
Learning Neural NetworksLearning Neural Networks
Neural Networks can represent complex Neural Networks can represent complex 
decision boundariesdecision boundaries
–– Variable size.  Any boolean function can be Variable size.  Any boolean function can be 

represented.  Hidden units can be interpreted as new represented.  Hidden units can be interpreted as new 
featuresfeatures

–– DeterministicDeterministic
–– Continuous ParametersContinuous Parameters

Learning Algorithms for neural networksLearning Algorithms for neural networks
–– Local Search.  The same algorithm as for sigmoid Local Search.  The same algorithm as for sigmoid 

threshold unitsthreshold units
–– EagerEager
–– Batch or OnlineBatch or Online



Neural Network Hypothesis SpaceNeural Network Hypothesis Space

Each unit aEach unit a66, a, a77, a, a88, and , and ŷŷ computes a sigmoid function of its inputs:computes a sigmoid function of its inputs:
aa66 = = σσ(W(W6 6 ·· X)    aX)    a77 = = σσ(W(W7 7 ·· X)   aX)   a88 = = σσ(W(W8 8 ·· X)   X)   ŷŷ = = σσ(W(W99 ·· A)A)
where A = [1, awhere A = [1, a66, a, a77, a, a88] is called the vector of ] is called the vector of hidden unit activitationshidden unit activitations

Original motivation: Differentiable approximation to multiOriginal motivation: Differentiable approximation to multi--layer LTUslayer LTUs
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Representational PowerRepresentational Power
Any Boolean FormulaAny Boolean Formula
–– Consider a formula in disjunctive normal form:Consider a formula in disjunctive normal form:

(x(x11 ∧∧ ¬¬ xx22) ) ∨∨ (x(x22 ∧∧ xx44) ) ∨∨ ((¬¬ xx33 ∧∧ xx55))
Each AND can be represented by a hidden unit and the OR can Each AND can be represented by a hidden unit and the OR can 
be represented by the output unit.  Arbitrary boolean functions be represented by the output unit.  Arbitrary boolean functions 
require exponentiallyrequire exponentially--many hidden units, however.many hidden units, however.

Bounded functionsBounded functions
–– Suppose we make the output linear: Suppose we make the output linear: ŷŷ = W= W99 ·· A of hidden units.  A of hidden units.  

It can be proved that any bounded continuous function can be It can be proved that any bounded continuous function can be 
approximated to arbitrary accuracy with enough hidden units. approximated to arbitrary accuracy with enough hidden units. 

Arbitrary FunctionsArbitrary Functions
–– Any function can be approximated to arbitrary accuracy with two Any function can be approximated to arbitrary accuracy with two 

hidden layers of sigmoid units and a linear output unit.hidden layers of sigmoid units and a linear output unit.



Fixed versus Variable SizeFixed versus Variable Size
In principle, a network has a fixed number of parameters In principle, a network has a fixed number of parameters 
and therefore can only represent a fixed hypothesis and therefore can only represent a fixed hypothesis 
space (if the number of hidden units is fixed).space (if the number of hidden units is fixed).
However, we will initialize the weights to values near However, we will initialize the weights to values near 
zero and use gradient descent.  The more steps of zero and use gradient descent.  The more steps of 
gradient descent we take, the more functions can be gradient descent we take, the more functions can be 
““reachedreached”” from the starting weights.from the starting weights.
So it turns out to be more accurate to treat networks as So it turns out to be more accurate to treat networks as 
having a variable hypothesis space that depends on the having a variable hypothesis space that depends on the 
number of steps of gradient descentnumber of steps of gradient descent



Backpropagation: Gradient Backpropagation: Gradient 
Descent for MultiDescent for Multi--Layer NetworksLayer Networks
It is traditional to train neural networks to minimize the squarIt is traditional to train neural networks to minimize the squared ed 
error.  This is really a mistakeerror.  This is really a mistake——they should be trained to maximize they should be trained to maximize 
the log likelihood instead.  But we will study the MSE first.the log likelihood instead.  But we will study the MSE first.

We must apply the chain rule many times to compute the gradientWe must apply the chain rule many times to compute the gradient
We will number the units from 0 to U and index them by We will number the units from 0 to U and index them by uu and and vv..
wwv,uv,u will be the weight connecting unit will be the weight connecting unit uu to unit to unit v. v. (Note: This seems (Note: This seems 
backwards.  It is the backwards.  It is the uuth input to node th input to node vv.).)

ŷ = σ(W9 · [1, σ(W6 ·X),σ(W7 ·X),σ(W9 ·X)])

Ji(W ) =
1

2
(ŷi− yi)2



Derivation: Output UnitDerivation: Output Unit
Suppose Suppose ww9,69,6 is a component of is a component of WW99, the , the 
output weight vector, connecting it from output weight vector, connecting it from aa66..
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The Delta RuleThe Delta Rule

Define Define 
thenthen

δ9 = (ŷi− yi)ŷi(1− ŷi)

∂Ji(W)

∂w9,6
= (ŷi − yi)ŷi(1− ŷi) · a6
= δ9 · a6



Derivation: Hidden UnitsDerivation: Hidden Units

Define δ6 = δ9 · w9,6a6(1− a6)
and rewrite as

∂Ji(W )
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= δ6x2.
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Networks with Multiple Output UnitsNetworks with Multiple Output Units

We get a separate contribution to the gradient from each We get a separate contribution to the gradient from each 
output unit.output unit.
Hence, for inputHence, for input--toto--hidden weights, we must sum up the hidden weights, we must sum up the 
contributions:contributions:

δ6 = a6(1− a6)
10X
u=9
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The Backpropagation AlgorithmThe Backpropagation Algorithm
Forward PassForward Pass.  Compute .  Compute aauu and and ŷŷvv for hidden units for hidden units uu and and 
output units output units vv..
Compute ErrorsCompute Errors. Compute . Compute εεvv = (= (ŷŷvv –– yyvv) for each output ) for each output 
unit unit vv
Compute Output DeltasCompute Output Deltas. Compute . Compute δδuu = = aauu(1 (1 –– aauu) ) ∑∑vv wwv,uv,u δδvv
Compute GradientCompute Gradient.  .  

–– Compute                       for inputCompute                       for input--toto--hidden weights.  hidden weights.  

–– Compute                       for hiddenCompute                       for hidden--toto--output weights.output weights.

Take Gradient StepTake Gradient Step..

∂Ji
∂wu,j

= δuxij

∂Ji

∂wv,u
= δvaiu

W :=W − η∇W J(xi)



Proper InitializationProper Initialization
Start in the Start in the ““linearlinear”” regionsregions
–– keep all weights near zero, so that all sigmoid units are in thekeep all weights near zero, so that all sigmoid units are in their ir 

linear regions.  This makes the whole net the equivalent of one linear regions.  This makes the whole net the equivalent of one 
linear threshold unitlinear threshold unit——a very simple function.a very simple function.

Break symmetry.Break symmetry.
–– Ensure that each hidden unit has different input weights so thatEnsure that each hidden unit has different input weights so that

the hidden units move in different directions.the hidden units move in different directions.
Set each weight to a random number in the rangeSet each weight to a random number in the range

where the where the ““fanfan--inin”” of weight of weight wwv,uv,u is the number of inputs is the number of inputs 
to unit to unit vv..

[−1,+1]× 1√
fan-in

.



Batch, Online, and Online with Batch, Online, and Online with 
MomentumMomentum

BatchBatch.  Sum the                 for each example .  Sum the                 for each example ii.  .  
Then take a gradient descent step.Then take a gradient descent step.
OnlineOnline.  Take a gradient descent step with each.  Take a gradient descent step with each

as it is computed.as it is computed.
MomentumMomentum.  Maintain an exponentially.  Maintain an exponentially--weighted weighted 
moved sum of recent             moved sum of recent             

Typical values of Typical values of µµ are in the range [0.7, 0.95]are in the range [0.7, 0.95]

∇WJ(xi)

∇WJ(xi)

∆W (t+1) := µ∆W(t) +∇WJ(xi)

W (t+1) :=W (t) − η∆W(t+1)



Softmax Output LayerSoftmax Output Layer
Let Let aa99 and and aa1010 be the output activations:  be the output activations:  aa99 = W= W99 ·· A, A, aa1010
= W= W1010 ·· A.  Then defineA.  Then define

The objective function is the negative log likelihood:The objective function is the negative log likelihood:

where I[expr] is 1 if expr is true and 0 otherwisewhere I[expr] is 1 if expr is true and 0 otherwise
ŷ1 ŷ2

a6 a7 a8
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softmax   
W9 W10

ŷ1 =
exp a9

exp a9 + exp a10
ŷ2 =

exp a10
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J(W ) =
X
i

X
k

−I[yi = k] log ŷk



Neural Network EvaluationNeural Network Evaluation
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