The Problem of Overtfitting

1
)
=
83
o
5
s
3
&
A
g
]
>

BR data: neural network with 20% classification noise, 307 training examples

Overfitting on BR (2)

g
&
Bt
B
i

8 Overfitting: h € H overfits training set S if there exists h’ € H that
has higher training set error but lower test error on new data points.
(More specifically, if learning algorithm A explicitly considers and
rejects h’ in favor of h, we say that A has overfit the data.)

Overfitting

H1CH2CH3C"‘

1 If we use an hypothesis space H, that is too large,
eventually we can trivially fit the training data. In other
words, the VC dimension will eventually be equal to the
size of our training sample m.

1 This is sometimes called “model selection”, because we
can think of each H, as an alternative “model” of the data

Approaches to Preventing
Overfitting

1 Penalty methods
— MAP provides a penalty based on P(H)
— Structural Risk Minimization
— Generalized Cross-validation
— Akaike’s Information Criterion (AlIC)

1 Holdout and Cross-validation methods
— Experimentally determine when overfitting occurs

1 Ensembles
— Full Bayesian methods vote many hypotheses

2n P(ylx,h) P(h[S)
— Many practical ways of generating ensembles

Penalty methods

Let .., D€ our training set error and ¢, be our test
error. Our real goal is to find the h that minimizes ¢,.
The problem is that we can’t directly evaluate ¢,.,. We
can measure g, but it is optimistic

Penalty methods attempt to find some penalty such that
Etest — Ctrain b penalty

The penalty term is also called a reqularizer or
reqularization term.

During training, we set our objective function J to be
J(W) N Strain(W) i penalty(w)
and find the w to minimize this function

MAP penalties

hmap = @argmax,, P(S|h) P(h)

1 As h becomes more complex, we can assign it a lower
prior probability. A typical approach is to assign equal
probability to each of the nested hypothesis spaces so
that

P(heH;)=P(heH,)=--=a
Because H, contains more hypotheses than H,, each
individual h € H, will have lower prior probability:

P(h) = 2. P(h € H) = 2. o/|H,| for each i where h € H.
If there are infinitely many H,, this will not work, because
the probabilities must sum to 1. In this case, a common
approach is

P(h) = X, 27/|H| for each i where h € H.
This is not usually a big enough penalty to prevent
overfitting, however

Structural Risk Minimization

1 Define regularization penalty using PAC theory

4 2 4
e <= 26’5—'4—% di. 109 sm | |093
k

5 1
og-m + log—
m vy)

C R2 2
= C[R+ 162,

Bound on test set error

Upper bound of confidence interval
on training set error

Training set error

Other Penalty Methods

1 Generalized Cross Validation
1 Akaike’s Information Criterion

1 Mallow's P
1 ...

Simple Holdout Method

8 Subdivide Sinto S,...., and S

train eval

1 For each H, find h, € H, that best fits S
1 Measure the error rate of each h,on S
1 Choose h; with the best error rate

train

eval

Example: let H. be the set
of neural network weights
after i epochs of training

on Strain

Our goal is to choose i

Error Rate

Simple Holdout Assessment

1 Advantages

— Guaranteed to perform within a constant factor of any
penalty method (Kearns, et al., 1995)

— Does not rely on theoretical approximations

1 Disadvantages
- S

wain 1S SMaller than S, so h is likely to be less
accurate

— If S, Is too small, the error rate estimates will be
Very noisy

1 Simple Holdout is widely applied to make other
decisions such as learning rates, number of
hidden units, SVM kernel parameters relative
size of penalty, which features to include, feature
encoding methods, etc.

k-fold Cross-Validation to
determine H,

1 Randomly divide S into k equal-sized subsets

1 Run learning algorithm k times, each time use
one subset for S_ ., and the rest for S

1 Average the results

train

s1 1 2 sS4 1 S5
1 1
T T
1 1
i i
i i i
1 1

K-fold Cross-Validation to determine H,

1 Partition S into K disjoint subsets S, S,, ..., S,

i Repeat simple holdout assessment K times

— In the k-th assessment, S, =S - S, and S_ , = S,
— Let hX be the best hypothesis from H, from iteration k.

— Let ¢ be the average S, of hX over the K iterations

— Leti" = argmin, ¢,
1 Train on S using H» and output the resulting
hypothesis |

o 1 2 3 4 5 6 7 8 9

Ensembles

Bayesian Model Averaging. Sample hypotheses h,

according to their posterior probability P(h|S). Vote
them. A method called Markov chain Monte Carlo

(MCMC) can do this (but it is quite expensive)

Bagqing. Overfitting is caused by high variance.
Variance reduction methods such as bagging can help.
Indeed, best results are often obtained by bagging
overfitted classifiers (e.g., unpruned decision trees, over-
trained neural networks) than by bagging well fitted
classifiers (e.g., pruned trees).

Randomized Committees. We can train several
hypotheses h, using different random starting weights for
backpropagatlon

Random Forests. Grow many decision trees and vote
them. When growing each tree, randomly (at each
node) choose a subset of the available features (e.g., \n
out of n features). Compute the best split using only
those features.

Overfitting Summary

Minimizing training set error (g,,;,) does not necessarily

minimize test set error (g,.)-

— This is true when the hypothesis space is too large (too
expressive)

Penalty methods add a penalty to g, to approximate

8test

— Bayesian, MDL, and Structural Risk Minimization

Holdout and Cross-Validation methods without a subset
of the training data, S, to determine the proper
hypothesis space H, and its complexity

Ensemble Methods take a combination of several
hypotheses, which tends to cancel out overfitting errors

Penalty Methods for decision trees,
neural networks, and SVMs

1 Decision Trees
— pessimistic pruning
— MDL pruning

1 Neural Networks

— weight decay
— weight elimination
— pruning methods
1 Support Vector Machines
— maximizing the margin

Pessimistic Pruning of Decision Trees

1 Error rate on training data is 4/20 = 0.20 = p. /

1 Binomial confidence interval (using the
normal approximation to the binomial
distribution) is

p—za/z\/p(l D = = p+za/2-\/p(1)

4

n n

1 |f we use o = 0.25, thenz_,, = 1.150 so we
obtain
0.097141 < p < 0.302859

1 \We use the upper bound of this as our error

rate estimate. Hence, we estimate
0.302859 x 20 = 6.06 errors

Pruning Algorithm (1):
Traversing the Tree

float Prune(Node & node)

{
If (node.leaf) return PessError(node);
float childError = Prune(node.left) + Prune(node.right);
float prunedError = PessError(node);

if (prunedError < childError) { // prune
node.leaf = true;
node.left = node.right = NULL,;
return prunedError}

else // don't prune
return childError;

}

Pruning Algorithm (2):
Computing the Pessimistic Error

const float zalpha2 = 1.150; // p = 0.25 two-sided
float PessError(Node & node)
{
float n = node.class[0] + node.class[1];
float nl =n + 2.0;
float wrong = min(node.class[0], node.class[1]) + 1.0;
// Laplace estimate of error rate
float p = wrong / nl;
return n * (p + zalpha2 * sqrt(p * (1.0 - p) / n));

Pessimistic Pruning Example

Penalty methods for Neural
Networks

1 \Weight Decay
1
VIUSE 5(@@ —yi)? + AZw]?
J

1 \Weight Elimination

TW) = (5~ v+ A Ay

W, large encourages many small weights
w, small encourages a few large weights

Weight Elimination

1 This essentially counts the number of large weights. Once they are
large enough, their penalty does not change

Neural Network Pruning Methods:

Optimal Brain Damage
(LeCun, Denker, Solla, 1990)

Taylor's Series Expansionof the Squared Error:

1 1
J j j£k
where

(W)

02 J(W)
gj = =

— dw 0wy,

811)] and h]k

At a local minimum, 9; = 0.
Assume off-diagonal terms hj i = 0

AJ(W) = % >~ hjj(Aw))?
J

If we set w; = 0, the error will change by
12

Optimal Brain Damage Procedure

. Choose a reasonable network architecture

. Train the network until a reasonable solution is
obtained

. Compute the second derivatives h; for each
weight w,
. Compute the saliencies for each weight h,w}/2

. Sort the weights by saliency and delete some
low-saliency weights

Repeat from step 2

OBD Results

1 On an OCR problem, they started with a highly-
constrained and sparsely connected network
with 2,578 weights, trained on 9300 training
examples. They were able to delete more than
1000 weights without hurting training or test

error.

1 Optimal Brain Surgeon attempts to do this
before reaching a local minimum

1 Experimental evidence is mixed about whether
this reduced overfitting, but it does reduce the
computational cost of using the neural network

Penalty Methods for Support Vector
Machines

1 Our basic SVM tried to fit the training data perfectly

(possibly by using kernels). However, this will quickly
lead to overfitting.

1 Recall margin-based bound. With probability 1 — 0, a
linear separator with unit weight vector and margin y on
training data lying in a ball of radius R will have an error
rate on new data points bounded by

1

C D2 2
C IR +2H£H 0g2m + log +
L F 0

For some constant C. € is the margin slack vector such
that

& = max{0,y — y;g(x;) }

Preventing SVM Overfitting

1 Maximize margin vy
1 Minimize slack vector ||&||
1 Minimize R

1 The (reciprocal) of the margin acts as a
penalty to prevent overfitting

Functional Margin versus
Geometric Margin
1 Functional margin: y; =y, - w - X
1 Geometric margin: vy, = yf/ [|w|
The margin bound applies only to the

geometric margin vy,

1 The functional margin can be made
arbitrarily large by rescaling the weight
vector, but the geometric margin is
invariant to scaling

Intermission: Geometry of Lines

1 Consider the linew - x + b =0, where ||w|| =1 s
a vector of unit length. Then the minimum
distance to the origin is b.

Geometry of a Margin

1If a point x* Is a distance y away from the
line, then itlieson thelinew - x +b =y

The Geometric Margin is the
Inverse of |[w]

1 Lemma: yy = 1/||w]|

1 Proof:

— Let w be an arbitrary weight vector such that the
positive point x* has a functional margin of 1. Then
w-x*+b=1
— Now normalize this equation by dividing by ||w]|.
W 4+ b 1

E— | p— p— fyg
Il Iwil - [lwl

— Implication: We can hold the functional margin at 1
and minimize the norm of the weight vector

Support Vector Machine Quadratic
Program

1Find w
1 Minimize |[w||?
1 Subject to
Yi- (W -X;+b)>1

1 This requires every training example to
have a functional margin of at least 1 and
then maximizes the geometric margin.
However it still requires perfectly fitting the

data

Handling Non-Separable Data:
Introduce Margin Slack Variables

1 Find: w, &
1 Minimize: |[w]|? + C||E||?
1 Subject to:

y.-(W-x +b)+§& >1

— & Is positive only if example x; does not have a
functional margin of at least 1

— ||€]|? measures how well the SVM fits the training data
— ||w||? is the penalty term

— C is the tradeoff parameter that determines the
relative weight of the penalty compared to the fit to
the data

Kernel Trick Form of SVM

1 To apply the Kernel Trick, we need to
reformulate the SVM quadratic program so
that it only involves dot products between
training examples. This can be done by
an operation called the Lagrange Dual

Lagrange Dual Problem

1Find ¢,
1 Minimize

20— 72 25 25 Y, Y o o [X - X + 8/C]
1 Subject to

swhere ¢; = 1ifi=jand 0 otherwise.

Kernel Trick Form

1Find o,
1 Minimize

2 05— 72 24 24 ¥ ¥y o4 o [K(X;,%;) + 8/C]
1 Subject to

swhere ¢; = 1ifi=jand 0 otherwise.

Resulting Classifier

1 The resulting classifier is
f(x) =2, y; o; K(x;, X) + b
where b is chosen by finding an 1 with
o > 0 and solving
y. f(x) =1 —-a/C
for f(x;)

Variations on the SVM Problem:
Variation 1: Use L, norm of &

1 This is the “official” SVM, which was
originally published by Vapnik and Cortes

1 Find: w, &

2 Minimize: ||w|[? + C||]
1 Subject to:
yi.(W.Xi+b)+§i>1

Dual Form of L, SVM

iIFind o,
IMinimize

25 04— 72 25 24 Vi ¥ oy oy K(X,X))
1Subject to

2iYi0=0

C>a,>0

Variation 2:
Linear Programming SVMs
Use L, norm for w too

i Find u,v, ¢
1 Minimize X u +X;v, +C X &
1 Subject to

Yi- ((U=V)-X+Db)+&>1

1 The kernel form of this is

1 Find o &

1 Minimize 2. o; + C X &

1 Subject to
2 oy Yy Y KX, xp) + & > 1
o; > 0

Setting the Value of C

1 We see that the full SVM algorithm requires
choosing the value of C, which controls the
tradeoff between fitting the data and obtaining a
large margin.

1 To set C, we could train an SVM with different
values of C and plug the resulting C, vy, and &
into the margin bounds theorem to choose the C
that minimizes the bound on «.

1 In practice, this does not work well, and we must
rely on holdout methods (next lecture).

