
The Problem of OverfittingThe Problem of Overfitting

BR data: neural network with 20% classification noise, 307 training examples



Overfitting on BR (2)Overfitting on BR (2)

Overfitting:  Overfitting:  hh ∈∈ H overfits training set S if there exists H overfits training set S if there exists hh’’ ∈∈ H that H that 
has higher training set error but lower test error on new data phas higher training set error but lower test error on new data points.  oints.  
(More specifically, if learning algorithm A explicitly considers(More specifically, if learning algorithm A explicitly considers and and 
rejects rejects hh’’ in favor of in favor of hh, we say that A has overfit the data.), we say that A has overfit the data.)



OverfittingOverfitting

If we use an hypothesis space HIf we use an hypothesis space Hii that is too large, that is too large, 
eventually we can trivially fit the training data.  In other eventually we can trivially fit the training data.  In other 
words, the VC dimension will eventually be equal to the words, the VC dimension will eventually be equal to the 
size of our training sample size of our training sample mm..
This is sometimes called This is sometimes called ““model selectionmodel selection””, because we , because we 
can think of each Hcan think of each Hii as an alternative as an alternative ““modelmodel”” of the dataof the data

H1 ⊂ H2 ⊂ H3 ⊂L



Approaches to Preventing Approaches to Preventing 
OverfittingOverfitting

Penalty methodsPenalty methods
–– MAP provides a penalty based on P(H)MAP provides a penalty based on P(H)
–– Structural Risk MinimizationStructural Risk Minimization
–– Generalized CrossGeneralized Cross--validationvalidation
–– AkaikeAkaike’’s Information Criterion (AIC)s Information Criterion (AIC)

Holdout and CrossHoldout and Cross--validation methodsvalidation methods
–– Experimentally determine when overfitting occursExperimentally determine when overfitting occurs

EnsemblesEnsembles
–– Full Bayesian methods vote many hypotheses Full Bayesian methods vote many hypotheses 
∑∑hh P(y|P(y|xx,h) P(h|S),h) P(h|S)

–– Many practical ways of generating ensemblesMany practical ways of generating ensembles



Penalty methodsPenalty methods
Let Let εεtraintrain be our training set error and be our training set error and εεtesttest be our test be our test 
error.  Our real goal is to find the error.  Our real goal is to find the hh that minimizes that minimizes εεtesttest.  .  
The problem is that we canThe problem is that we can’’t directly evaluate t directly evaluate εεtesttest.  We .  We 
can measure can measure εεtraintrain, but it is optimistic, but it is optimistic
Penalty methods attempt to find some penalty such thatPenalty methods attempt to find some penalty such that

εεtesttest = = εεtraintrain + penalty+ penalty

The penalty term is also called a The penalty term is also called a regularizerregularizer or or 
regularization termregularization term..
During training, we set our objective function J to beDuring training, we set our objective function J to be

J(J(ww) = ) = εεtraintrain((ww) + penalty() + penalty(ww))

and find the and find the ww to minimize this functionto minimize this function



MAP penaltiesMAP penalties
hhmapmap = argmax= argmaxhh P(S|h) P(h)P(S|h) P(h)

As As hh becomes more complex, we can assign it a lower becomes more complex, we can assign it a lower 
prior probability.  A typical approach is to assign equal prior probability.  A typical approach is to assign equal 
probability to each of the nested hypothesis spaces so probability to each of the nested hypothesis spaces so 
thatthat

P(h P(h ∈∈ HH11) = P(h ) = P(h ∈∈ HH22) = ) = LL = = αα
Because HBecause H22 contains more hypotheses than Hcontains more hypotheses than H11, each , each 
individual h individual h ∈∈ HH22 will have lower prior probability:will have lower prior probability:

P(h) = P(h) = ∑∑ii P(h P(h ∈∈ HHii) = ) = ∑∑ii αα/|H/|Hii| for each i where h | for each i where h ∈∈ HHii

If there are infinitely many Hi, this will not work, because 
the probabilities must sum to 1.  In this case, a common 
approach is

P(h) = ∑i 2-i/|Hi| for each i where h ∈ Hi

This is not usually a big enough penalty to prevent 
overfitting, however



Structural Risk MinimizationStructural Risk Minimization
Define regularization penalty using PAC theoryDefine regularization penalty using PAC theory
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Other Penalty MethodsOther Penalty Methods

Generalized Cross ValidationGeneralized Cross Validation
AkaikeAkaike’’s Information Criterions Information Criterion
MallowMallow’’s Ps P
……



Simple Holdout MethodSimple Holdout Method
Subdivide S into SSubdivide S into Straintrain and Sand Sevaleval
For each HFor each Hii, find h, find hii ∈∈ HHii that best fits Sthat best fits Straintrain
Measure the error rate of each hMeasure the error rate of each hii on Son Sevaleval
Choose hChoose hii with the best error ratewith the best error rate

Example: let Hi be the set 
of neural network weights 
after i epochs of training 
on Strain

Our goal is to choose i



Simple Holdout AssessmentSimple Holdout Assessment
AdvantagesAdvantages
–– Guaranteed to perform within a constant factor of any Guaranteed to perform within a constant factor of any 

penalty method (Kearns, et al., 1995)penalty method (Kearns, et al., 1995)
–– Does not rely on theoretical approximationsDoes not rely on theoretical approximations

DisadvantagesDisadvantages
–– SStraintrain is smaller than S, so is smaller than S, so hh is likely to be less is likely to be less 

accurateaccurate
–– If SIf Sevaleval is too small, the error rate estimates will be is too small, the error rate estimates will be 

very noisyvery noisy
Simple Holdout is widely applied to make other Simple Holdout is widely applied to make other 
decisions such as learning rates, number of decisions such as learning rates, number of 
hidden units, SVM kernel parameters, relative hidden units, SVM kernel parameters, relative 
size of penalty, which features to include, feature size of penalty, which features to include, feature 
encoding methods, etc.encoding methods, etc.



kk--fold Crossfold Cross--Validation to Validation to 
determine Hdetermine Hii

Randomly divide S into k equalRandomly divide S into k equal--sized subsetssized subsets
Run learning algorithm k times, each time use Run learning algorithm k times, each time use 
one subset for Sone subset for Sevaleval and the rest for Sand the rest for Straintrain

Average the resultsAverage the results



KK--fold Crossfold Cross--Validation to determine HValidation to determine Hii

Partition S into K disjoint subsets SPartition S into K disjoint subsets S11, S, S22, , ……, S, Skk
Repeat simple holdout assessment K timesRepeat simple holdout assessment K times
–– In the In the kk--th assessment, Sth assessment, Straintrain = S = S –– SSkk and Sand Sevaleval = S= Skk
–– Let Let hhii

kk be the best hypothesis from Hbe the best hypothesis from Hii from iteration k.from iteration k.
–– Let Let εεii be the average Sbe the average Sevaleval of of hhii

kk over the K iterationsover the K iterations
–– Let iLet i** = argmin= argminii εεii

Train on S using HTrain on S using Hii** and output the resulting and output the resulting 
hypothesishypothesis
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EnsemblesEnsembles
Bayesian Model AveragingBayesian Model Averaging.  Sample hypotheses .  Sample hypotheses hhii
according to their posterior probability P(according to their posterior probability P(hh|S).  Vote |S).  Vote 
them.  A method called Markov chain Monte Carlo them.  A method called Markov chain Monte Carlo 
(MCMC) can do this (but it is quite expensive)(MCMC) can do this (but it is quite expensive)
BaggingBagging.  Overfitting is caused by high variance.  .  Overfitting is caused by high variance.  
Variance reduction methods such as bagging can help.  Variance reduction methods such as bagging can help.  
Indeed, best results are often obtained by bagging Indeed, best results are often obtained by bagging 
overfitted classifiers (e.g., unpruned decision trees, overoverfitted classifiers (e.g., unpruned decision trees, over--
trained neural networks) than by bagging welltrained neural networks) than by bagging well--fitted fitted 
classifiers (e.g., pruned trees).classifiers (e.g., pruned trees).
Randomized CommitteesRandomized Committees.  We can train several .  We can train several 
hypotheses hypotheses hhii using different random starting weights for using different random starting weights for 
backpropagationbackpropagation
Random ForestsRandom Forests.  Grow many decision trees and vote .  Grow many decision trees and vote 
them.  When growing each tree, randomly (at each them.  When growing each tree, randomly (at each 
node) choose a subset of the available features (e.g., node) choose a subset of the available features (e.g., √√nn
out of out of nn features).  Compute the best split using only features).  Compute the best split using only 
those features.those features.



Overfitting SummaryOverfitting Summary
Minimizing training set error (Minimizing training set error (εεtraintrain) does not necessarily ) does not necessarily 
minimize test set error (minimize test set error (εεtesttest).).
–– This is true when the hypothesis space is too large (too This is true when the hypothesis space is too large (too 

expressive)expressive)
Penalty methods add a penalty to Penalty methods add a penalty to εεtraintrain to approximate to approximate 
εεtesttest
–– Bayesian, MDL, and Structural Risk MinimizationBayesian, MDL, and Structural Risk Minimization

Holdout and CrossHoldout and Cross--Validation methods without a subset Validation methods without a subset 
of the training data, Sof the training data, Sevaleval, to determine the proper , to determine the proper 
hypothesis space Hhypothesis space Hii and its complexityand its complexity
Ensemble Methods take a combination of several Ensemble Methods take a combination of several 
hypotheses, which tends to cancel out overfitting errorshypotheses, which tends to cancel out overfitting errors



Penalty Methods for decision trees, Penalty Methods for decision trees, 
neural networks, and SVMsneural networks, and SVMs

Decision TreesDecision Trees
–– pessimistic pruningpessimistic pruning
–– MDL pruningMDL pruning
Neural NetworksNeural Networks
–– weight decayweight decay
–– weight eliminationweight elimination
–– pruning methodspruning methods
Support Vector MachinesSupport Vector Machines
–– maximizing the marginmaximizing the margin



Pessimistic Pruning of Decision TreesPessimistic Pruning of Decision Trees

Error rate on training data is 4/20 = 0.20 = p.Error rate on training data is 4/20 = 0.20 = p.
Binomial confidence interval (using the Binomial confidence interval (using the 
normal approximation to the binomial normal approximation to the binomial 
distribution) isdistribution) is

If we use If we use αα = 0.25, then z= 0.25, then zαα/2/2 = 1.150 so we = 1.150 so we 
obtainobtain

0.097141 0.097141 ·· p p ·· 0.3028590.302859

We use the upper bound of this as our error We use the upper bound of this as our error 
rate estimate.  Hence, we estimate rate estimate.  Hence, we estimate 
0.302859 0.302859 ×× 20 = 6.06 errors20 = 6.06 errors
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Pruning Algorithm (1):Pruning Algorithm (1):
Traversing the TreeTraversing the Tree

float Prune(Node & node)float Prune(Node & node)
{{
if (node.leaf) return PessError(node);if (node.leaf) return PessError(node);
float childError = Prune(node.left) + Prune(node.right);float childError = Prune(node.left) + Prune(node.right);
float prunedError = PessError(node);float prunedError = PessError(node);
if (prunedError < childError) {  // pruneif (prunedError < childError) {  // prune
node.leaf = true;node.leaf = true;
node.left = node.right = NULL;node.left = node.right = NULL;
return prunedError}return prunedError}

else  // don't pruneelse  // don't prune
return childError;return childError;

}}



Pruning Algorithm (2):Pruning Algorithm (2):
Computing the Pessimistic ErrorComputing the Pessimistic Error

const float zalpha2 = 1.150; // p = 0.25 twoconst float zalpha2 = 1.150; // p = 0.25 two--sidedsided
float PessError(Node & node)float PessError(Node & node)
{{
float n = node.class[0] + node.class[1];float n = node.class[0] + node.class[1];
float nl = n + 2.0;float nl = n + 2.0;
float wrong = min(node.class[0], node.class[1]) + 1.0;float wrong = min(node.class[0], node.class[1]) + 1.0;
// Laplace estimate of error rate// Laplace estimate of error rate
float p =  wrong / nl;float p =  wrong / nl;
return n * (p + zalpha2 * sqrt( p * (1.0 return n * (p + zalpha2 * sqrt( p * (1.0 -- p) / n));p) / n));

}}



Pessimistic Pruning ExamplePessimistic Pruning Example



Penalty methods for Neural Penalty methods for Neural 
NetworksNetworks

Weight DecayWeight Decay

Weight EliminationWeight Elimination

ww00 large encourages many small weightslarge encourages many small weights
ww00 small encourages a few large weightssmall encourages a few large weights
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Weight EliminationWeight Elimination

This essentially counts the number of large weights.  Once they This essentially counts the number of large weights.  Once they are are 
large enough, their penalty does not changelarge enough, their penalty does not change



Neural Network Pruning Methods:Neural Network Pruning Methods:
Optimal Brain DamageOptimal Brain Damage

(LeCun, Denker, Solla, 1990)(LeCun, Denker, Solla, 1990)

Taylor’s Series Expansionof the Squared Error:
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Optimal Brain Damage ProcedureOptimal Brain Damage Procedure

1.1. Choose a reasonable network architectureChoose a reasonable network architecture
2.2. Train the network until a reasonable solution is Train the network until a reasonable solution is 

obtainedobtained
3.3. Compute the second derivatives hCompute the second derivatives hjjjj for each for each 

weight wweight wjj

4.4. Compute the saliencies for each weight hCompute the saliencies for each weight hjjjjwwjj}}22/2/2
5.5. Sort the weights by saliency and delete some Sort the weights by saliency and delete some 

lowlow--saliency weightssaliency weights
6.6. Repeat from step 2Repeat from step 2



OBD ResultsOBD Results
On an OCR problem, they started with a highlyOn an OCR problem, they started with a highly--
constrained and sparsely connected network constrained and sparsely connected network 
with 2,578 weights, trained on 9300 training with 2,578 weights, trained on 9300 training 
examples.  They were able to delete more than examples.  They were able to delete more than 
1000 weights without hurting training or test 1000 weights without hurting training or test 
error.error.
Optimal Brain Surgeon attempts to do this Optimal Brain Surgeon attempts to do this 
before reaching a local minimumbefore reaching a local minimum
Experimental evidence is mixed about whether Experimental evidence is mixed about whether 
this reduced overfitting, but it does reduce the this reduced overfitting, but it does reduce the 
computational cost of using the neural networkcomputational cost of using the neural network



Penalty Methods for Support Vector Penalty Methods for Support Vector 
MachinesMachines

Our basic SVM tried to fit the training data perfectly Our basic SVM tried to fit the training data perfectly 
(possibly by using kernels).  However, this will quickly (possibly by using kernels).  However, this will quickly 
lead to overfitting.lead to overfitting.
Recall marginRecall margin--based bound.  With probability 1 based bound.  With probability 1 –– δδ, a , a 
linear separator with unit weight vector and margin linear separator with unit weight vector and margin γγ on on 
training data lying in a ball of radius R will have an error training data lying in a ball of radius R will have an error 
rate on new data points bounded by rate on new data points bounded by 
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For some constant C.  ξ is the margin slack vector such 
that

ξi =max{0, γ − yig(xi)}



Preventing SVM OverfittingPreventing SVM Overfitting

Maximize margin Maximize margin γγ
Minimize slack vector ||Minimize slack vector ||ξξ||||
Minimize RMinimize R

The (reciprocal) of the margin acts as a The (reciprocal) of the margin acts as a 
penalty to prevent overfittingpenalty to prevent overfitting



Functional Margin versus Functional Margin versus 
Geometric MarginGeometric Margin

Functional margin:  Functional margin:  γγff = y= yii ·· ww ·· xxii

Geometric margin:  Geometric margin:  γγgg = = γγ
ff
/ ||/ ||ww||||

The margin bound applies only to the The margin bound applies only to the 
geometric margin geometric margin γγgg

The functional margin can be made The functional margin can be made 
arbitrarily large by rescaling the weight arbitrarily large by rescaling the weight 
vector, but the geometric margin is vector, but the geometric margin is 
invariant to scalinginvariant to scaling



Intermission: Geometry of LinesIntermission: Geometry of Lines
Consider the line Consider the line ww ·· xx + b = 0, where ||+ b = 0, where ||ww|| = 1 is || = 1 is 
a vector of unit length.  Then the minimum a vector of unit length.  Then the minimum 
distance to the origin is b.distance to the origin is b.



Geometry of a MarginGeometry of a Margin

If a point If a point xx++ is a distance is a distance γγ away from the away from the 
line, then it lies on the line line, then it lies on the line ww ·· xx + b = + b = γγ



The Geometric Margin is the The Geometric Margin is the 
Inverse of ||Inverse of ||ww||||

Lemma:  Lemma:  γγgg = 1/||= 1/||ww||||
Proof:Proof:
–– Let Let ww be an arbitrary weight vector such that the be an arbitrary weight vector such that the 

positive point positive point xx++ has a functional margin of 1.  Thenhas a functional margin of 1.  Then
ww ·· xx++ + b = 1+ b = 1

–– Now normalize this equation by dividing by ||Now normalize this equation by dividing by ||ww||.||.

–– Implication: We can hold the functional margin at 1 Implication: We can hold the functional margin at 1 
and minimize the norm of the weight vectorand minimize the norm of the weight vector

w

kwk · x
++

b

kwk =
1

kwk = γg



Support Vector Machine Quadratic Support Vector Machine Quadratic 
ProgramProgram

Find Find ww
Minimize ||Minimize ||ww||||22

Subject toSubject to
yyii ·· ((ww ·· xxii + b) + b) ≥≥ 11
This requires every training example to This requires every training example to 
have a functional margin of at least 1 and have a functional margin of at least 1 and 
then maximizes the geometric margin.  then maximizes the geometric margin.  
However it still requires perfectly fitting the However it still requires perfectly fitting the 
datadata



Handling NonHandling Non--Separable Data:Separable Data:
Introduce Margin Slack VariablesIntroduce Margin Slack Variables
Find:  Find:  ww, , ξξ
Minimize:  ||Minimize:  ||ww||||22 + C||+ C||ξξ||||22
Subject to:Subject to:

yyii ·· ((ww ·· xxii + b) + + b) + ξξii ≥≥ 11
–– ξξii is positive only if example is positive only if example xxii does not have a does not have a 

functional margin of at least 1functional margin of at least 1
–– ||||ξξ||||22 measures how well the SVM fits the training datameasures how well the SVM fits the training data
–– ||||ww||||22 is the penalty termis the penalty term
–– C is the tradeoff parameter that determines the C is the tradeoff parameter that determines the 

relative weight of the penalty compared to the fit to relative weight of the penalty compared to the fit to 
the datathe data



Kernel Trick Form of SVMKernel Trick Form of SVM

To apply the Kernel Trick, we need to To apply the Kernel Trick, we need to 
reformulate the SVM quadratic program so reformulate the SVM quadratic program so 
that it only involves dot products between that it only involves dot products between 
training examples.  This can be done by training examples.  This can be done by 
an operation called the Lagrange Dualan operation called the Lagrange Dual



Lagrange Dual ProblemLagrange Dual Problem

Find   Find   ααii

Minimize Minimize 
∑∑ii ααii –– ½½ ∑∑ii ∑∑jj yyii yyjj ααii ααjj [[xxii ·· xxjj + + δδijij/C]/C]

Subject toSubject to
∑∑ii yyii ααii = 0= 0
ααii ≥≥ 00

where where δδijij = 1 if i = j and 0 otherwise.= 1 if i = j and 0 otherwise.



Kernel Trick FormKernel Trick Form

Find   Find   ααii

Minimize Minimize 
∑∑ii ααii –– ½½ ∑∑ii ∑∑jj yyii yyjj ααii ααjj [K([K(xxii,,xxjj) + ) + δδijij/C]/C]

Subject toSubject to
∑∑ii yyii ααii = 0= 0
ααii ≥≥ 00

where where δδijij = 1 if i = j and 0 otherwise.= 1 if i = j and 0 otherwise.



Resulting ClassifierResulting Classifier

The resulting classifier isThe resulting classifier is
f(f(xx) = ) = ∑∑jj yyjj ααjj K(K(xxjj, , xx) + b) + b

where b is chosen by finding an where b is chosen by finding an ii with       with       
ααii > 0 and solving> 0 and solving

yyii f(f(xxii) = 1 ) = 1 –– ααii/C/C
for f(for f(xxii))



Variations on the SVM Problem:Variations on the SVM Problem:
Variation 1: Use LVariation 1: Use L11 norm of norm of ξξ

This is the This is the ““officialofficial”” SVM, which was SVM, which was 
originally published by Vapnik and Cortesoriginally published by Vapnik and Cortes
Find:  Find:  ww, , ξξ
Minimize:  ||Minimize:  ||ww||||22 + C||+ C||ξξ||||
Subject to:Subject to:

yyii ·· ((ww ·· xxii + b) + + b) + ξξii ≥≥ 11



Dual Form of LDual Form of L11 SVMSVM

Find   Find   ααii

Minimize Minimize 
∑∑ii ααii –– ½½ ∑∑ii ∑∑jj yyii yyjj ααii ααjj K(K(xxii,,xxjj))

Subject toSubject to
∑∑ii yyii ααii = 0= 0
C C ≥≥ ααii ≥≥ 00



Variation 2: Variation 2: 
Linear Programming SVMsLinear Programming SVMs

Use LUse L11 norm for norm for ww tootoo
Find  Find  uu, , vv, , ξξ
Minimize   Minimize   ∑∑jj uujj + + ∑∑jj vvjj + C + C ∑∑ii ξξii
Subject toSubject to

yyii ·· ((((uu –– vv) ) ·· xxii + b) + + b) + ξξii ≥≥ 11
The kernel form of this isThe kernel form of this is
Find   Find   ααii, , ξξ
Minimize   Minimize   ∑∑ii ααii + C + C ∑∑ii ξξii
Subject toSubject to

∑∑jj ααjj yyii yyjj K(K(xxii,,xxjj) + ) + ξξii ≥≥ 11
ααjj ≥≥ 00



Setting the Value of CSetting the Value of C
We see that the full SVM algorithm requires We see that the full SVM algorithm requires 
choosing the value of C, which controls the choosing the value of C, which controls the 
tradeoff between fitting the data and obtaining a tradeoff between fitting the data and obtaining a 
large margin.large margin.
To set C, we could train an SVM with different To set C, we could train an SVM with different 
values of C and plug the resulting C, values of C and plug the resulting C, γγ, and , and ξξ
into the margin bounds theorem to choose the C into the margin bounds theorem to choose the C 
that minimizes the bound on that minimizes the bound on εε..
In practice, this does not work well, and we must In practice, this does not work well, and we must 
rely on holdout methods (next lecture).rely on holdout methods (next lecture).


