Evaluation of Classifiers

1 ROC Curves
1 Reject Curves
1 Precision-Recall Curves

1 Statistical Tests
— Estimating the error rate of a classifier
— Comparing two classifiers

— Estimating the error rate of a learning
algorithm

— Comparing two algorithms




Cost-Sensitive Learning

1 [n most applications, false positive and false
negative errors are not equally important. We
therefore want to adjust the tradeoff between
them. Many learning algorithms provide a way
to do this:

— probabilistic classifiers: combine cost matrix with
decision theory to make classification decisions

— discriminant functions: adjust the threshold for
classifying into the positive class

— ensembles: adjust the number of votes required to
classify as positive




Example: 30 decision trees
constructed by bagging

1 Classify as positive if K out of 30 trees
predict positive. Vary K.




Directly Visualizing the Tradeoff

1 We can plot the false positives versus false negatives directly. If
L(0,1) =R -L(1,0) (i.e., a FN is R times more expensive than a FP),

then the best operating point will be tangent to a line with a slope of
—R

If R=1, we should
set the threshold to
10.

If R=10, the
threshold should
be 29

False Negatives
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Receiver Operating Characteristic
(ROC) Curve

1 [t is traditional to plot this same information in a
normalized form with 1 — False Negative Rate
plotted against the False Positive Rate.

The optimal
operating point is
tangent to a line with
a slope of R




Generating ROC Curves

1 Linear Threshold Units, Sigmoid Units, Neural
Networks

— adjust the classification threshold between 0 and 1

1 K nearest neighbor

— adjust number of votes (between 0 and k) required to
classify positive

1 Nalve Bayes, Logistic Regression, etc.
— vary the probability threshold for classifying as
positive
1 Support vector machines

— require different margins for positive and negative
examples




SVM: Asymmetric Margins

Minimize ||w||?> + C X &,

Subject to
w - X, + & > R (positive examples)
—w - X, + & > 1 (negative examples)




ROC Convex Hull

1 If we have two classifiers h, and h, with (fp1,fn1)
and (fp2,in2), then we can construct a stochastic
classifier that interpolates between them. Given
a new data point x, we use classifier h, with
probability p and h, with probability (1-p). The
resulting classifier has an expected false positive
level of p fp1 + (1 — p) fp2 and an expected false
negative level of p fn1 + (1 — p) fn2.

1 This means that we can create a classifier that

matches any point on the convex hull of the
ROC curve




ROC Convex Hull
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Maximizing AUC

1 At learning time, we may not know the cost ratio

R. In such cases, we can maximize the Area
Under the ROC Curve (AUC)

1 Efficient computation of AUC

— Assume h(x) returns a real quantity (larger values =>
class 1)

— Sort x; according to h(x;). Number the sorted points
from 1 to N such that r(i) = the rank of data point x;

— AUC = probability that a randomly chosen example
from class 1 ranks above a randomly chosen example
from class 0 = the Wilcoxon-Mann-Whitney statistic




Computing AUC

1let S, = sumof r(i) for y, = 1 (sum of the
ranks of the positive examples)

S1—Ni1(N1+1)/2
NoN1

AUC =

where N, is the number of negative
examples and N, is the number of positive
examples




Optimizing AUC

1 A hot topic in machine learning right now
Is developing algorithms for optimizing
AUC

1 RankBoost: A modification of AdaBoost.
The main idea is to define a “ranking loss”
function and then penalize a training
example x by the number of examples of
the other class that are misranked (relative
to x)




Rejection Curves

1 In most learning algorithms, we can
specify a threshold for making a rejection
decision

— Probabilistic classifiers: adjust cost of
rejecting versus cost of FP and FN

— Decision-boundary method: if a test point x is
within 6 of the decision boundary, then reject

1 Equivalent to requiring that the “activation” of the
best class is larger than the second-best class by
at least 6




Rejection Curves (2)

1 Vary 0 and plot fraction correct versus fraction
rejected

fraction correct

O 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
fraction rejected




Precision versus Recall

1 Information Retrieval:
— y = 1. document is relevant to query
— y = 0: document is irrelevant to query
— K: number of documents retrieved

1 Precision:

— fraction of the K retrieved documents (y=1) that are
actually relevant (y=1)

— TP /(TP + FP)
1 Recall:

— fraction of all relevant documents that are retrieved
— TP /(TP + FN) = true positive rate




Precision Recall Graph

1 Plot recall on horizontal axis; precision on
vertical axis; and vary the threshold for making
positive predictions (or vary K)




The F, Measure

1 Figure of merit that combines precision
and recall.
P-R

F1=2.
P+ R

i1 where P = precision; R =recall. This is
twice the harmonic mean of P and R.

1 We can plot F, as a function of the
classification threshold 6




Summarizing a Single Operating
Point

1 WEKA and many other systems normally report
various measures for a single operating point

(e.g., 6 = 0.5). Here is example output from
WEKA:

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
0.854 0.1 0.899 0.854 0.876 0)
0.9 0.146 0.854 0.9 0.876 1




Visualizing ROC and P/R Curves In
WEKA

1 Right-click on the result list and choose
“Visualize Threshold Curve”. Select “1” from the
popup window.

1 ROC:

— Plot False Positive Rate on X axis

— Plot True Positive Rate on Y axis
— WEKA will display the AUC also

1 Precision/Recall:
— Plot Recall on X axis
— Plot Precision on Y axis

1 WEKA does not support rejection curves




Sensitivity and Selectivity

1 In medical testing, the terms “sensitivity”
and “selectivity” are used
— Sensitivity = TP/(TP + FN) = true positive rate
= recall
— Selectivity = TN/(FP + TN) = true negative
rate = recall for the negative class = 1 — the
false positive rate
1 The sensitivity versus selectivity tradeoff is
identical to the ROC curve tradeoff




Estimating the Error Rate of a
Classifier

1 Compute the error rate on hold-out data

— suppose a classifier makes k errors on n holdout data
points

— the estimated error rate is € = k / n.

1 Compute a confidence internal on this estimate

— the standard error of this estimate is
_— \/@- (1—9)
n

— A 1 — a confidence interval on the true error ¢ is
€ —2q0E <= e <=¢€+z,p5E

— For a 95% confidence interval, Z; 5, = 1.96, so we
use

e —1.965SE <=e<=€+ 1.96SE.




Comparing Two Classifiers

1 Goal: decide which of two classifiers h, and h, has lower
error rate

1 Method: Run them both on the same test data set and
record the following information:

Nyo: the number of examples correctly classified by both
classifiers

ny4: the number of examples correctly classified by h, but
misclassified by h,

n,,: The number of examples misclassified by h, but correctly
classified by h,

Nye: The number of examples misclassified by both h, and h,,.

Noo No1

Nyo Ny,




McNemar’'s Test

M — (jno1 — n1g| — 1)
no1 + 110

1 M is distributed approximately as y2 with 1
degree of freedom. For a 95% confidence
test, %% g95 = 3.84. So if M is larger than
3.84, then with 95% confidence, we can
reject the null hypothesis that the two
classifies have the same error rate




Confidence Interval on the
Difference Between Two Classifiers

1 Let p; = ny/n be the 2x2 contingency table
converted to probabillities

\/po1 + p10 + (Po1 — P10)?

SE =
)

PA P10+ P11
PB Po1+ P11

1 A 95% confidence interval on the difference in
the true error between the two classifiers is

1 1
paA—pp—1.96 (SE —+ 2—) <= eg—€ep <= pa—pp+1.96 (SE —+ 2—)
n n




Cost-Sensitive Comparison of Two
Classifiers

1 Suppose we have a non-0/1 loss matrix L(y,y) and we
have two classifiers h, and h,. Goal: determine which
classifier has lower expected loss.

A method that does not work well:

— For each algorithm a and each test example (x;,y;) compute £, ; =
L(h,(X;),y:)-

— Treat the &’s as normally distributed and compute a normal
confidence interval

The problem is that there are only a finite number of
different possible values for 6,. They are not normally
distributed, and the resulting confidence intervals are too
wide




A Better Method: BDeltaCost

1 Let A ={6}N._, be the set of 6,'s computed as
above

1 For b from 1 to 1000 do

— Let T, be a bootstrap replicate of A
— Let s, = average of the 6's in T,

1 Sort the s.’s and identify the 26t and 975"
items. These form a 95% confidence interval on
the average difference between the loss from h,
and the loss from h.,.

1 The bootstrap confidence interval quantifies the
uncertainty due to the size of the test set. |t
does not allow us to compare algorithms, only
classifiers.




Estimating the Error Rate of a
Learning Algorithm

Under the PAC model, training examples x are drawn
from an underlying distribution D and labeled according
to an unknown function f to give (X,y) pairs where y =
f(x).
The error rate of a classifier h is

error(h) = Pp(h(x) = f(x))

Define the error rate of a learning algorithm A for sample
size m and distribution D as

error(A,m,D) = Eg [error(A(S))]
This is the expected error rate of h = A(S) for training
sets S of size m drawn according to D.

We could estimate this if we had several training sets S,,
Sk all drawn from D. We could compute A(S,), A(S,),

..., A(S ), measure their error rates, and average them.
Unfortunately, we don’t have enough data to do this!




Two Practical Methods

1 k-fold Cross Validation

— This provides an unbiased estimate of error(A, (1 —
1/k)m, D) for training sets of size (1 — 1/k)m
1 Bootstrap error estimate (out-of-bag estimate)
— Construct L bootstrap replicates of S
— Train A on each of them

— Evaluate on the examples that did not appear in the
bootstrap replicate

— Average the resulting error rates

train




Estimating the Difference Between
Two Algorithms: the 5x2CV F test

for : from 1 to 5 do
perform a 2-fold cross-validation
split S evenly and randomly into S; and S>
for 5 from 1 to 2 do

Train algorithm A on §;, measure error rate p(”)

Train algorithm B on S;, measure error rate p(m)
(J) _ (,J) (w)

end />|< for g >‘</
(1)_|_p(2)

D; = > Average difference in error rates in iteration i

Difference in error rates on fold j

s — (p,fl) : p; —pi>2 Variance in the difference, for iteration 1
end /* for ¢ */
_ ZiB
B 25 32.2




5x2cv F test
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5x2CV F test

1lf F >4.47, then with 95% confidence, we
can reject the null hypothesis that
algorithms A and B have the same error
rate when trained on data sets of size m/2.




Summary

1 ROC Curves
1 Reject Curves
1 Precision-Recall Curves

1 Statistical Tests
— Estimating error rate of classifier
— Comparing two classifiers
— Estimating error rate of a learning algorithm
— Comparing two algorithms




