Statistical and Computational
Learning Theory

1 Fundamental Question: Predict Error Rates

— Given:
1 The space H of hypotheses
1 The number and distribution of the training examples S

1 The complexity of the hypothesis h € H output by the
learning algorithm

1 Measures of how well h fits the examples
1 etc.
— Find:
1 Theoretical bounds on the error rate of h on new data points.




General Assumptions
(Noise-Free Case)

1 Assumption: Examples are generated according to a
probability distribution D(x) and labeled according to an
unknown function f; y = f(x)

1 Learning Algorithm: The learning algorithm is given a
set of m examples, and it outputs an hypothesis h € H

that is consistent with those examples (i.e., correctly
classifies all of them).

8 Goal: h should have a low error rate € on new examples
drawn from the same distribution D.

error(h, f) = Pplf(x) # h(x)]




Probably-Approximately Correct
Learning

1 We allow our algorithms to fail with probability 6

1 Imagine drawing a sample of m examples, running the
learning algorithm, and obtaining h. Sometimes, the
sample will be unrepresentative, so we only want to
Insist that 1 — & of the time, the hypothesis will have error
less than €. For example, we might want to obtain a
99% accurate hypothesis 90% of the time.

1 Let PM,(S) be the probability of drawing data set S of m
examples according to D.

Py [error(f,h) > € <6




Case 1: Finite Hypothesis Space

1 Assume H is finite

1 Consider h; € H such that error(h,f) > &. What is
the probabillity that it will correctly classify m
training examples?

1 If we draw one training example, (X;,y;), what is
the probability that h, classifies it correctly?

Plh,(x)) =yl =1 -¢)

1 What Is the probability that h will be right m
times?

PMy[hy(Xg) =y, = (1-¢)"




Finite Hypothesis Spaces (2)

1 Now consider a second hypothesis h, that is

also e-bad. What is the probability that either h,
or h, will survive the m training examples?

P™,[h; V h, survives] = PM;[h, survives] +
P™,[h, survives] —

P™5[h; A h, survives]
< P™M,[h; survives] + PM;[h, survives]
<2(1-¢)m

1 So If there are k e-bad hypotheses, the

probabllity that any one of them will survive Is <
K(1—¢g)m

1 Since k < |H|, thisis < |H|(1 — &)™




Finite Hypothesis Spaces (3)

iFact: When0<e<1l, (1-¢)<e*
therefore
IH|(1 — &)™ < |H| e—=m




Blume

r Bound

(Blumer, Ehrenfeucht, Haussler, Warmuth)

1 Lemma. For a finite hypothesis space H, given
a set of m training examples drawn
iIndependently according to D, the probability

that there exists an hy
error greater than & co
examples is less than

hothesis h € H with true
nsistent with the training

H|e—¢sm.

1 We want to ensure that this probabillity is less

than 0.
IHle=sm < &
1 This will be true when

1
mZ—(Iﬂ
€

| H|




Finite Hypothesis Space Bound

1 Corollary: If h € H Is consistent with all m
examples drawn according to D, then the
error rate € on new data points can be
estimated as

62%(IH|H\+IH%).




Examples

1 Boolean conjunctions over n features.
|H| = 3", since each feature can appear as x;, —x;, or be

missing.
1 1
€ = —(nln3—|— Ing)

m

1 k-DNF formulas:

(Xp A Xg) V (%o A =1 Xg) V(X A Xy)
There are at most (2n)* disjunctions, so
H| < 2@

1 for fixed k, this gives
log, |H| = (2n)*

1 which is polynomial in n:
_ 1 k IS
e = —QO (n —+ In 5)

m




Finite Hypothesis Space:
Inconsistent Hypotheses

1 Suppose that h does not perfectly fit the
data, but rather that it has an error rate of
er. Then the following holds:

1
In|H|+In=s

€<:€T‘|‘\

2m

1 This makes it clear that the error rate on
the test data Is usually going to be larger
than the error rate ¢ on the training data.




Case 2: Infinite Hypothesis Spaces
and the VC Dimension

Most of our classifiers (LTUs, neural networks, SVMSs)
have continuous parameters and therefore, have infinite
hypothesis spaces

Despite their infinite size, they have limited expressive
power, so we should be able to prove something

Definition: Consider a set of m examples S = {(X;,¥;), ---,
(X,¥Ym)}- An hypothesis space H can trivially fit S, if1 for
every possible way of labeling the examples in S, there
exists an h € H that gives this labeling. (H is said to

“shatter” S)

Definition: The Vapnik-Chervonenkis dimension (VC-
dimension) of an hypothesis space H is the size of the
largest set S of examples that can be trivially fit by H.

For finite H, VC(H) < log,, |H]




VC-dimension Example (1)

1 Let H be the set of intervals on the real line such that
h(x) = 1 iff x is in the interval. H can trivially fit any pair

of examples:

i However, H cannot trivially fit any triple of examples. Therefore the
VC-dimension of H is 2




VC-dimension Example (2)

1 Let H be the space of linear separators in
the 2-D plane. We can trivially fit any 3
points.




VC-dimension Example (3)

1 We cannot separate any set of 4 points (XOR). In
general, the VC-dimension for LTUs in n-dimensional
space is n+1. A good heuristic is that the VC-dimension
IS equal to the number of tunable parameters in the
model (unless the parameters are redundant)




VC-dimension of Neural Networks

1 The VC-dimension of a multi-layer

perceptron network of depth s Is
VC<2(n+1)s(1+1In5s)

1 The exact value for sigmoid units Is open,
but probably larger




Error Bound for Consistent
Hypotheses

1 The following bound is analogous to the
Blumer bound. If h is an hypothesis that
makes no error on a training set of size m,
and h is drawn from an hypothesis space

H with VC-dimension d, then with

orobabllity 1 — o, h will have an error rate

ess than ¢ If

m > = (4100x(2/6) + 8d100>(13/))




Error Bound for Inconsistent
Hypotheses

1 Theorem. Suppose H has VC-dimension d and
a learning algorithm finds h € H with error rate &
on a training set of size m. Then with probability
1 — 9, the error rate € on new data points Is

4 2em 4)

e <= 2er (dlog . log —

0

m

1 Empirical Risk Minimization Principle

— If you have a fixed hypothesis space H, then your
learning algorithm should minimize &: the error on the
training data. (e; Is also called the “empirical risk”)




Case 3: Variable-Sized Hypothesis Spaces

1 A fixed hypothesis space may not work well for
two reasons

— Underfitting: Every hypothesis in H has high ;. We
would like to consider a larger hypothesis space H’ so
we can reduce &

— Overfitting: Many hypotheses in H have e; = 0. We
would like to consider a smaller hypothesis space H’
SO we can reduce d.

1 Suppose we have a nested series of hypothesis

spaces:
H,CH,C..CH,C...

with corresponding VC dimensions and errors
d, <d, <..<d. < ..
glr > g2 > ... > ek >




Structural Risk Minimization
Principle (Vapnik)

1 Choose the hypothesis space H, that
minimizes the combined error bound

4
e<=2€lj€ﬂ—|—a<dk|09 ——+10g -
k

2em 4)




Case 4: Data-Dependent Bounds

1 So far, our bounds on ¢ have depended only on
er and quantities that could be computed prior to
training

1 The resulting bounds are “worst case”, because

they must hold for all but 1 — 6 of the possible
training sets.

1 Data-dependent bounds measure other
oroperties of the fit of h to the data. Suppose S
IS not a worst-case training set. Then we may
ne able to obtain a tighter error bound




Margin Bounds

8 Suppose g(x) is a real-valued function that will be thresholded at 0
to give h(x): hﬁx) = sgn(g(x)). The functional margin y of g on
training example (x,y) is y = yg(x). The margin with respect to the
whole training set is defined as the minimum margin over the entire

set: y(g9,S) = min; y; g(x;)




Margin Bounds: Key Intuition

8 Consider the space of real-valued functions G that will be
thresholded at O to give H. This space has some VC dimension d.
But now, suppose that we consider “thickening” each g € G by
requiring that it correctly classify every point with a margin of at least
y. The VC dimension of these “fat” separators will be much less

than d. It is called the fat shattering dimension: fat;(y)




Noise-Free Margin Bound

1 Suppose a learning algorithm finds a g € G with margin y
= v(g,S) for a training set S of size m. Then with
probabllity 1 — o, the error rate on new points will be

m 2

2 2em 32m 4
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1 where d = fat;(y/8) Is the fat shattering dimension of G
with margin y/8.

1 \We can see that the fat shattering dimension is behaving
much as the VC dimension did in our error bounds




Fat Shattering using Linear
Separators

1Let D be a probability distribution such that

all points x drawn according to D satisfy
the condition [|x|| < R, so all points x lie

within a sphere of radius R.

1 Consider the functions defined by a unit
weight vector:

G={g[g=w-xand |w| =1}
1 Then the fat shattering dimension of G Is

2
fatg(y) = (f)




Noise-Free Margin Bound for
Linear Separators

By plugging this in, we find that the error rate of a linear
classifier with unit weight vector and with margin y on the
training data (lying in a sphere of radius R) Is

2 64R2IO emleg 32m Iogﬁ
2 J 8R2 72 | )
Ignoring all of the log terms, this says we should try to

minimize
R2

€E <=
m

my2

R and m are fixed by the training set, so we should try to
find a g that maximizes y. This is the theoretical
rationale for finding a maximum margin classifier.




Margin Bounds for Inconsistent Classifiers
(soft margin classification)

1 We can extend the margin analysis to the case
when the data are not linearly separable (i.e.,
when a linear classifier is not consistent with the
data). We will do this by measuring the margin
on each training example

1 Define &, = max{0, y -V, g(x)}
%i IS (>:alled the margin slack variable for example
Xi,Yi

1 Note that & > y implies that x; Is misclassified by
of

1 Define € = (&, ..., &) to be the margin slack

vector for the classitier g on training set S




Soft Margin Classification (2)

& = max{0, y —y; 9(x;)




Soft Margin Classification (3)

Theorem. With probability 1 — 3, a linear separator with
unit weight vector and margin y on training data lying in a
sphere of radius R will have an error rate on new data
points bounded by

2 2
1
m

vy )

1 for some constant C.

This result tells us that we should
— maximize y
— minimize |[§]|?
— but it doesn’t tell us how to tradeoff among these two (because C
may vary depending on y and &)
This will give us the full support vector machine




Statistical Learning Theory: Summary

There is a 3-way tradeoff between g, m, and the complexity of the
hypothesis space H.

8 The complexity of H can be measured by the VC dimension
% For a fixed hypothesis space, we should try to minimize training set

error (empirical risk minimization)

For a variable-sized hypothesis space, we should be willing to
accept some training set errors in order to reduce the VC dimension
of H, (structural risk minimization)

Margin theory shows that by changing y, we continuously change
the effective VC dimension of the hypotheS|s sSpace. Large y means
small effective VC dimension (fat shattering dimension)

Soft margin theory tells us that we should be willing to accept an
increase In ||&||? in order to get an increase in y.

We will be able to implement structural risk minimization within a
single optimizer by having a dual objective function that tries to
maximize y while minimizing |[§||?




