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Abstract. This paper addresses the problem of learning dynamic
Bayesian network (DBN) models to support reinforcement learning. It fo-
cuses on learning regression tree (context-specific dependence) models of
the conditional probability distributions of the DBNs. Existing algorithms
rely on standard regression tree learning methods (both propositional and
relational). However, such methods presume that the stochasticity in the
domain can be modeled as a deterministic function with additive noise.
This is inappropriate for many RL domains, where the stochasticity takes
the form of stochastic choice over deterministic functions. This paper in-
troduces aregression tree algorithm in which each leaf node is modeled as a
finite mixture of deterministic functions. This mixture is approximated via
agreedy set cover. Experiments on three challenging RL domains show that
this approach finds trees that are more accurate and that are more likely to
correctly identify the conditional dependencies in the DBNs based on small
samples.

Recent work in model-based reinforcement learning uses dynamic Bayesian net-
work (DBN) models to compactly represent the transition dynamics of the ac-
tions and the structure of the reward function. DBN models require much less
space than tabular models (Dean & Kanazawa, 1989), and they are able to gen-
eralize to novel parts of the state space. Additional compactness can be ob-
tained by representing each conditional probability distribution by a regression
tree (Boutilier et al., 1995)), a structure we will refer to as a TDBN. Boutilier
and colleagues have developed a family of approximate value iteration and pol-
icy iteration algorithms that manipulate tree-structured representations of the
actions, the rewards, and the value functions (Boutilier et al., 2000)).

An additional advantage of DBN representations is that they explicitly iden-
tify which state variables at time ¢ influence the state variables at time ¢ + 1.
By analyzing the structure of such dependencies, it is possible to identify le-
gal state abstractions in hierarchical reinforcement methods such as MAXQ
(Dietterich, 2000). In recent work, Jonsson and Barto (2006) and Mehta, et
al. (2007) have shown how to automatically discover subroutine hierarchies
through structural analysis of the action and reward DBNs.

Algorithms for learning TDBNs generally employ the standard set of techniques
for learning classification and regression trees (Breiman et al., 1984)). Internal
nodes split on one or more values of discrete variables or compare continuous
values against a threshold. If the target variable is discrete, a classification tree
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is constructed (Quinlan, 1993), and each leaf node contains a multinomial distri-
bution over the values of the target variable. One variation on this is to search for
a decision graph (i.e., a DAG, (Chickering et al., 1997)). Search is typically top-
down separate-and-conquer with some form of pruning to control overfitting, al-
though Chickering et al. (Chickering et al., 1997) employ a more general search
and control overfitting via a Bayesian scoring function. If the target variable is
continuous, a regression tree is constructed. Each leaf node contains a Gaussian
distribution with a mean and (implicitly) a variance (Breiman et al., 1984)).

Many generalizations of the basic methods have been developed. One gener-
alization is to allow the splits at the internal nodes of the tree to be relational
(e.g., by evaluating a predicate that takes multiple variables as arguments or by
evaluating a function of one or more variables and comparing it against a thresh-
old (threshold Kramer, 1996} Blockeel, 1998)). Another is to allow the leaf nodes
of regression trees to contain regression models (so-called Model Trees; Quinlan,
1992) or other functions (Torgo, 1997). Gama’s (2004) Functional Trees combine
functional splits and functional leaves. Vens et al. (2006]) combine relational splits
with model trees.

It is interesting to note that for discrete random variables, the multinomial
distribution in each leaf represents stochasticity as random choice across a fixed
set of alternatives. However, in all previous work with regression trees, each leaf
represents stochasticity as Gaussian noise added to a deterministic function.

In many reinforcement learning and planning problems, this notion of stochas-
ticity is not appropriate. Consider, for example, the GOTO(agent,loc) action
in the real-time strategy game Wargus (2007)). If the internal navigation routine
can find a path from the agent’s current location to the target location loc, then
the agent will move to the location. Otherwise, the agent will move to the reach-
able location closest to loc. If we treat the reachability condition as unobserved,
then this is a stochastic choice between two deterministic outcomes, rather than
a deterministic function with additive Gaussian noise. Another case that arises
both in benchmark problems and in real applications is where there is some
probability that when action a is executed, a different action a’ is accidentally
executed instead. A third, more mundane, example is the case where an action
either succeeds (and has the desired effects) or fails (and has no effect).

The purpose of this paper is to present a new regression tree learning algorithm,
DMT (for Discrete Mixture Trees), that is appropriate for learning TDBNs when
the stochasticity is best modeled as stochastic choice among deterministic alter-
natives. Formally, each leaf node in the regression tree is modeled as a multinomial
mixture over a finite set of alternative functions. The learning algorithm is given a
(potentially large) set of candidate functions, and it must determine which func-
tions to include in the mixture and what mixing probabilities to use. We describe
an efficient algorithm for the top-down induction of such TDBNs. Rather than pur-
suing the standard (but expensive) EM-approach to learning finite mixture models
(McLachlan & Krishnan, 1997)), we instead apply the greedy set cover algorithm
to choose the mixture components to cover the data points in each leaf. The
splitting heuristic is a slight variation of the standard mutual information (infor-

mation gain) heuristic employed in C4.5 (Quinlan, 1993).
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We study three variants of DMT. The full DMT algorithm employs relational
splits at the internal nodes and mixtures of deterministic functions at the leaves
(DMT). DMT-S (“minus splits”) is DMT but with standard propositional splits.
DMT-F (“minus functions”) is DMT but with constant values at the leaves. We
compare these algorithms against standard regression trees (CART) and model
trees (M5P). All five algorithms are evaluated in three challenging domains. In
the evaluation, we compute three metrics: (a) root relative squared error (RRSE;
which is most appropriate for Gaussian leaves), (b) Recall over relevant variables
(the fraction of relevant variables included in the fitted model), and (c¢) Precision
over relevant variables (the fraction of the included variables that are relevant).
The results show that in two of the domains, DMT gives superior results for all
three metrics. In the third domain, DMT still has better Recall but produces
mixed results for RRSE and Precision.

1 Tree Representations of DBNs

Figure [Ma) shows a DBN model involving the action variable a, three state
variables z1, z2, 3, and the reward value r. In this model (and the models em-
ployed in this paper), there are no probabilistic dependencies within a single
time step (no synchronic arcs). Consequently, each random variable at time ¢ + 1
is conditionally independent given the variables at time ¢. As always in Bayesian
networks, each node x stores a representation of the conditional probability dis-
tribution P(z|pa(z)), where pa(z) denotes the parents of x.

In this paper, we present a new algorithm for learning functional tree repre-
sentations of these conditional probability distributions. Figure [I(b) shows an
example of this representation. The internal nodes of the tree may contain re-
lational splits (e.g., z2(t) < x3(t)) instead of simple propositional splits (e.g.,
x2(t) < 1). The leaves of the tree may contain multinomial distributions over
functions. Hence the left leaf in Figure [[(b) increments x; with probability 0.7
and decrements it with probablity 0.3.

There are many ways in which functional trees provide more compact represen-
tations than standard propositional regression trees (Figure[ll(c)). First, relational
splits are much more compact than propositional splits. To express the condition
x2(t) < ws(t), a propositional tree must check the conjunction of z5(f) < € and
x3(t) > 0 for each value of 6. Second, functional leaves are more compact than
constant leaves. To express the leaf condition z1 (¢t + 1) := z1(¢t) + 1, a standard
regression tree must introduce additional splits on x1(¢) < 6 for each value of 6.
Finally, standard regression trees approximate the distribution of real values at a
leaf by the mean. Hence, the left-most leaf of Figure[Ilc) would be approximated
by the constant 0.4 with a standard deviation (mean squared error) of 0.92.

This compactness should generally translate into faster learning, because in
the functional trees, the data are not subdivided into many “small” leaves. How-
ever, if the learning algorithm must consider large numbers of possible splits and
leaf functions, this will introduce additional variance into the learning process
which could lead to overfitting and poor generalization. Hence, to obtain the
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0.3: X4(t) = 1
0.7: X4(t) + 1

Fig. 1. (a) time slice representation of the DBN. The square action node a(t) affects
all nodes at time ¢ + 1, but for readability those arcs have been omitted. Circles repre-
sent state variables, and the diamond is the reward node. (b) a tree representation for
P(xz1(t + 1)|x1(t), z2(t), z3(t)) with relational internal nodes and a probability distri-
bution over functions (z1(t+1) := z1(t) + 1 and z1 (¢t + 1) := z1(¢) — 1) in the left leaf.
(c) a tree with propositional nodes and constant leaves must be much more copmlex
to represent the same conditional probability distribution.

benefits of functional trees, the engineer must identify a constrained set of can-
didate relational splits and functional leaves. We adopt a proven approach from
inductive logic programming (Lavrac & Dzeroski, 1994) and specify these can-
didate splits and functions for each domain via a context-free grammar.

Because different actions exhibit different probabilistic dependencies, all work
in tree-based DBN learning—including our own—Ilearns a separate set of regres-
sion trees for each action.

As mentioned above, other researchers have studied regression trees with rela-
tional splits and functional leaves. Our contribution is to extend these to handle
multinomial mixtures of functions in the leaves.

2 Algorithm

To construct a regression tree for x;(t + 1), we follow the standard recursive
top-down divide-and-conquer approach using the values of x1(t),...,z,(t) as
the input features and x;(t 4 1) as the response variable. However, we introduce
two modifications. First, given a set of N values for z;(t + 1) (i.e., at a leaf), we
fit a mixture of functions by applying the well-known greedy set cover algorithm
(Johnson, 1973). That is, we score our candidate leaf functions according to the
number of training values that they fit and choose the function that fits the
most points. Those points are then removed from consideration, and the process
is repeated until all points are covered. The result of the set cover is a list of
the form ((fi,n1), (f2,n2),..., (fk, 7)), where each f; is a function and n; is
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the number of data points covered by f; that were not covered by functions
fi,..., fj—1. We then estimate the multinomial distribution as P(f;) = n;/N.

This approach introduces two approximations. First, greedy set cover is not op-
timal set cover (although it does give very good approximations; Slavik, 1996).
Second, there may be points that are consistent with more than one of the func-
tions fi,..., fx. Strictly speaking, the probability mass for such points should be
shared equally among the functions, whereas we are assigning it to the first func-
tion in the greedy set cover. In our application problems, this second case occurs
very rarely and typically only affects one or two data points.

Our second modification concerns the loss function to use for scoring candi-
date splits. Virtually all regression tree algorithms employ the expected squared
error of the children and choose the split that minimizes this squared error. This
is equivalent to assuming a Gaussian likelihood function and maximizing the
expected log likelihood of the training data. If we followed the same approach
here, we would score the expected log likelihood of the training data using the
multinomial mixture models. However, this does not work well because we as-
sume that the mixture components (i.e., the individual functions) are themselves
deterministic, so if a leaf node contains a single function with assigned proba-
bility of 1, the log likelihood of a data point is either 0 (if the function matches
a data point) or —oo (if it does not). This leads to a very non-smooth function
that does not work well for scoring splits. Instead, we adopt the approach that
has worked well for learning classification trees (Quinlan, 1993): we score each
candidate split by the expected entropy of the probability distributions in the
leaves and choose the split that minimizes this expected entropy.

To prevent overfitting, we employ a form of “pre-pruning”. If no test reduces
the expected entropy by more than a constant e, we stop splitting. In future work,
we plan to replace this by a more sophisticated technique such as pessimistic
pruning or MDL pruning.

Algorithm [l shows the algorithm. It follows the standard recursive divide-and-
conquer schema for top-down induction of decision trees. Ties in split selection
are broken in favor of splits that introduce fewer new variables into the tree.

2.1 Efficient Splitting Function Search

Algorithm [l requires performing two greedy set cover computations to evaluate
each split. Despite the fact that greedy set cover is very efficient, this is still
extremely time-consuming, especially if the set of candidate leaf functions is
large. We therefore developed a method based on Uniform Cost Search (UCS) for
finding the best set cover without having to evaluate all candidate leaf functions
on all candidate splits.

Suppose we define a partial set cover to have the form ((f1,7m1), (f2,n2),...,
(frk—1,nk-1), (else,n))).This represents the fact that there are n; data points
that have not yet been covered by any leaf function. A node in the Uniform Cost
Search consists of the following information:

— the candidate splitting condition s, Py, and Pright
— partial set covers Ciey; and Cigne for the branches
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Algorithm 1. DMT: Grow a decision tree top-down

GROWTREE(examples: E, treenode: T', setcover: C, real: €)

FE is the set of training examples

T is a tree node (initially a leaf)

C' is the set cover (with associated probability distribution) of the node
let hroot := ENTROPY(C)

Initialize variables to hold information about the best split:

let h* := hyoot

let Ejes = 740 = empty set

let Cjpy := Cyigne = empty set cover

: let ™ := null

,_.
o ©

11: for all candidate splits s do

12:  let Ejept := {e € E|s(e)} {Examples for which s is true}
13:  let Erignt := {e € E|-s(e)} {Examples for which s is false}
14 let Plogy i= |E‘LE,|%|  Pright = \ETE‘M\

15:  let Cieft := GREEDYSETCOVER(Ejcft)

16:  let Cright := GREEDYSETCOVER(Eyight)

17: let hs = Pyt - ENTROPY (Clest) + Pright - ENTROPY(Clright)
18: if hs < h*™ then

19: let h* := hs; 8™ := s

20: El*eft = Eleg; E:z’ght = Eright; Cl*eft = Cleft; C:ight = Crignt
21: if |hroot — h™| > € then

22:  set T.split := s™

23:  let Tiept := new treenode(LEAF, Cj.y;)

24:  let Trignt := new treenode(LEAF,CF;qpt)

25:  set T.left := GROWTREE(E], ¢y, Tiert, Cle i, €)

26:  set T.right := GROWTREE(E; 4t Tright, Cright, €)

— the entropy of the partial set covers hies; and hpigh:
— the sets of uncovered response values Vic¢; and Viigne
— the current expected entropy h = Pieyt - hieft + Pright - Pright

The key observation is that the current expected entropy is a lower bound on
the final expected entropy, because any further refinement of either of the partial
set covers Ciesy or Crigne Will cause the entropy to increase.

The split selection algorithm starts by creating one UCS node for each can-
didate split s with empty set covers Cjcy; and Cign: and pushing them on to a
priority queue (ordered to mininize h). It then considers the best greedy addition
of one leaf function to Ciers and to Crigne to expand the two set covers, recom-
putes Viest, Viigne, and h, and pushes this new node onto the priority queue.
Note that the size of the priority queue remains fixed, because each candidate
split is expanded greedily rather than in all possible ways (which would produce
an optimal set cover instead of a greedy set cover).

The algorithm terminates when a node popped off the priority queue has
Viert = Viight = the empty set. In which case, this is the best split s*, because it
has the lowest expected entropy and all other items on the priority queue have
higher entropy.
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3 Experiments

To evaluate the effectiveness of our DMT algorithm, we compared it experi-
mentally to four other algorithms: CART (Breiman et al., 1984), Model Trees
(Quinlan, 1992), DMT with propositional splits and functional leaves (DMT-S,
“minus splits”) and DMT with relational splits but constant leaves (DMT-F,
“minus functions”). In effect, CART is DMT-SF, DMT without relational splits
or functional leaves.

The experiment is structured as follows. We chose three domains: (a) a version
of the Traveling Purchase Problem (TPP) adapted from the ICAPS probabilistic
planning competition (2006]), (b) the Trucks Problem, also adapted from ICAPS,
and (c¢) a resource gathering task that arises in the Wargus real-time strategy
game (2007). In each domain, we generated 200 independent trajectories. In TPP
and Trucks, each trajectory was generated by choosing at random a legal starting
state and applying a uniform random policy to select actions until a goal state
was reached. In Wargus, all trajectories started in the same state because they
were all generated from the same map, and there is only one legal starting state
per map. On average, the trajectories contained 96.9 actions in TPP (standard
deviation of 56.7), 600.0 actions in Truck (s.d. of 317.8), and 2065 actions in
Wargus (s.d. of 1822). The 200 trajectories were randomly partitioned into a
training set of 128 and a test set of 72 trajectories. To generate learning curves
and to obtain independent training trials, the 128 training trajectories were
further divided into 2 subsets of 64, 4 subsets of 32, 8 subsets of 16, 16 subsets
of 8, 32 subsets of 4, 64 subsets of 2, and 128 subsets each containing only one
trajectory. For each of these training sets, each of the five algorithms was run.
The resulting DBN models were then evaluated according to three criteria:

— Root Relative Squared Error (RRSE). This is the root mean squared error in
the predicted value of each state variable divided by the RMS error of simply
predicting the mean. Some variables are actually 0-1 variables, in which case
the squared error is the 0/1 loss and the RRSE is proportional to the square
root of the total 0/1 loss.

— State variable Recall. Because we wish to use the learned trees to guide
subroutine discovery algorithms (2006; [2007), we want algorithms that can
correctly identify the set of parents pa(z) of each variable z. The recall is
the fraction of the true parents pa(z) that are correctly identified in the
DBN model.

— State variable Precision. We also measure precision, which is the fraction of
parents in the learned DBN that are parents in the true DBN.

3.1 Domains
Here are the detailed specifications of the three domains.

Traveling Purchase Problem. (TPP) is a logistics domain where an agent
controls a truck that must purchase a number of goods from different markets
and then return them to a central depot. Each market has a supply of goods, as
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well as its own price, both of which are random for each problem instance and
are provided as state variables. The state also contains variables that represent
the remaining demand. These variables are initialized with the total demand
for that product, and they are decremented as the agent buys goods from the
markets. Actions in this domain consist of goto actions, actions that buy units
of products from markets, and an action to deliver all purchased products to the
central depot.

For these experiments, the domain was restricted to two markets, one central
depot, and three products. This results in an MDP with 15 state variables and
10 actions. Initial values for product supply and demand can range from zero
to 20, which produces an MDP with over 10'? states. The price variables do
not count toward the size of the state space, because their values are constant
throughout an instance of the problem.

The Truck Problem. is another logistics problem. However in this domain, the
focus is on the logistics of picking up packages, placing them in the right order
on the truck, dropping them off, and delivering them to their proper destination.
Here the agent is in control of two trucks; each truck has two areas (front and
rear) in which it can hold packages. As in a real delivery truck, these areas must
be loaded and unloaded in the proper order. For example, if there is a package
in the front area, an action that attempts to remove the package from the rear
of the truck fails.

For our experiments, the two trucks are asked to deliver three packages from
one of five locations to another of the five locations. Once a package is dropped
off at the correct location, an action must be taken by the agent to deliver the
package to the customer. Actions in this domain include loading and unloading
a package on a truck, driving a truck to a location, and delivering a package to
the customer once it is at its goal location. The domain has 25 actions and 12
state variables, with 4.3 - 108 states.

Wargus. is a resource gathering domain where an agent controls one or more
peasants and directs them in a grid world that contains gold mines, stands of
trees, and town halls. The agent can navigate to anywhere on the map with a
set of goto actions. These are temporally extended actions that bring a peasant
to specified region of the map. The regions are defined by the “sight radius” of
the peasants. Within this radius, they can execute other actions such as mining
gold, chopping wood, and depositing their payload in the town hall. Once the
peasant has deposited one set of gold and one set of wood to the town hall, the
episode ends and reward is received.

For this set of experiments, we use a single peasant on a map with a single gold
mine and a single town hall. Trees are distributed randomly around the map.
The state contains variables that list the position of the peasant on the map,
what the peasant is holding, what objects of interest are within sight radius of
the peasant (wood, gold, town hall), and the status of the gold and wood quotas.
The domain has 19 actions and 9.8 - 10* states.
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This domain differs from the other two domains because it is not fully observ-
able. The map that the peasant is navigating is a hidden variable that determines
not only the navigation dynamics but the presence of trees, gold mines, and town
halls within the peasant’s sight radius.

3.2 Results

For each combination of a domain, training set, output state variable (or re-
ward), and action, we measured the three metrics. We performed an analysis of
variance on each metric, holding the domain, action, variable and training set
size constant and treating the multiple training sets as replications. We treated
DMT as the baseline configuration and tested the hypothesis that the metric
obtained by each of the other algorithms was significantly worse (a “win”), bet-
ter (a “loss”), or indistinguishable (a “tie”) at the p < 0.05 level of significance.
The test is a paired-differences t test. Note that the power of this test decreases
as the number of training trajectories increases. When the training set contains
only 1 trajectory, there are 128 replications, but when the training set contains
64 trajectories, there are only 2 replications. Hence, we generally expect to see
the percentage of ties increase with the size of the training set.

Table [[l aggregates the results of these statistical tests over all state variables
and all actions in each domain. The large number of ties in each cell is largely an
artifact of the loss of power for large training set sizes. Let us first compare DMT
with DMT-F (constant leaves). In TTP and Truck, DMT performs much better
than DMT-F. In Wargus, the situation is less clear. On Recall, DMT is always at
least as good as DMT-F, but on RRSE the algorithms each have a large number
of wins, and on precision, DMT-F tends to be better. Next, consider DMT and
DMT-S (propositional splits). In this case, DMT is dominant except for Wargus
precision, where DMT sometimes includes unnecessary variables that DMT-S
avoids. Next, compare DMT with CART (i.e., DMT-SF). Here, DMT is almost
always superior on all metrics. Note in particular that for RRSE, it is superior in
1057 out of 1120 cases (94.4%) in TTP, 2085 out of 2100 cases (99.3%) in Truck,
and 519 out of 662 cases (78.4%) in Wargus. So the number of ties is actually
quite small, despite the low number of replicates at large sample sizes. The only
case of less than overwhelming superiority is again Precision in Wargus. Finally,
compare DMT with M5P, which is the Weka implementation of model trees.
DMT is again dominant in the TPP and Truck domains. In Wargus, DMT is
always at least as good as M5P for Recall, but on Precision DMT is more often
inferior to M5P than the reverse, and on RRSE, DMT has 247 wins whereas
MS5P has 207, so there is no overall winner.

Table [ hides the effect of increasing sample size. To visualize this, Figure
shows the win/loss/tie percentages as a function of training set size for Recall
comparing DMT versus CART. Each vertical bar is divided into three parts
indicating wins, losses, and ties (reading from bottom to top). In virtually all
cases, there are no losses, which means that DMT’s Recall is almost always
better than or equal to CART’s Recall. Note also that as the size of the training
set gets large (and hence, the number of training sets gets small), we observe
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Table 1. Statistical wins, losses and ties for DMT all other tested algorithms on each
domain. These results are over all non-reward variable models. A win (or loss) is a
statistically significant difference between DMT and the indicated algorithm (p < 0.05;
paired t test).

TTP
DMT-F DMT-S CART M5P
Win Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie
Precision 671 3 446 7 3 1110 787 9 324 358 4 758
Recall 404 0 656 20 0 1040 411 0 649 390 0 670
RRSE 716 40 364 44 21 1055 1057 38 25 475 37 608
Truck
DMT-F DMT-S CART M5P
Win Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie
Precision 594 0 1504 55 0 2043 1240 7 851 679 1 1418
Recall 356 22 1645 117 1 1905 566 14 1443 467 16 1540
RRSE 1046 83 971 211 56 1833 2085 5 10 838 9 1253
Wargus
DMT-F DMT-S CART M5P
Win Loss Tie Win Loss Tie Win Loss Tie Win Loss Tie
Precision 14 87 930 15 21 995 291 135 605 120 206 705
Recall 118 0 946 15 1 1048 212 0 852 176 0 888
RRSE 172 182 308 55 16 591 519 &7 56 247 207 208

more ties. This is a consequence of the loss of statistical power of the t test.
Space limits prevent us from showing these curves for the other metrics or for
the reward TDBNs.

Figure [3] presents learning curves for RRSE. We do not have space to show
the learning curve for every combination of action and variable, so we chose one
variable-action pair from each domain. For the TPP Supply variable (Purchase
action), we see that for training sets of size 8 and above, DMT has the lowest
RRSE, DMT-S and M5P come next, the DMT-F and CART are the worst. For
the Truck variable Truck Area (Load action), DMT always has the lowest RRSE.
At 8 trajectories, it is joined by DMT-F, while the other three algorithms have
much higher error levels. This suggests that using relational splits is critical
in this domain, and we observed this for several other variable-action-domain
combinations. Finally, for the Wargus Reward variable (Navigate action), the
three DMT variants have the lowest RRSE (and are indistinguishable). M5P
comes next, and CART gives the worst performance. The explanation for this
is less clear. Evidentally, good performance requires either relational splits or
functional leaves but not both!

Also shown in Figure[Blis the model sizes for the variable-action pairs depicted
in the corresponding RRSE plots. For the Supply variable (Purchase action) in
the TPP domain, both DMT and DMT-S perform the best, followed by M5P,
CART and DMT-F. DMT-S returns a single mixture of functions in this case
because it does not have access to the more complex splits of full DMT. In
the Truck domain’s Load action (Truck Area variable), DMT always produces
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Recall of DMT vs CART for TPP domain Recall of DMT vs CART for Truck domain
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Fig. 2. Recall of DMT vs. CART for state variables for TPP, Truck, and Wargus. Each
bar is divided into three sections (wins, losses, and ties). The losses are too infrequent
to be visible in this plot.

the smallest models, followed by M5P, DMT-F, DMT-S and CART. Finally,
in the reward node for a GOTO action in Wargus, we see that DMT and its
variants produce the largest models, with the smallest models being produced
by M5P and CART. This is consistent with our original hypothesis that the
DMT algorithm performs best when the stochasticity is best represented as a
mixture over discrete functions. GOTO is a temporally extended action that
follows a navigation policy set by Wargus itself, its reward function is represents
the distance between the current point and the destination point with noise
added in from detours caused by obstacles in the agent’s path.

To understand the Precision and Recall behavior of the algorithms, it is not
sufficient to plot learning curves of the average Precision and Recall. This is be-
cause the distribution of measured Precision and Recall scores is highly skewed,
with many perfect scores. Instead, we developed the Precision and Recall profiles
shown in Figured as a way of visualizing the distribution of Precision and Recall
scores. For each domain, action, result variable, and training set, we computed
the Precision and Recall of the fitted TDBN with respect to the set of variables
included in the model compared to the variables included in the true DBN. For
each domain, we sorted all of the observed scores (either Precision or Recall,
depending on the graph) into ascending order and then for each value 6 of the
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Fig. 3. RRSE and Model Size in nodes as a function of the number of trajectories in
the training set for one chosen action and variable in each domain. Top: RRSE and
Model Size for Market Supply for the Purchase action in TTP; Middle: RRSE and
Model Size for Truck Area for the Load action in Truck; Bottom: RRSE and Model
Size of the Reward node for a Goto action in Wargus.
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Fig. 4. Precision and Recall profiles for each domain when trained on 8 trajectories
and compared to the true DBN models. These curves aggregate over all variables,
actions, and training sets in each domain. Each plotted point specifies the fraction of
learned models with Precision (or Recall, respectively) less than the value specified on
the horizontal axis. Hence, the ideal curve would be a flat line at 0, corresponding to
the case where all learned models had Precision (or Recall) of 1.0.
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score we plotted the fraction of TDBNs where the score was < 6. The ideal
profile would be a flat line corresponding to the case where all learned TDBNs
had a perfect score of § = 1.0, so none of them were less than 6. The higher
and more rapidly the profile rises, the worse the performance. In short, these
are cumulative distribution functions for Precision and Recall. Figure [ shows
these profiles for cases where the training set contains 8 trajectories. We chose
this as the middle point on the learning curves (with respect to log sample size).
The TPP profile is based on a total of 2560 models, the Truck profile on 4800
models, and the Wargus profile on 2736 models.

For the TPP domain, DMT and DMT-S track each other very closely and
are consistently superior to all of the other algorithms. Only 10% of the trials
had Precision or Recall less than 1.0. M5P comes next with excellent Precision.
CART had the worst Precision and DMT-F was also quite bad. For Recall,
DMT-F is the worst, while CART matches M5P’s poor performance.

For the Truck domain, CART gives extremely bad Precision—more than half
of the runs had Precision of around 0.5 or less. All of the other methods do
much better with DMT being best with more than 95% of the runs achieving
Precision of 1.0. On Recall, all of the algorithms do fairly well with DMT and
DMT-F doing the best and the others somewhat worse.

Finally, for Wargus DMT-F has the best Precision for low values but the
second-worst Precision at high values. M5P is best at the high end. DMT and
DMT-S are in the middle of the pack, and CART is the worst. For Recall, DMT
is excellent with DMT-S very good and DMT-F respectable. M5P and CART
are quite a bit worse. The very high Recall and poor Precision of DMT suggests
that it is overfitting and creating large models that contain extra variables.
This suggests that there is room for improvement in the overfitting avoidance
mechanisms of DMT.

4 Concluding Remarks

This paper has presented a new algorithm, DMT, for learning regression tree
models of conditional probability distributions for DBNs. The algorithm is de-
signed to handle domains in which stochasticity is best modeled as stochastic
choice over a small number of deterministic functions. This stochasticity is rep-
resented as a finite mixture model over deterministic functions in each leaf of the
regression tree. These mixture models are learned via greedy set cover. Exper-
iments on three challenging domains provide evidence that this approach gives
excellent performance, both in terms of prediction accuracy but also, perhaps
more importantly, in terms of the ability to correctly identify the relevant par-
ents of each random variable. In two of the domains, DMT is clearly superior
to CART and M5P. In the third domain (Wargus), there are many cases where
DMT performs well, but there are also many cases where it gives worse predic-
tion accuracy and precision than CART or M5P. This suggests that DMT may
be overfitting in this domain.
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It is interesting to note that this problem could also be viewed as a multi-
label classification problem with overlapping classes. If each training point were
labeled with the set of functions that apply to it, then the optimal mixture of
classes for a set of examples represents the optimal discrete mixture of functions
for those examples. This leads to some complications when classes partially or
fully overlap, such as assigning probability mass of an example that is a member
of several classes. These issues can be addressed by the same approximations
used to increase efficiency that are described in this paper.

In future work, we plan to incorporate stronger methods for regularizing DMT
by controlling both the tree size and the size of the set covers in each leaf. We
would also like to extend this approach to allow stochasticity both in the mixture
of functions and in the individual functions themselves. In addition, we plan to
use the TDBNs learned by DMT as input to the MAXQ discovery algorithm
that we have developed (2007).
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