Bayes Network description of the
learning problem
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Making a Prediction:
Bayesian Model Averaging

1 Goal: given S, x,, predicty,
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Maximum A Posteriori
(MAP) Estimation

1 Bayesian model averaging is usually
Infeasible to compute

1 Replace the Bayesian model average by

the best single model hMAP
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heH
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where

pMAP — argmax;, P(h|S) = argmaxyP(S|h)P(h)




MAP = Penalized Maximum
Likelihood

1 \We can view P(h) as a “complexity”
penalty on the maximum likelihood
hypothesis

AL argmax P (S|h) P(h)
argmaxp log P(S|h) + log P(h)
argmaxy, £(h) + log P(h)




Where does P(H) come from?

1 Theory: P(H) should encode all and only our
prior knowledge about H.

1 Practice:

— Complexity-based priors
1 penalize large neural network weights
1 penalize large SVM weights
1 penalize large decision trees
1 penalize long “description lengths”

— Knowledge-based priors
1 Bayes net structure prior
1 gualitative monotonicity priors
1 smoothness priors




