

Relational Concept Classes

- Propositional
 - Features can be concatenated
 - No aggregation
 - Example One customer table and other demographic table
- Independent Attributes
 - 1 to n relationship requires simple aggregation
 - Mapping from a bag of zero or more attributes to a categorical or numeric value
 - Ex Sum, Average for numeric values
 - Ex Mode for categorical attributes

Methods for Relational Aggregation

- First Order Logic ILP
- Simple Numeric Aggregation
 - Simple Aggregation operators Mean, Min, Max, Mode
 - Cannot express above level 2
- Set Distances
 - Relational Distance metric & KNN
 - Calculates the minimum distance of all possible pairs of objects
 - Distance Sum of squared distance (numeric values) or edit distance (categorical values)
 - Assumes attribute independence

RV Class +ve		RV Class -ve	RV Class -ve			
Book	.01	Book	.21			
CD	.31	CD	.36			
DVD	.35	DVD	.28			
VCR	.33	VCR				

Domain: Initial Public Offerings

- IPO(Date,Size,Price,Ticker,Exchange,SIC,Runup)
- HEAD(Ticker,Bank)
- UNDER(Ticker,Bank)
- IND(SIC,Ind2)
- IND2(Ind2,Ind)
- <u>Goal:</u> To predict whether the offer was made on the NASDAQ exchange

Implementation details

- Four approaches were tested
 - ILP
 - Logic Based feature construction
 - Selection of specific individual values
 - Target dependent vector aggregation
- Two features were constructed
 - One for (n:1) joins
 - Other for autocorrelation

Details (Contd) Exploration – To find related objects Uses BFS Stopping criterion – maximum number of chains Feature Selection – Weighted Sampling to select a subset of 10 features Model Estimation – Uses C4.5 to learn a tree No change in results if logistic regression was used Logic Based Feature construction – Uses ILP to learn fOL clauses and append the binary features ILP – Only class labels

NO	No Feature Construction	
MOC	Unconditional features – Counts	
VD	in IPO table	
MVD		
MOP	Class Conditional Features –	
MON	Most positive and Negative	
VDPN	categoricals and vector distances	
MOD	Discriminative Features – Most	
МОМ	common categoricals and vector	
MVDD	distances	

		low	,	Complexity Level						>	high	
			Un F	Unconditional Features			Conditional Features			Discriminative Features		
	Size	NŌ	MÖC	VD	MVD	MPN	VDPN	MVDPN	MD	VDD	MVDD	
	250:6	0.642	0.697	0.717	0.691	0.672	0.748	0.716	0.68	0.729	0.734	
	250.9	0.642	0.707	0.711	0.74	0.725	0.756	0.761	0.749	0.75	(0.764)	
	250.12	0.642	0.729	0.722	0.755	0.715	(0.79)	0.74	0.713	0.763	0.76	
	500: 6	0.666	0.702	0.738	0.741	0.72	0.746	0.739	0.75	0.774	0.79	
	500: 9	0.666	(0.775)	0.753	0.757	0.758	077	0.802	0.796	0.775	(0.821)	
	500.12	0.666	0.741	0.744	0.787	0.775	0.785	0.76	0.792	0.812	0.812	
1	.000: 6	0.672	0.743	0.754	0.749	0.735	0.793	0 <u>.797</u>	0.767	0.788	0.802	
1	000: 9	0.672	0.765	0.768	0.763	0.787	0.808	0.825	0.797	0.818	0.826	
1	000:12	0.672	(0.778)	0.774	0.781	0.78	0.809	0.797	0.793	(0.842)	0.829	
2	2000: 6	0.709	0.727	0.744	0.752	0.732	0.795	0.796	0.787	0.794	0.824	
2	2000: 9	0.709	0.785	0.772	0.781	0.807	0.805	0.835	0.799	0.832	0.838	
2	000:12	0.709	(0.791)	0.779	0.801	0.79	(0.81)	0.788	0.798	0.855	0.836	
	AUC values for aggregation methods grouped by complexity											

Conclusions

- Expressive power of models combined with aggregation
- Distance metric
- Complex aggregations can reduce explorations
- Focusses only upto level 2 of the hierarchy