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Aggregation Based Feature Invention and 
Relational Concept Classes

(Claudia Perlich & Foster Provost)

Relational Learning

• Expressive

• Background Knowledge can be incorporated 
easily

• Aggregation 
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Predictive Relational Learning

• M:  (t, RDB)                y

• Complexity of relational concept
1. Complexity of relationships
2. Complexity of Aggregation Function
3. Complexity of the function 

εψ(RDB))φ(t,y +=
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Relational Concept Classes

• Propositional 
– Features can be concatenated
– No aggregation
– Example – One customer table and other 

demographic table

• Independent Attributes 
– 1 to n relationship requires simple aggregation
– Mapping from a bag of zero or more attributes to a 

categorical or numeric value
– Ex Sum, Average for numeric values
– Ex Mode for categorical attributes

Relational Concept Classes - Contd

• Dependent Attributes within one table
– Multi-dimensional Aggregation
– Number of products bought on Dec 22nd (conditioned on Date)

• Dependent Attributes across tables
– More than one bag of objects of different type
– Amount spent on items returned at a later date
– Needs info from more than 1 table

• Global graph features
– Transitive closure over a set possible joins
– Customer Reputation
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Methods for Relational Aggregation

• First Order Logic - ILP
• Simple Numeric Aggregation

– Simple Aggregation operators – Mean, Min, Max, Mode
– Cannot express above level 2

• Set Distances
– Relational Distance metric & KNN 
– Calculates the minimum distance of all possible pairs of objects
– Distance – Sum of squared distance (numeric values) or edit 

distance (categorical values)
– Assumes attribute independence

Transformation Based Learning

Relational 
Data

join

Set of objects

Aggregation

Potential Features

Feature 
Selection

Feature VectorModely
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Value Distributions

• Value Order: List of (Value: Index) pairs
– Ex (watch:1, book:2,CD:3,DVD:4)

• Case Vector
– Ex {book,CD,CD,book,DVD,book} for case t
– CVt

Products.ProductType = (0,3,2,1)
• Reference Vector – based on a condition c

– Has at position i the sum of values CV[i] for all cases 
t for which c was true

– Ex Number of CDs
• Variance Vector – (CV[i])2/ (Nc- 1)

where Nc – number of cases where c is true

Target Dependent Individual Values

.33VCR

.35DVD

.31CD

.01Book

RV Class +ve

.15VCR

.28DVD

.36CD

.21Book

RV Class -ve

• Most common (MC)  - CD
• Most common positive (MOP): DVD
• Most common Negative (MON): CD
• Most Discriminative (MOD): Book
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Feature Complexity

1. No Relational Features
2. Unconditional Features MC, 

Count
3. Class Conditional Features –

MOP,MON
4. Discriminative Class Conditional 

Features – MOD,MOM

Low

High

Vector Distances
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Domain: Initial Public Offerings

• IPO(Date,Size,Price,Ticker,Exchange,SIC,Runup)
• HEAD(Ticker,Bank)
• UNDER(Ticker,Bank)
• IND(SIC,Ind2)
• IND2(Ind2,Ind)

• Goal: To predict whether the offer was made on the 
NASDAQ exchange

• Four approaches were tested
– ILP
– Logic Based feature construction
– Selection of specific individual values
– Target dependent vector aggregation

• Two features were constructed 
– One for (n:1) joins
– Other for autocorrelation

Implementation details
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• Exploration – To find related objects
– Uses BFS
– Stopping criterion – maximum number of chains

• Feature Selection – Weighted Sampling to select a 
subset of 10 features

• Model Estimation – Uses C4.5 to learn a tree
– No change in results if logistic regression was used

• Logic Based Feature construction – Uses ILP to learn 
FOL clauses and append the binary features

• ILP – Only class labels 

Details (Contd)

Aggregation approaches

Discriminative Features – Most 
common categoricals and vector 
distances

MOD
MOM
MVDD

Class Conditional Features –
Most positive and Negative 
categoricals and vector distances

MOP
MON
VDPN

Unconditional features – Counts 
in IPO table

MOC
VD
MVD

No Feature ConstructionNO
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Unconditional 
Features

Conditional 
Features

Discriminative 
Features

Complexity Levellow high

AUC values for aggregation methods grouped by complexity

Accuracy AUC

As complexity increases, performance increases

As training size increases, performance increases
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Conclusions

• Expressive power of models combined 
with aggregation

• Distance metric
• Complex aggregations can reduce 

explorations
• Focusses only upto level 2 of the hierarchy


