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Abstract 

Many ecological science and environmental monitoring problems can benefit from inexpensive, 

automated methods of counting insect and mesofaunal populations. Existing methods for obtaining 

population counts require expensive and tedious manual identification by human experts. This chapter 

describes the development of general-purpose pattern-recognition algorithms for identification and 

classification of insects and mesofauna and the design and construction of mechanical devices for 

handling and photographing specimens. This chapter presents techniques being explored in the first two 

years of a four year project, along with the results obtained thus far. This project’s primary focus to date 

has been the classification of stonefly larvae for assessment of stream water quality. Imaging and 

specimen manipulation apparatus that semi-automatically provides high-resolution images of individual 

specimens from multiple angles has also been designed and assembled in the context of this project. An 

additional project target has been the development of robust classification algorithms based on interest 

operators, region descriptors, clustering, and 3D reconstruction to automatically classify each specimen 

from its images. 

1 Introduction 

Progress in the ecological sciences is limited by the lack of high-resolution sensing of either the abiotic or 

the biotic biosphere. While remote sensing from satellites or aircraft provides valuable information about 

gross spatial distribution by organism type (e.g., broadleaf versus needle leaf trees), high-resolution 

measurement of organism population sizes and spatio-temporal distribution is virtually impossible to 

acquire. Existing methods for obtaining population counts involve the manual collection and identification 

of specimens by human experts, which is too costly to provide ongoing high-resolution data. Among the 

many technologies being developed to address this problem, pattern recognition from image data is one 

of the most promising. 

This chapter presents the results to date in an ongoing project by a multi-disciplinary team of 

computer scientists, entomologists, and mechanical engineers to develop high-throughput methodologies 

for the identification and classification of insects. Mechanical devices for automatically photographing 

insect specimens have been developed along with general-purpose pattern recognition algorithms for 



classifying these specimens to genus or species levels. These methods and devices are applied to two 

important scientific, environmental, and agricultural problems: (a) water quality monitoring in streams (by 

recognizing and counting stonefly larvae) and (b) measurement and characterization of soil biodiversity 

(by recognizing and counting soil mesofauna). 

A fundamental scientific challenge for computer science research is to develop general-purpose 

pattern-recognition methods that can be applied to many different classification problems without 

requiring manual redesign for each new task. Some existing pattern-recognition methods in systematics 

require carefully designed feature extraction and/or classification algorithms for each new application 

[[14],[32],[35]]. Consequently, each new application requires substantial time and expertise to construct. 

Our work addresses this challenge by developing a robust pattern-recognition system that can be applied 

without modification to various situations. 

A second fundamental challenge is to develop pattern-recognition methods that can handle highly-

articulated 3D objects. Many existing pattern recognition methods are largely limited either to objects or 

object parts that are roughly 2D (e.g., insect wings) [[32],[35]] or to specific views of semi-rigid 3D object 

parts (e.g., human faces, spider genitalia, etc.) [37]. The insects studied in this project are 3D objects with 

many articulated parts (legs, antennae, abdomen, tails, etc.) that cannot be reliably placed into consistent 

poses. To address this challenge, we are applying recently-developed computer vision techniques that 

detect distinctive image regions, represent them in ways that capture important invariants that are then 

combined to classify the specimens. 

2 Project Overview 

While the environmental monitoring tasks of identifying stonefly larvae and counting soil mesofauna 

populations have quite different characteristics, our goal is to develop a robust pattern recognition system 

that can adapt to new identification tasks simply by relearning each new domain from a set of training 

data. Here we present an overview of the two tasks and our approach to classification. Note that this 

overview discusses both completed and in-progress work. 

Figure 1 illustrates the entire classification system from imaging of specimens to taxonomic 

identification. The stonefly larvae and soil mesofauna are prepared and mechanically manipulated for 

imaging using different methods and mechanical hardware. Likewise, the software control of the 

mechanical apparatus is, by necessity, performed by different modules within the integrated imaging 

software. Images captured by the digital camera are first segmented to identify the image regions 

belonging to specimen(s) and to separate the specimen(s) from the background. Each foreground region 

in the segmented images (ideally corresponding to individual specimens) is then categorized by means of 

a coarse classification that groups specimens using simple-to-compute object properties (e.g., 

eccentricity, color histograms, compactness, etc.). The segmented images and the specimen’s coarse 

grouping are then employed for fine classification where the goal is to identify each specimen to the 

species level, though in some cases classification to genus or even just to family is beneficial. As this 



project is still a work in progress, components of the system that are under development have dashed 

outlines. 

The remainder of this section discusses the two application problems: recognizing stonefly larvae and 

classifying soil mesofauna. For each application, we describe the motivation for choosing the taxonomic 

identification task and the methods for manipulating specimens and capturing images. 

2.1 Recognizing Stonefly Larvae 

Stream water quality measurement could be revolutionized if an economically-practical method were 

available for monitoring aquatic insect populations. Since species differ in their water quality 

requirements, population counts of stonefly (Plecoptera) larvae and other aquatic insects inhabiting 

stream substrates are known to be a sensitive and robust indicator of stream health and water quality 

[[15],[30]]. Consequently, changes in water quality can be tracked by monitoring changes in aquatic insect 

community composition. Because aquatic insects integrate stream water quality over time, they provide a 

more reliable measure of water quality than single-time-point chemical measurements. Aquatic insects 

are especially useful as biomonitors because (1) they are found in nearly all running-water habitats, (2) 

their large species diversity offers a wide range of responses to water quality change, (3) the taxonomy of 

most groups is well known and identification keys are available, (4) responses of many species to 

different types of pollution have been established, and (5) data analysis methods for aquatic insect 

communities are available [31]. Because of these advantages, biomonitoring using aquatic insects is 

routinely employed by federal, state, local, tribal, and private resource managers to track changes in river 

and stream health and to establish baseline criteria for water quality standards. Collection of aquatic 

insect samples for biomonitoring is inexpensive and requires relatively little technical training. However, 

the sorting and identification of insect specimens can be extremely time consuming and requires 

substantial technical expertise. As a result, aquatic insect identification is a major technical bottleneck for 

large-scale implementation of biomonitoring. 

Larval stoneflies are especially important for biomonitoring because they are sensitive to reductions in 

water quality caused by thermal pollution, eutrophication, sedimentation, and chemical pollution. On a 

scale of organic pollution tolerance from 0 to 10, with 10 being the most tolerant, most stonefly taxa have 

a value of 0, 1, or 2 [13]. Because of their low tolerance to pollution, change in stonefly abundance or 

taxonomic composition is often the first indication of water quality degradation. Most biomonitoring 

programs identify stoneflies to the taxonomic resolution of family, although when expertise is available, 

genus-level (and occasionally species-level) identification is possible. Unfortunately, because of 

constraints on time, budgets, and availability of expertise, some biomonitoring programs fail to resolve 

stoneflies (as well as other taxa) below the level of Order. This results in a considerable loss of 

information and, potentially, in the failure to detect changes in water quality. 

Although automated identification of all types of aquatic insects is a long-term goal of this research 

agenda, stoneflies are an ideal model group for the development of these methods for several reasons. 



First, they encompass a wide range of identification challenges, from very easy (highly patterned, 

distinctive species) to very difficult (species complexes of nearly-indistinguishable taxa). Second, 

ontological changes in body size, patterning, and allometry present an identification challenge that must 

be overcome for any automated technique to be viable. Third, local and regional variability within species 

provides even further challenges for training identification algorithms. Finally, automated identification of 

stoneflies will be immediately useful to biomonitoring programs even before the technique is available for 

other aquatic insect orders. 

2.1.1 Mechanical Manipulation & Imaging 

A fundamental problem in pattern recognition is to exploit variability between categories (e.g., taxa) while 

eliminating variability within categories. One important source of variability that can be eliminated is 

variation during image capture. To achieve consistent, repeatable image capture, we have designed and 

constructed a software-controlled mechanical stonefly larval transport and imaging apparatus that 

positions specimens under a microscope, rotates them (to obtain views from various angles), and 

photographs them with a digital camera. Using this apparatus, imaging rates of a few tens of specimens 

per hour can be achieved. A minimum of eight images (from different viewing angles) are taken of each 

specimen. The imaging apparatus has a series of mirrors so that each image acquires two simultaneous 

views of a specimen from approximately 90 degrees apart. Light diffusers reduce glare and eliminate hard 

shadows. In summary, the apparatus can quickly acquire several images of a specimen from various 

angles with consistent imaging conditions across specimens and species. Figure 2 shows the imaging 

apparatus, including the mirror setup used for acquiring two simultaneous images of each specimen. 

Figure 3 shows example images obtained using the imaging assembly. 

2.2 Soil Mesofauna 

Agricultural and forest management is hampered by a lack of cost-effective methods for measuring insect 

populations and insect biodiversity. Such measurements can help society understand the impact of 

various forest and agricultural management practices on ecosystem health. Agricultural soils have been 

reduced in organic content worldwide, leading to a large portion of the carbon being lost to the 

atmosphere as CO2 [[1],[38],[39]]. Numerous attempts to reverse this process have been tried in different 

cropping systems [8]. Tests for organic content in the soil are destructive and do not reveal anything 

about the biological diversity present. Population counts of soil mesofauna are recognized as one of the 

most sensitive, cheapest and least-destructive assays of soil biodiversity and nutrient cycling functions 

[41]. 

Biodiversity can be measured in many ways, in particular by assessing the population size, variety, 

and geographical distribution of key species. These species range in size from micro-organisms (bacteria 

and fungi) to megafauna (mammals and birds). For practical and theoretical reasons, arthropods (insects 

and their allies) are generally regarded as the best potential biodiversity indicators: their high species 



richness allows for fine taxonomic resolution; their ease of capture results in low-cost assays; and their 

widespread distribution provides good generalizability and applicability [[6],[23],[28],[36]]. Historically, the 

practical limitations facing arthropod soil ecologists have been high densities 100 to 500,000/m2 and high 

species diversity (a dozen in a 3 inch diameter soil core to hundreds in a meter squared). As a practical 

compromise, sample volume is always drastically reduced and the decreased number of replicate 

samples is often insufficient with respect to the environmental heterogeneity inherent in soil samples. 

Many of the most significant characteristics of soil mesofaunal samples are changes which take place 

in repeated subsequent sampling under changing ecological conditions. The ability to scan over enough 

samples (or large enough samples) and to detect changes in the species present or their relative 

abundances are challenges that perhaps only automated identification systems are uniquely capable of 

solving. Coarse identification (to the family-level resolution) is often sufficient to assign ecological function 

and is attainable with a modest image database. Species-level identification within a functional group is 

not necessarily as important as being able to distinguish the presence of multiple species—i.e., correctly 

identifying 5 species of entomobryid springtails which necessitates an immense archive of pictures (an 

ultimate goal) is not as significant as recognizing that there are five different ‘morphospecies’ (a practical 

goal). 

2.2.1  Mechanical Manipulation & Imaging 

Soil mesofauna specimens are routinely processed by Berlese funnel extraction. Berlese extraction 

involves slow drying of a soil sample, which causes the soil arthropods to crawl out of the soil and into a 

collecting vessel. The specimens are then separated from the associated debris by addition of an organic 

liquid followed by agitation, settling, and decanting [27]. Decanted samples are then placed in Petri plates 

and diluted sufficiently such that the probability of one specimen occluding another is low. 

The mechanical manipulation of the soil mesofauna specimens is still under development (as 

indicated in Fig. 1); however, our current design is as follows. The Petri plate containing soil mesofauna 

specimens will be placed on a computer-controlled motorized x-y stage that allows the computer to scan 

the plate systematically to find each specimen. The specimens are so small (ranging from 50 to 2500 

microns) that only a portion of each is in focus at any one time. This problem will be addressed by a 

montage process in which the focal plane of the microscope scans vertically through the field of view (via 

computer-control focus column) while a series of 10-20 images are taken. The images will then be 

combined to produce a synthetic image in which all parts of the specimens are simultaneously in focus. 

An additional benefit of this process is that it can produce an approximate 3D map of the height of each 

specimen, which may be useful for reconstructing the specimen’s 3D shape. After a specimen has been 

photographed, it can be removed mechanically from the Petri plate and placed in an appropriate 

receptacle to ensure that no specimen is counted twice and to provide a means of manual performance 

auditing. 

Many of the soil arthropods are partially transparent or translucent. While specimen translucency may 

be an important cue for identification, it poses difficulties for automatically separating the specimens from 



the image background.  Image matting methods [[7],[19],[33],[40]] can be applied to determine the 

amount of transparency (on a per pixel basis) of a specimen if it is photographed with different 

background color patterns [34].  Hence, an LCD display panel will be placed between the Petri plate and 

the x-y stage to provide automatic control over the background color pattern. 

2.3 Classification Framework 

Having motivated the classifications tasks and discussed the image acquisition methodology, we now 

address the problem of automatically identifying the family, genus, and species of each specimen. This 

proceeds in three steps: segmentation, coarse classification, and fine classification. 

2.3.1 Segmentation 

The first step in classifying a specimen is to segment the image to separate a specimen from the 

background and, possibly, from other specimens in the frame. While segmentation is not required for 

identification, it does simplify many aspects of both learning and classifying objects. Without 

segmentation, the classification algorithm may confuse irrelevant background features (such as bubbles, 

dirt, etc.) with desired specimen features. 

Automatic segmentation of a general class of images is a very difficult problem that remains 

unsolved. However, one advantage of the imaging mechanisms described above is that we can control 

the background, which greatly simplifies segmentation. Part of the image capture protocol for stoneflies is 

to acquire a background image (without a specimen) prior to positioning each new specimen under the 

microscope. This background image allows for a simple background subtraction process to provide a 

majority of the segmentation. For soil mesofauna, known background images are provided by the LCD 

display. In both cases, a Bayesian matting process [7] can be applied to improve segmentation and 

provide partial transparency for pixels near the specimen’s boundary or for specimens that are 

translucent (as are some soil mesofauna species). Our current automatic segmentation algorithm 

performs most, but not all, of the work of segmentation. It is often still necessary to manually post-process 

the images to further refine the segmentation (such as remove bubbles, etc.). 

2.3.2 Coarse Classification 

Our work to date has focused primarily on stoneflies.  Since they share the same body plan and many 

have a similar general shape, there has been little need for performing coarse classification of stonefly 

larvae beyond manually identifying them as Plecoptera during specimen collection. However, we 

anticipate that the identification of soil mesofauna will greatly benefit from a coarse classification step that 

automatically groups the specimens with similar body plans, sizes, shapes and colors. Our plan is to 

extract, for each specimen, a set of shape cues such as eccentricity, compactness, and Fourier shape 

coefficients. We will also examine more detailed shape models that capture local curvatures of the 

specimen’s silhouette, which may allow us to count protuberances such as legs, antennae, tails, and so 



on [45]. Additionally, a specimen’s color histogram information can also provide an indicator for 

separating specimens into groups. Using the shape and color information, each specimen will be 

classified into a general morphological group which will then provide the basis for fine classification within 

each such group.  

2.3.3 Fine Classification 

Identification to finer taxonomic levels will utilize both two-dimensional image information and three-

dimensional reconstructions of the specimens. Two-dimensional methods operate directly on one or more 

images of the specimen, typically taken from preferred views. Our 2D approach is to extract various 

interest regions and construct invariant descriptors for each region. The descriptors are then clustered 

and a training algorithm learns feature-cluster associations. Details of 2D classification are provided in 

Section 4. 

Three-dimensional methods apply various techniques to construct a 3D model of the specimen from 

2D images. One technique is to fit a parameterized 3D model so that, when projected onto the 2D image 

plane, it produces an image that matches the image of the specimen. Another technique is to combine 

multiple 2D images to construct a 3D model of the specimen, which is then matched to 3D models. Our 

current approach is to create a 3D depth map of the specimens from multiple images with different focal 

planes—as mentioned previously in relation to creating images of the soil mesofauna specimens with all 

their body parts in focus. We believe that the resulting depth map will then allow us to extract 3D features 

that can be classified in a manner similar to the 2D features as discussed below. 

3 Recent Methods for Object Recognition 

Recent work in computer vision has led to the development of a new family of methods for object 

recognition.  In this project, we are refining and extending these techniques so that they can be applied to 

recognize insects and soil arthropods.  Hence, before describing our specific methods, we first review this 

family of modern object recognition methods. These methods are based on the following general 

approach: 

Step 1: Apply a ‘region detector’ to the input image. Many recent object recognition methods 

classify objects by identifying and describing a collection of small regions or ‘patches’ in an image.  These 

patch-based approaches work even when objects are partially occluded or when they are photographed 

in front of complex background settings. The first step in object recognition is to apply ‘region detectors’ to 

identify and extract a set of ‘interesting regions’ from the image. A region detector identifies a location 

(i.e., a pixel or region), a scale (i.e., a circle of specified radius or an ellipse with specified major and 

minor axes), and an orientation for each region. A good region detector should be reliable and 

informative. A detector is reliable if it is robust to changes in viewpoint, scale, illumination, and noise. That 

is, given two images of the same object taken with different viewpoints, illumination, and noise levels, the 

region detector should still detect the same regions. A detector is informative if the detected regions are 



useful for discriminating among the different object classes. Some popular region detectors include the 

Harris [12], Harris-affine [26], maximal difference-of-Gaussian (DOG) [20], maximally stable extremal 

regions (MSER) [22], and entropy (or Kadir) [16] detectors. Region detectors are also known as interest 

operators because they find interesting (i.e., locally unique) points or regions within the image. 

Step 2: Represent each region by a fixed-length ‘descriptor’. After detection, each interest region 

is represented by a descriptor (i.e., a real-valued vector of features) that succinctly and discriminatively 

characterizes the local image properties. By constructing each region’s descriptor relative to the local 

coordinate frame determined by the interest operator (i.e., the position, orientation, and scale), the 

descriptors are translation-, rotation-, and scale-invariant. Additionally, a descriptor should be insensitive 

to changes in illumination and, especially for object class recognition (as required in this project), non-

rigid transformations. Recent descriptors include spin images [18], shape context [4], SIFT [21], and PCA-

SIFT [17]. 

In this work we employ the SIFT (Scale Invariant Feature Transform) descriptor, which has been 

shown to perform better than other local descriptors [25]. The SIFT descriptor is invariant to scale, 

rotation, intensity and contrast changes, and, to a small degree, affine transformations. SIFT divides the 

region into a set of bins. For each bin, it computes a histogram of the intensity gradient orientation at each 

pixel. The result is a 128-dimensional real-valued vector. Once each detected region has been converted 

to a SIFT vector, the input image is discarded, and only the ”bag” of SIFT vectors is retained for further 

analysis. 

Step 3: Apply a classifier to the bag of descriptor vectors. Several classifiers have been 

developed that can analyze the bag of descriptor vectors and predict the class of the object. The simplest 

kind of classifier represents each object as a collection of ‘parts’. (We write ‘parts’ in quotes because 

these ‘parts’ do not necessarily correspond to real parts of the object; rather they correspond to interest 

regions in the object, which may or may not correspond to meaningful, physical parts of the object to be 

classified.) Each descriptor is classified according to which part it represents. If a sufficient number of 

matching parts is detected, the object is assigned to the corresponding class. More sophisticated 

classifiers (see below) compute a weighted sum of the detected parts. The most complex methods take 

into consideration the spatial relationships among the detected parts [[2],[10]], although subsequent work 

[[9],[29]] has obtained better results without including this information. 

Representing an object by local salient regions has many advantages that have made region-based 

recognition very popular in recent years. Region-based representations cope better with images that have 

cluttered backgrounds and objects that are partially occluded. This is because classifiers can be trained 

to make a decision even if not all parts are detected. In cases where images need to be compared to one 

another, interest operators reduce the matching task from comparing hundreds of thousands (or millions) 

of pixels to comparing just a few hundred highly salient regions. Another major benefit of using local 

regions for object class recognition is that they provide a degree of object pose invariance. In particular, 



affine-invariant detectors and descriptors allow for small out-of-plane object rotations (up to approximately 

30°). 

4 Classification Methods 

As noted above, we are pursuing two strategies for insect classification: (1) recognition using features 

extracted from the two-dimensional image, and (2) recognition based on three-dimensional reconstruction 

of the specimen from multiple images. As our work on 3D reconstruction is still preliminary, this chapter 

reports only on the methods and results to date of our 2D approach. 

Our 2D approach follows the general region-based methodology introduced above. This section 

presents the details of the approach. To date, we have focused only on discriminating between pairs of 

taxa (i.e., binary classifiers). Hence, we refer to one as the ‘positive’ class and the other as the ‘negative’ 

class. If we attain high accuracy on pair-wise discrimination, there are many machine learning methods 

for extending this to discriminate among tens or hundreds of taxa [3].  

4.1 Region Detectors 

We have experimented with many of the region detectors discussed previously, and we have chosen two: 

Harris-affine [26] and Kadir [16]. Our system constrains these detectors to consider only points that lie 

within the specimen, so that spurious detections in the background are not a problem. This is possible 

because the specimens have been segmented from the background.  

4.2 Region Descriptors 

For every interest region detected, we construct a 128-element SIFT vector that describes each region’s 

local neighborhood. The SIFT descriptor computes a 16×16 neighborhood centered on the detected 

region—normalized to scale, rotation, and (for Harris-affine) the affine parameters produced by the 

detector. This neighborhood is partitioned into 16 subregions of 4×4 pixels each. For each pixel within a 

subregion, SIFT adds the pixel’s gradient vector to a histogram of gradient directions by quantizing each 

orientation to one of 8 directions and weighting the contribution of each vector by its magnitude. Each 

gradient direction is further weighted by a Gaussian of scale s = n/2 where n is the neighborhood size, 

and the values are distributed to neighboring bins using trilinear interpolation to reduce boundary effects 

that occur when pixels move across bin boundaries. The final descriptor is a 128-dimensional real 

vector—representing the 4×4 grid of 8-bin orientation histograms. Figure 4 shows a graphical 

representation of the SIFT descriptors created for three regions detected in two stonefly images. The 

SIFT vectors in Figures 4C and 4D are very similar, and these points are in corresponding positions on 

the two specimens. In contrast, the SIFT vector shown in Figure 4E is quite distinct, and it does not 

correspond to the other two points. This shows the ability of SIFT to capture distinctive characteristics of 

the detected regions. 



The SIFT descriptor is invariant to scale, rotation, contrast and intensity changes, and small out-of-

plane rotations. Scale invariance is achieved by describing the local neighborhood around each feature 

point at that feature’s characteristic scale (as computed by the Harris or Kadir detectors). To achieve 

rotation invariance, the descriptor bins and gradient directions are defined relative to the dominant 

gradient orientation in the neighborhood. Invariance to intensity and contrast changes results from 

normalizing the 128-vector to unit magnitude. The 4x4 bin size (relative to the detected feature’s 

characteristic scale) provides some invariance to minor affine and perspective transformations as well as 

some non-rigid distortion (such as typically occurs from interclass variability). 

4.3 Defining Object Parts by Clustering Descriptor Vectors 

The first two steps of detecting interesting regions and representing them by SIFT descriptor vectors are 

performed both during training of the classifier and during classification of new specimens. The third 

step—defining object parts—is only performed during training.  

Parts are defined by performing a cluster analysis on the SIFT descriptor vectors extracted from the 

input images of the positive specimens. As does [9], we cluster the vectors by fitting a Gaussian Mixture 

Model (GMM). A GMM assumes that each SIFT vector is generated from one of K clusters according to a 

probability P(Ci), where i = 1, …, K denotes the cluster number. The values of the 128-element descriptor 

vectors are assumed to have a Gaussian distribution within each cluster with mean vector µi and diagonal 

covariance matrix Σi. According to this model, the probability assigned to any particular SIFT vector x can 

be computed as 
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where p(x | Ci) = gauss(x | µi, Σi) is the multivariate Gaussian probability density function. The adjustable 

parameters in the model are µi, Σi and P(Ci) for i = 1, …, K. These parameters are fit by maximum 

likelihood (i.e., to maximize p(x) on the training data vectors x) via the well-known Expectation-

Maximization (EM) algorithm [24]. EM is initialized using the very efficient K-means algorithm, and it 

typically converges in 20 to 100 iterations. 

To apply the GMM, we must choose a value for K. If K is too small, then the clusters found by EM will 

be very broad (with large variances in Σi). This will cause them to fail to be distinctive or informative. On 

the other hand, if K is too large, then the clusters will overfit the training data and not generalize well. 

Values within the range 50 ≤ K ≤ 100 give the best results. 

4.4 Converting Sets of SIFT Vectors into Standard Feature Vectors 

Once the ’parts‘ have been defined, we then convert each set of SIFT vectors (extracted from one training 

image) into a single feature vector of length K as follows. 

1) Initialize a histogram vector: hist[i] = 0 for 1 ≤ i ≤ K. 



2) For each SIFT descriptor vector x extracted from the image: 
 a) Let i* = arg maxi P(Ci|x) = arg maxi p(x|Ci) P(Ci) 

 b) hist[i*] = hist[i*] + 1. 

3) Normalize the histogram to unit magnitude. 
 
Step 2a computes the ‘part’ cluster i* that is most likely to have generated the observed SIFT vector x 

according to the GMM. Consequently, the ith entry in the histogram vector is proportional to the number of 

SIFT vectors that “belong” to cluster i. 

This conversion gives us training data in a format suitable for analysis by standard supervised 

learning algorithms. Let us denote the normalized histogram for the j th input image by hj and denote the 

corresponding class label (taxon) by yj. Our training data thus consist of pairs (hj, yj) for j = 1, …, N, where 

N is the total number of training images. 

4.5 Training the Classifier 

After the SIFT vector sets have been converted to standard feature vectors, they are used to train a 

classifier. In this chapter, we report results of a ‘bagged’ decision tree classifier.  A decision tree classifier 

has the form of a nested set of if-then-else statements, where each statement has the form 

 if h[i] > θn  

then statement 

else statement. 

and statement can either be a nested if-then-else or else a predicted class label. A new specimen is 

assigned a predicted class by executing this tree of if-then-elses until a predicted class label is reached. 

Decision tree classifiers are learned top-down by first selecting a feature i and a threshold θi for the 

outer-most if-then-else and then splitting the training data according to the results of this test. If all of the 

examples that reach a statement belong to a single class, then the recursion halts and that class is 

predicted. Similarly, if a new if-then-else would result in sending two or fewer examples down either the 

then or the else branches, then the recursion halts, and the class belonging to a majority of the data 

points is assigned at that statement. We have employed the J48 decision tree learning algorithm, which is 

part of the WEKA machine learning system [44]. 

A single decision tree is typically not a very good classifier. However, very high performance can 

often be obtained by constructing an ensemble of decision trees through a method known as ‘bagging’ 

[5]. In bagging, the decision tree learning algorithm is applied to L different training sets. Each training set 

is constructed by drawing N examples uniformly, with replacement, from the original training data set. 

Such a training set is known as a bootstrap replicate. Each bootstrap replicate may contain multiple 

copies of some of the original training examples, and it may be missing other components of the original 

examples. On average, a bootstrap replicate contains approximately 62 percent of the original training 



examples (but with enough copies so that there are still N total examples). In the results reported below 

bagging has been applied to construct 15 decision trees. 

To classify a new example, the predictions of these 15 decision trees are computed and the class 

(taxon) with the largest number of predictions is chosen as the overall bagged prediction. 

5 Results and Discussion 

We report the results of three experiments on stonefly classification.  In each experiment, we train our 

method to discriminate between two species.  The three experiments present progressively increasing 

levels of difficulty:  

1. The somewhat easy task of discriminating between the very distinctive Calineuria californica and 
Yoraperla sp. 

2. A moderately difficult task of discriminating between the Hesperoperla pacifica from Doroneuria 
baumanni. 

3. A hard task of discriminating between the very similar Calineuria californica and Doroneuria 
baumanni. 

 

These experiments are performed as follows: the image dataset is randomly divided into three 

completely disjoint sets of equal size. To avoid any kind of influence in the test results, different images of 

the same insect instance are placed in the same set. The first set is used as the ‘clustering set’ to create 

the GMM clusters for each object class (as detailed in Section 4.3 above); the second set is used to train 

the 15 decision trees that comprise the final classifier (described in Sections 4.4 and 4.5); while the third 

is used to measure the classification accuracy of the classifier. We use separate clustering and training 

sets to reduce overfitting of the classifier to the training data. 

Table I presents the resulting classification accuracy rates for our three experiments (along with 95% 

confidence intervals). For experiment 1 (Calineuria vs. Yoraperla), the method achieved 94% accuracy; 

for experiment 2 (Hesperoperla vs. Doroneuria), the accuracy was 90%, and for the very difficult 

experiment 3 (Calineuria vs. Doroneuria), the method attained only 73% correct classifications. These 

results represent the best matching rates achieved thus far in differentiating between pairs of insect 

species. However, because some of our design decisions (number of clusters, choice of species for 

clustering, number of decision trees to combine) were made to optimize these numbers, they are 

probably optimistically high.  

Because these are binary classification experiments, either species’ clustering set can be used to 

learn the GMM part clusters. In our experiments, the GMM clusters of both species were tried and the one 

that rendered the best results is presented. Calineuria’s part clusters were employed in the first 

experiment, Hesperoperla’s in the second experiment, and Doroneuria’s in the third. The choice of 

clustering set affects the accuracy, and there are two possible reasons for this: (1) some species have 

more clustering examples in the data set than others and (2) some species exhibit more distinctive visual 

cues that help with recognition. In the first experiment, the dataset contains many more images of 



Calineuria than of Yoroperla, this difference probably accounts for the GMM clustering algorithm 

producing better Calineuria part clusters which in turn helped increase the classification rate. By contrast, 

the data set in experiment three contains similar numbers of Calineuria and Doroneuria images, and both 

clustering sets give similar results. In the second experiment, the high classification accuracy is 

surprising. It is possible that the Hesperoperla clustering set has certain visual cues that produce very 

distinctive GMM clusters. 

Tables II, III, and IV present the confusion matrices of experiments 1, 2, and 3, respectively. Table II 

shows that all of the 16 misclassification errors involved misclassifying a Calineuria as a Yoraperla, which 

is quite surprising, because normally, misclassification favors the class with the larger number of training 

examples (in this case, Calineuria). Table III shows a similar pattern: most of the errors misclassify 

Hesperoperla as Doroneuria. Finally, in Table IV, we see a more balanced ratio of errors. The poor 

results in experiment 3 accord with our own informal experience: both Calineuria and Doroneuria are from 

the Perlidae family and look very similar—so much so that the non-entomologists on our team cannot 

generally distinguish them using only the collected image data. While Hesperoperla is also in the Perlidae 

family, it is more visually distinct from Calineuria and Doroneuria. 

6 Concluding Remarks and Future Work 

This chapter describes our ongoing work on developing robust pattern recognition methods for 

automatically classifying insects. Although this project focuses on identifying stonefly larvae for stream 

water quality monitoring and soil mesofauna for soil biodiversity assessment, the goal is to create 

general-purpose techniques that can be applied to many automated systematics tasks by simply 

retraining the system for each application. In addition, we have designed and developed (or are 

developing) computer-controlled mechanical systems to facilitate automated imaging of specimens. Our 

insect classification system uses recent advances in object-class recognition based on interest operators 

and bagged local region descriptors combined with boosted decision trees. 

While we are pleased with the classification accuracy achieved thus far on stonefly larvae, there is 

still significant room for improvement. First and foremost, we continue to add and refine components that, 

as indicated in Fig. 1, are still under development. These components include the control and imaging 

software for the soil mesofauna, fully automate segmentation by incorporating Bayesian matting (or a 

similar method), coarse classification, and the extraction and inclusion of 3D features from the depth map 

constructed during the focal-montage process. In addition to these necessary components, we continue 

to make improvements to the existing mechanical specimen manipulation and imaging apparatus with the 

ultimate goal of mechanically delivering each identified specimen to a separate bin based on its 

classification. We are also developing a new watershed-based region detector [46] that appears to be 

better suited for insect classification and we continue to explore additional region and feature descriptors 

to supplement the SIFT feature vectors. Furthermore, we are experimenting with several additional 

classifiers including those that work directly on the bags of descriptor vectors, instead of converting them 



to standard feature vectors. We are also developing a multi-class system that will classify a specimen into 

one of many taxonomic categories rather than our current binary classifiers that distinguish only between 

two species at a time. 

Our current effort has focused on classifying each specimen to the species level (though in the 

experiments presented here, genus-level classification implies species-level identification as well) . 

However, in cases where the classifier is uncertain about the species, it is often useful (both for stream 

monitoring and for soil biodiversity studies) to make a coarser classification at the level of genus or family. 

For example, while it is difficult to achieve high confidence in automatically distinguishing between the 

very similar Calineuria californica and Doroneuria baumanni species of stonefly larvae, high confidence 

classification to the family level is much more feasible and still very valuable for stream health 

assessment.  Hence, we plan to explore methods for trading off the benefit of fine classification against 

the risk of making an error in order to automatically choose the best level of the taxonomic hierarchy for 

classifying each specimen. 

We would also like to explore additional systematics applications to test the robustness of our system 

in new classification domains, such as recognition of plant species. Our long-term goal is to develop 

commercial products to make this emerging technology available to the environmental monitoring and 

research communities. 
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TABLE I: CLASSIFICATION RESULTS USING DECISION TREES WITH BAGGING 

Experiment 
Classification 

Accuracy (%)

1: Calineuria vs. Yoraperla 94.40±2.66 

2: Hesperperla vs. Doroneuria 90.47±3.36 

3: Calineuria vs. Doroneuria 73.33±6.88 

 

TABLE II: CONFUSION MATRIX — CALINUERIA VS. YORAPERLA 

Taxa 

Classified as:

Calineuria 

Classified as:

Yoraperla 

Calineuria 171 16 

Yoraperla 0 99 

 

TABLE III: CONFUSION MATRIX — HESPEROPERLA VS. DORONEURIA 

Taxa 

Classified as: 

Hesperoperla

Classified as: 

Doroneuria 

Hesperoperla 171 24 

Doroneuria 4 95 

 

TABLE IV: CONFUSION MATRIX — CALINEURIA VS. DORONEURIA 

Taxa 

Classified as: 

Calineuria 

Classified as: 

Doroneuria 

Calineuria 126 66 

Doroneuria 30 138 

 



 
Figure 1:  Diagram of insect classification system. Components with dashed lines are still under 
development. 
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Figure 2:  Transportation and imaging apparatus for stonefly larvae. A. Diagram of mirror system for 
obtaining two simultaneous views of a specimen (from approx. 90° apart) in a single image. B. Image of 
prototype mirror and transportation apparatus. C. Image of entire stonefly transportation and imaging 
setup (with microscope and attached digital camera, light boxes, and computer controlled pumps for 
transporting and rotating the specimen. 
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Figure 3:  Example images of stonefly specimens taken with our imaging apparatus. A. Calinueria 
californica. B. Doroneuria baumanni. C. Hesperoperla pacifica.  D. Yoraperla sp. 
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Figure 4:  Example SIFT descriptors for three points in two images. The SIFT histograms for (c) the 
detected region in image (a), the matching region in image (b) and (e) a random region in image (b). 
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