Learning Neural Networks

1 Neural Networks can represent complex
decision boundaries

— Variable size. Any boolean function can be
represented. Hidden units can be interpreted as new
features

— Deterministic
— Continuous Parameters

1 Learning Algorithms for neural networks

— Local Search. The same algorithm as for sigmoid
threshold units

— Eager
— Batch or Online

Neural Network Hypothesis Space

1 Each unit a4, a,, ag, and y computes a sigmoid function of its inputs:
a; =o(Wy- X) a,=c(W,-X) ag=c(Wg-X) y=c(W,-A)
where A =[1, a;, a,, ag] is called the vector of hidden unit activitations

1 Original motivation: Differentiable approximation to multi-layer LTUs

Representational Power

1 Any Boolean Formula
— Consider a formula in disjunctive normal form:
(X4 A X)) V (X5 A Xg) V(— X5 A X5)

Each AND can be represented by a hidden unit and the OR can
be represented by the output unit. Arbitrary boolean functions
require exponentially-many hidden units, however.

1 Bounded functions

— Suppose we make the output linear: y = W, - A of hidden units.
It can be proved that any bounded continuous function can be
approximated to arbitrary accuracy with enough hidden units.

1 Arbitrary Functions

— Any function can be approximated to arbitrary accuracy with two
hidden layers of sigmoid units and a linear output unit.

Fixed versus Variable Size

1 |n principle, a network has a fixed number of parameters
and therefore can only represent a fixed hypothesis
space (if the number of hidden units is fixed).

However, we will initialize the weights to values near
zero and use gradient descent. The more steps of
gradient descent we take, the more functions can be
‘reached” from the starting weights.

So it turns out to be more accurate to treat networks as
having a variable hypothesis space that depends on the
number of steps of gradient descent

Backpropagation: Gradient
Descent for Multi-Layer Networks

1 It is traditional to train neural networks to minimize the squared
error. This is really a mistake—they should be trained to maximize
the log likelihood instead. But we will study the MSE first.

y=ocWq-[1,0(We-X),oc(W7-X),0(Wg-X)])

TV = 5 (3 — ui)?

i \We must apply the chain rule many times to compute the gradient
1 We will number the units from 0 to U and index them by u and v.

1w, , will be the weight connecting unit u to unit v. (Note: This seems
backwards. It is the uth input to node v.)

Derivation: Output Unit

1 SUppose Wy 4 is a component of Wy, the
output weight vector, connecting it from a.

= — (Ui — v4)
Owg 6 dwg 62

1
— 0 2 ° 1 ® — * °
5 (¥i — Yi)

(G = w) -0 (Wo - A)(1 = o(Wo - 4)) - 52—

Wy - A;

(Ui — v)yi(1 —y;) - ag

The Delta Rule

1Define 69 = (g; — v:)7:i(1 — ¥;)
then

0J;(W)

= (Ui —v)ui(1 — ;) - a6

owg 6

= 09-ag

Derivation: Hidden Units

0J; (W)
Owe 2

(Ui — i) -

09 - WY 6 *

69 wg e - 0(Wg - X)(1 —a(Wg- X)) - "

dg - wg gag(l —ag) - 2

Define dg = dg - w9’6a6(1 — ag)
and rewrite as

Networks with Multiple Output Units

1 We get a separate contribution to the gradient from each
output unit.

1 Hence, for input-to-hidden weights, we must sum up the

contributions:
10

06 = ag(1l—ap) > wy edu
u=9

The Backpropagation Algorithm

1 Forward Pass. Compute a, and y, for hidden units v and
output units v.

1 Compute Errors. Compute ¢, = (y, — y,) for each output
unit v

1 Compute Output Deltas. Compute 6, = a,(1-a,) 2, w, , o,
1 Compute Gradient.

8J;
Owy, ;
8.J;

Oww . u
1 Take Gradient Step.
W =W —nVy J(x;)

— Compute = ouz; for input-to-hidden weights.

— Compute = Jvaiy for hidden-to-output weights.

Proper Initialization

1 Start in the “linear” regions

— keep all weights near zero, so that all sigmoid units are in their
linear regions. This makes the whole net the equivalent of one
linear threshold unit—a very simple function.

1 Break symmetry.

— Ensure that each hidden unit has different input weights so that
the hidden units move in different directions.

1 Set each weight to a random number in the range
1

—1 1 .
Y YT

where the “fan-in" of weight w, , is the number of inputs
to unit v.

Batch, Online, and Online with
Momentum

1 Batch. Sum the v;,J(x;) for each example i.
Then take a gradient descent step.

1 Online. Take a gradient descent step with each
Vwd(x;) as it is computed.

1 Momentum. Maintain an exponentially-weighted
moved sum of recent

AWETD .= yAW® 4 v (x;)

W(H-l) — W(t) _ nAW(H_l)

Typical values of p are in the range [0.7, 0.95]

Softmax Output Layer

1 Let a4 and a,y be the output activations: as = W, - A, a,,
=W,, - A. Then define

eXP ag ~ exXpaiop

1™ expag +exparg 2 expag + expaig

1 The objective function is the negative log likelihood:
JW) =3 > —Ily; = k]log g
ik

where l[expr] is 1 if expr is true and O oth?rwise

y

Neural Network Evaluation

Criterion Logistic LDA Trees

Mixed data no no yes no
Missing values no yes no
Outliers yes yes
Monotone transformations yes somewhat
Scalability yes yes
Irrelevant inputs somewhat no

Linear combinations no yes
Interpretable no

Accurate

