane

1 The equation
U(X) =w - X
IS a plane

[41 ifux)>0
Y=Y -1 otherwise

Machine Learning and Optimization

1 When learning a classifier, the natural way to
formulate the learning problem is the following:

— Given:

1 A set of N training examples

{(X4:¥1)s (X2,¥2)s -5 (XN}

1 A loss function L
— Find:

1 The weight vector w that minimizes the expected loss on the

training data

1 N
J(w) = ~ > L(sgn(Ww - x;),9;)-
il

1 |[n general, machine learning algorithms apply
some optimization algorithm to find a good
hypothesis. In this case, J Iis piecewise
constant, which makes this a difficult problem =

Approximating the expected loss by
a smooth function

1 Simplify the optimization problem by replacing the
original objective function by a smooth, differentiable
function. For example, consider the hinge loss:

Minimizing J by Gradient Descent Search

Gradient Vector

Start with weight vector w,,

Compute gradient 8J(wg) 8J(wp) dJ(wg)

9 o 0 0 g

VJ(wg) = (

Compute W, = W, — 1 V.Ji(wq)
where n is a “step size” parameter
Repeat until convergence

Y

owg owq Own,

Computing the Gradient

Let J,(w) = max(0, —y;w - X;)

0J(w)
8wk

it y; Z] wjizi; > 0
—y;x;. Ootherwise

Batch Perceptron Algorithm

Given: training examples (x;,y;), i=1...N
Let w=(0,0,0,0,...,0) be the initial weight vector.
Let g = (0,0,...,0) be the gradient vector.
Repeat until convergence
For: =1 to N do
U; — W - Xy
If (y; -u; <O0)
For j =1 ton do
95 = 95 — Vi Tyj

g .=g/N
W . =W —1n§g

Simplest case: n =1, don’t normalize g: “Fixed Increment Perceptron”

Online Perceptron Algorithm

Let w=(0,0,0,0,...,0) be the initial weight vector.
Repeat forever
Accept training example i: (x;,y;)
U; — W - Xy
If (y;u; < O0)
For =1 ton do
9j = Yi " Tij
W= W+ 1ng

This is called stochastic gradient descent because the
overall gradient is approximated by the gradient from each
Individual example 28

Learning Rates and Convergence

1 The learning rate n must decrease to zero in order to guarantee
convergence. The online case is known as the Robbins-Munro
algorithm. It is guaranteed to converge under the following
assumptions:

lim =0
t—>oont

o0
>om 00
t=0

S 2
> nf
=0

1 The learning rate is also called the step size. Some algorithms (e.g.,
Newton’s method, conjugate gradient) choose the stepsize
automatically and converge faster

1 There is only one “basin” for linear threshold units, so a local
minimum is the global minimum. Choosing a good starting point can
make the algorithm converge faster

Decision Boundaries

1 A classifier can be viewed as partitioning the input space or feature
space X into decision regions

1 A linear threshold unit always produces a linear decision boundary.
A set of points that can be separated by a linear decision boundary
is said to be linearly separable.

Exclusive-OR is Not Linearly
Separable

Extending Perceptron to More than

Two Classes

1 If we have K > 2 classes, we can learn a
separate LTU for each class. Let w, be the
weight vector for class k. We train it by treating

examp
examp
other c

es from class y = k as the positive
es and treating the examples from all
asses as negative examples. Then we

classify a new data point x according to

Yy = argmaxwg. - X.
k

Summary of Perceptron algorithm
for LTUs

1 Directly Learns a Classifier
1 Local Search

— Begins with an initial weight vector. Modifies it
iterative to minimize an error function. The error
function is loosely related to the goal of minimizing

the number of classification errors

1 Eager

— The classifier is constructed from the training
examples

— The training examples can then be discarded

1 Online or Batch
— Both variants of the algorithm can be used

Logistic Regression

1 Learn the conditional distribution P(y | x)

1 Let p,(x; w) be our estimate of P(y | x), where w is a
vector of adjustable parameters. Assume only two
classes y=0and y =1, and

EXPpW-X
14+ expw-x

p1(x;w) =

po(x; w) =1 — p1(x; w).

1 On the homework, you will show that this is equivalent to

1 |In other words, the log odds of class 1 is a linear function

of X. ”

Why the exp function?

1 One reason: A linear function has a range from
[—00, oo] and we need to force it to be positive

and sum to 1 in order to be a probability:

Deriving a Learning Algorithm

1 Since we are fitting a conditional probability distribution, we no
longer seek to minimize the loss on the training data. Instead, we
seek to find the probability distribution h that is most likely given the
training data

1 Let S be the training sample. Our goal is to find h to maximize P(h |

S):
P(S|\h)P(h
argmax P(hlS) argmax Elfo)PGn) by Bayes' Rule
h h P(S)

= argmax P(S|h)P(h) because P(S) doesn't depend on h
h

argmax P(S|h) if we assume P(h) = unifom
h

argmax log P(S|h) because log is monotonic
h

The distribution P(S|h) is called the likelihood function. The log
likelihood is frequently used as the objective function for learning. Itis
often written as {(w).

The h that maximizes the likelihood on the training data is called the
maximum likelihood estimator (MLE) 2

Computing the Likelihood

1 In our framework, we assume that each training
example (x;,y:) is drawn from the same (but
unknown) probability distribution P(X,y). This
means that the log likelihood of S is the sum of
the log likelihoods of the individual training
examples:

log P(S|h) log | [P (x4, yih)
)

> log P(x;,y4|h)
')

Computing the Likelihood (2)

1 Recall that any joint distribution P(a,b) can be
factored as P(a|b) P(b). Hence, we can write

argmaxlogP(S|h) = argmax) logP(x;,y;h)
h h -

= argmax) log P (y;|x;, h) P(x;|h)
h i

1 |[n our case, P(x | h) = P(x), because it does not
depend on h, so

argmaxlogP(S|h) = argmax) log P (y;|x;, h)P(x;|h)
h h ;

= argmax» _logP(y;|x;, h)
h i

Log Likelihood for Conditional
Probability Estimators

1 \We can express the log likelihood in a compact
form known as the cross entropy.

1 Consider an example (x;, V)
— If y; = 0, the log likelihood is log [1 — p4(X; W)]

— if y, =1, the log likelihood is log [p,(X; wW)]

1 These cases are mutually exclusive, so we can
combine them to obtain:
Wy x;,w) = log P(y; | x,w) = (1 = y) log[1 — p,(X;w)] +y; log p4(x;w)

1 The goal of our learning algorithm will be to find
w to maximize

Jw) = 2 {y;; x;,w)

Fitting Logistic Regression by
Gradient Ascent

0
7 Ow;
0

5.~ (1= i) log[1 — p1(xi; w)] + y110gp1 (xi; w))
J

(1—y) 1 (_8291(3%; W)) 4y 1 <3p1(Xz‘; W))

1 —p1(x;;w) ow; "p1(x4; W)
v (1-y)] (3p1(X¢;W)>
p1(xiw) 1—pr(x;w) Ow;
;i (1 —pr(x;w)) — (1 —y)p1(x;; W)] <5p1(Xz';W))
p1(x;; w)(1 — p1(x;;,w))
y; — p1(X;; W) <5P1(Xz‘; W))

| p1(x5; W)(1 — p1(xi;w))

8wj

8fwj

ow j

Gradient Computation (continued)

1 Note that p, can also be written as

1
(14 exp[—w - Xz])

p1(x;;w) =

1 From this, we obtain:

Op1 (xi; W) 1 9
— . 1 _ . Z
8wj (1 + exp[—w - XZ])Qawj(+ exp[-w - x;])

1 0

el w0

(14 exp[—w - x])?
p1(xi; W)(1 — p1(x4;, W)) x5

exp[—w - x;](—x;;)

Completing the Gradient
Computation

1 The gradient of the log likelihood of a
single point is therefore

iﬁ(yi;xi,W) . y; — p1(X;; W) | <8p1(Xi;W))

Ow; | p1(x;; W)(1 —p1(x;; W) Ow;

- pl(Xi;?JiV;(zil(_X;\?(v}zi;w)) p1 (x5 W)(1 — p1(x4; W))xi;

= (yi — p1(xs W)y

1 The overall gradient is

8;(@ = Y (y; — p1(xi; W) 2
W; 1

Batch Gradient Ascent for Logistic Regression

Given: training examples (x;,4;), i=1...N
Letw=(0,0,0,0,...,0) be the initial weight vector.
Repeat until convergence
Let g =(0,0,...,0) be the gradient vector.
For:=1 to N do
pi = 1/(1+ exp[—w - x;])
error; = y; — p;
For =1 to n do
gj = 9gj + error; - Tij
W =W+ ng step in direction of increasing gradient

1 An online gradient ascent algorithm can be constructed, of course

1 Most statistical packages use a second-order (Newton-Raphson)
algorithm for faster convergence. Each iteration of the second-order
method can be viewed as a weighted least squares computation, so

the algorithm is known as lteratively-Reweighted Least Squares
(IRLS)

Logistic Regression Implements a
Linear Discriminant Function

1 In the 2-class 0/1 loss function case, we should

predicty =1 if

Ey|x[L(O>)]
> P(ylx)L(0,y)
Yy

P(y = 0[x)L(0,0) + P(y = 1|x)L(0, 1)
P(y = 1[x)
P(y = 1/x)

P(y = 0]x)
P(y = 1|x)

log
P(y = 0|x)

W - X

Ey|x[L(17y)]
> Pyx)L(1,y)
Yy

P(y =0[x)L(1,0) + P(y = 1|x)L(1,1)
P(y = 0]x)

1 ifP(y=0|X)#0

o)
o)

1 A similar derivation can be done for arbitrary

L(0,1) and L(1,0).

Extending Logistic Regression to K > 2 classes

1 Choose class K to be the “reference class” and
represent each of the other classes as a logistic
function of the odds of class k versus class K:

P(y=1]x) _

P(y= Kx)

P(y=2x) _
P(y = K|x)

log

log

Ply=K-1[x)
P(y = K[x)

log = WK_1-X

1 Gradient ascent can be applied to
simultaneously train all of these weight vectors
Wi

Logistic Regression for K > 2 (continued)

1 The conditional probability for class k # K can be
computed as

Py = k|x) = 2y 5

14+ Zg{:_ll exp(wy - X)

1 For class K, the conditional probability is

1

P = K —
(y |X) 1+ Zg(:—ll eXD(Wg _ X)

Summary of Logistic Regression

1 |earns conditional probability distribution P(y | x)

1 Local Search

— begins with initial weight vector. Modifies it iteratively
to maximize the log likelihood of the data

1 Eager

— the classifier is constructed from the training
examples, which can then be discarded

1 Online or Batch
— both online and batch variants of the algorithm exist

Linear Discriminant Analysis

1 Learn P(X,y). This is sometimes
called the generative approach,
because we can think of P(x,y) as a
model of how the data is generated.

— For example, if we factor the joint

distribution into the form
P(X,y) = P(y) P(x | y)

— we can think of P(y) as “generating” a
value for y according to P(y). Then we
can think of P(x | y) as generating a value
for x given the previously-generated
value for y.

— This can be described as a Bayesian
network

Linear Discriminant Analysis (2)

1 P(y) is a discrete multinomial distribution
— example: P(y = 0)=0.31, P(y = 1) = 0.69 will
generate 31% negative examples and 69%
positive examples
1 For LDA, we assume that P(x | y) is a
multivariate normal distribution with
mean , and covariance matrix X

1

P&y =R = Gyzsiz &

0

h 4
@

p (—%[X — P x — Mk])

Multivariate Normal Distributions:
A tutorial

1 Recall that the univariate normal (Gaussian) distribution has the formula
1 1(x—p)?
oxp | L& = 1)]
(27)1/ 24

p(z) = 5 2

1 where pu is the mean and o2 is the variance
1 Graphically, it looks like this:

The Multivariate Gaussian

1 A 2-dimensional Gaussian is defined by a
mean vector u = (u4,l,) and a covariance
matrix

2 2
o 0}
s — | 71,1 912
{ £ 5 }

012 022

variance (if / =) or co-variance (if i #j). X
Is symmetrical and positive-definite.

The Multivariate Gaussian (2)

1 O

01 and

1 If X is the identity matrix >~ = {

u = (0, 0), we get the standard norma
distribution:

The Multivariate Gaussian (3)

1 If X is a diagonal matrix, then x,, and x, are independent random
variables, and lines of equal probability are ellipses parallel to the
coordinate axes. For example, when

Z:[Q O} and

O 1
u = (2, 3) we obtain

P(x1,x2)

The Multivariate Gaussian (4)

1 Finally, if Z is an arbitrary matrix, then x, and x, are
dependent, and lines of equal probability are eﬁipses

tilted relative to the coordinate axes. For example, when

z:[2 0.5] and

0.5 1
1 = (2,3) we obtain

Estimating a Multivariate Gaussian

1 Given a set of N data points {x,;, ... we can compute
the maximum likelihood estimate for tHe
Gaussian distribution as follows:

5>

N 1

=36 —) G —)T
)

multivariate

1 Note that the dot product in the second equation is an
outer product. The outer product of two vectors is a
matrix:

- [wﬂ [w1y1 T1Y2 ww:—;]
Xy = { o J ly1 yo y3] = [ToY1 T2Y2 T2Y3 J
T3 T3Y1 T3Y2 T3Y3

1 For comparison, the usual dot product is written as x'- y
65

The LDA Model

1 Linear discriminant analysis assumes that the
joint distribution has the form

1
(2m)n/2|x|1/2

exp <—%[X — P = x - Hy])

P(x,y) = P(y)

where each p, is the mean of a multivariate
Gaussian for examples belonging to class y and
2. IS a single covariance matrix shared by all
classes.

Fitting the LDA Model

1 |t is easy to learn the LDA model in a single pass
through the data:
— Let 71, be our estimate of P(y = k)
— Let N, be the number of training examples belonging to class k.
N
N
1

— ¥ x

Nk fi:gomk)

)T

1 N .
I %:(Xz' — y;) - (X5 — [y,

1 Note that each x; is subtracted from its corresponding Ly,
prior to taking the outer product. This gives us the
“‘pooled” estimate of X

LDA learns an LTU

1 Consider the 2-class case with a 0/1 loss function. Recall that
P(x,y = 0)

P(x,y=0)4+ P(x,y = 1)
P(x,y=1)

P(x,y=0)+ P(x,y = 1)

1 Also recall from our derivation of the Logistic Regression classifier
that we should classify into class y = 1 if

P(y=0x) =

Ply=1[x) =

|OgP(y=1IX) - 0
P(y = 0|x)

1 Hence, for LDA, we should classify intoy = 1 if
P(x,y =1)

log > 0

because the denominators cancel

LDA learns an LTU (2)

1
(27r)n/2|2|1/2

P(xy) = P@) exp (=5 bx — il 7= —]

Pxy=1) FPWw= 1)(2ﬂ)n/§|z|1/2 exp (—5[x — p1] T x — pq))

P(x,y =0) Py = o)(%)n/gml/2 exp (—3[x — po) T x — po))

Px,y=1) Ply=1) exp(—3[x — p1]"E1x — p])
P(x,y=0) P(y=0) exp (—3[x — po] "=~ 1[x — po])

Px,y=1) _ _ P(y=1)
SPry=0 ~ 9PE=0)

a % (Ix — pa]l "= x — pa] — [x — pol "= x — pol)

lO

LDA learns an LTU (3)

1 |et's focus on the term in brackets:
(Ix = pa]" =7 e — pg] = [x — pol " = x — pgl)

1 Expand the quadratic forms as follows:
x—pi ' x -] = X x—xIE Ty i x pf

x—pol' T x—pol = X tx—xI T — pd T x + ud = o
1 Subtract the lower from the upper line and collect similar

terms. Note that the quadratic terms cancel! This
leaves only terms linear in X.

x? = (po—p1)+(po—p1)Z x4 pd T —pd = tuo

LDA learns an LTU (4)

x? = (po—p1)+(po—p1)Z x4 pd T —pd = tuo

1 Note that since X1 is symmetric aZs>—1b = bl 1a
for any two vectors a and b. Hence, the first two terms
can be combined to give

2x'E " (po — p1) + i = g — b= po.
1 Now plug this back in...

P(x,y=1) _ Py=1) 1 o1, Ts—1, _ Ts-—1

Py =0) 'ng(y:o) EPXz (o — p1) + 1 = Tp1 — pp = uo}
Pxy=1) _ | ,P=1)
P(x,y =0) P(y=0)

_ 1 _ 1 _
+ x'= " (g — po) - Eu{z Lul + Eugz e

LDA learns an LTU (5)

P(x,y=1) P(y =) !

Ie — lo xIs =Ly — _ iy I's—1
gP(X7y —0) gp(y — O) (1 — po) i R uo 10

> 1(u1 — po)

|0 — —uq 2 >
gp(y —0) SH1 u1 i u uo

we will classify into classy =1 if

w-X+c > 0.
Thisis an LTU.

Two Geometric Views of LDA
View 1: Mahalanobis Distance

1 The quantity D (X, u?=(x—u)l=1(x —u) is known as
the (squared) Mahalanobis distance between x and u. We can think
of the matrix X-' as a linear distortion of the coordinate system that
converts the standard Euclidean distance into the Mahalanobis
distance

Note that
1

09 P(xly = k) oc logm — S[(x —)" £ (x — pup)]

1
log P(x|ly = k) oc logmg — EDM(X,M@)Q

1 Therefore, we can view LDA as computing

- DM(Xa :UJO)Q clle DM<X7 Ml)z
and then classifying x according to which mean p, or ., is closest in
Mahalanobis distance (corrected by log m,)

73

View 2: Most Informative Low-
Dimensional Projection

1 LDA can also be viewed as finding a hyperplane of
dimension K — 1 such that x and the {u, } are projected
down into this hyperplane and then x is classified to the
nearest p, using Euclidean distance inside this
hyperplane

Generalizations of LDA

1 General Gaussian Classifier

— Instead of assuming that all classes share the same
2, we can allow each class k to have its own %,. In
this case, the resulting classifier will be a quadratic
threshold unit (instead of an LTU)

1 Nalve Gaussian Classifier

— Allow each class to have its own %,, but require that
each X, be diagonal. This means that within each
class, any pair of features x;; and x;, will be assumed
to be statistically independent. The resulting classifier
Is still a quadratic threshold unit (but with a restricted
form)

Summary of
Linear Discriminant Analysis

Learns the joint probability distribution P(x, y).

Direct Computation. The maximum likelihood estimate
of P(x,y) can be computed from the data without search.
However, inverting the X~ matrix requires O(n3) time.

Eager. The classifier is constructed from the training

examples. The examples can then be discarded.

Batch. Only a batch algorithm is available. An online
algorithm could be constructed if there is an online
algorithm for incrementally updated X-!. [This is easy for
the case where X is diagonal.]

Comparing Perceptron, Logistic
Regression, and LDA

1 How should we choose among these three
algorithms?

1 There is a big debate within the machine

learning community!

Issues In the Debate

1 Statistical Efficiency. If the generative model
P(X,y) is correct, then LDA usually gives the
highest accuracy, particularly when the amount
of training data is small. If the model is correct,
LDA requires 30% less data than Logistic
Regression in theory

1 Computational Efficiency. Generative models
typically are the easiest to learn. In our
example, LDA can be computed directly from the
data without using gradient descent.

Issues In the Debate

1 Robustness to changing loss functions. Both generative
and conditional probability models allow the loss function
to be changed at run time without re-learning.
Perceptron requires re-training the classifier when the
loss function changes.

Robustness to model assumptions. The generative
model usually performs poorly when the assumptions
are violated. For example, if P(x | y) is very non-
Gaussian, then LDA won’t work well. Logistic
Regression is more robust to model assumptions, and
Perceptron is even more robust.

Robustness to missing values and noise. In many
applications, some of the features x; may be missing or
corrupted in some of the training examples Generative
models typically provide better ways of handling this than
non-generative models.

