
Systematic Construction of Anomaly Detection
Benchmarks from Real Data

Andrew F. Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, Weng-Keen Wong
Oregon State University

School of EECS
Corvallis, Oregon, USA

{emmott,dassh,tgd,afern,wong}@eecs.oregonstate.edu

ABSTRACT
Research in anomaly detection suffers from a lack of realis-
tic and publicly-available problem sets. This paper discusses
what properties such problem sets should possess. It then
introduces a methodology for transforming existing classi-
fication data sets into ground-truthed benchmark data sets
for anomaly detection. The methodology produces data sets
that vary along three important dimensions: (a) point diffi-
culty, (b) relative frequency of anomalies, and (c) clustered-
ness. We apply our generated datasets to benchmark several
popular anomaly detection algorithms under a range of dif-
ferent conditions.

1. INTRODUCTION
Anomaly detection is an important task in many real-

world applications, such as identifying novel threats in com-
puter security [15, 23, 16, 21], finding interesting data points
in scientific data [26], and detecting broken sensors (and
other problems) in data sets [7]. Although a wide variety
of anomaly detection algorithms have been developed and
applied to these tasks [20, 11, 5, 31], a shortcoming of most
published work is that there is no standard methodology
for comparing anomaly detection methods. Instead, most
published work either addresses data sets from specific ap-
plications or else employs synthetic data. This leads to three
problems. First, with an application-specific data set, there
is no independent way to assess the difficulty of the anomaly
detection problem based on a standard set of properties of
the data. Second, an application-specific data set limits us
to the single data set from the application—there is no way
to generate new data sets (aside from sub-sampling) that
may differ in controlled ways. Third, with synthetic data
sets, there is no real-world validity to the anomalies, so it
is difficult to judge whether algorithms that work well on
such simulated data will actually work well in a real-world
setting.

In this paper, we attempt to address these shortcomings.
In particular, our main contribution is to present a method-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ODD’13, August 11th, 2013, Chicago, IL, USA.
Copyright 2013 ACM 978-1-4503-2335-2 ...$15.00.

ology for creating families of anomaly detection problems
from real-world data sets. We begin in Section 2 by dis-
cussing the properties that benchmark data sets should pos-
sess in order to support rigorous evaluations of anomaly
detection algorithms. Then in Section 3 we present the
methodology that we have developed to create data sets
with those properties. Section 4 describes an experiment
in which we apply the methodology to benchmark several
of the leading anomaly detection algorithms. Section 5 dis-
cusses the results of the experiment, and Section 6 presents
our conclusions and suggestions for future work.

2. REQUIREMENTS FOR ANOMALY DE-
TECTION BENCHMARKS

The most common goal of anomaly detection is to raise an
alarm when anomalous observations are encountered, such
as insider threats [17], cyber attacks [15, 23, 16, 21], machine
component failures [27, 28, 1], sensor failures [7], novel as-
tronomical phenomena [26], or the emergence of cancer cells
in normal tissue [22, 10]. In all of these cases, the underlying
goal is to detect observations that are semantically distinct
from normal observations. By this, we mean that the pro-
cess that is generating the anomalies is different from the
process that is generating the normal data points.

The importance of the underlying semantics suggests the
first three requirements for benchmark datasets.

Requirement 1: Normal data points should be drawn
from a real-world generating process. Generating data
sets from some assumed probability distribution (e.g., a mul-
tivariate Gaussian) risks not capturing any real-world pro-
cesses. Instead, as the field has learned from many years of
experience with benchmark problems, it is important that
the problems reflect the idiosyncrasies of real domains.

Requirement 2: The anomalous data points should
also be from a real-world process that is semanti-
cally distinct from the process generating the nor-
mal points. The anomalous points should not just be
points in the tails of the “normal” distribution. See, for ex-
ample, Glasser and Lindauer’s synthetic anomaly generator
[8].

Requirement 3: Many benchmark datasets are needed.
If we employ only a small number of data sets, we risk devel-
oping algorithms that only work on those problems. Hence,

we need a large (and continually expanding) set of bench-
mark data sets to ensure generality and prevent overfitting.

Requirement 4: Benchmark datasets should be char-
acterized in terms of well defined and meaningful
problem dimensions that can be systematically var-
ied. An important goal for benchmarking is to gain in-
sight into the strengths and weaknesses of the various algo-
rithms. Ideally, we should identify those dimensions along
which anomaly detection problems might vary and then gen-
erate benchmark data sets that vary these dimensions in a
controlled fashion.

There is currently no established set of problem dimen-
sions for anomaly detection, and we expect this set to evolve
with experience. Here we propose four such dimensions: (a)
point difficulty, (b) relative frequency, (c) semantic varia-
tion, and (d) feature relevance/irrelevance. The remainder
of this section describes these in more detail.

Point difficulty measures the “distance” of an anomalous
data point from the normal data points. We propose a point
difficulty metric based on an oracle that knows the true gen-
erating processes underlying the “normal” and “anomalous”
points. Using this knowledge, we suppose that the oracle can
compute the probability P (y = normal|x) that a data point
x was generated by the “normal” distribution. The larger
this value is for an anomalous point x, the more difficult it
will be for an anomaly detection algorithm to discover that
x is anomalous. One aspect of applying anomaly detection
in adversarial settings (e.g., intrusion detection or insider
threat detection) is that the adversaries try to blend in to
the distribution of normal points.

Relative frequency is the fraction of the incoming data
points that are (true) anomalies. The behavior of anomaly
detection algorithms often changes with the relative fre-
quency. If anomalies are rare, then methods that pretend
that all training points are “normal” and fit a model to them
may do well. If anomalies are common, then methods that
attempt to fit a model of the anomalies may do well. In most
experiments in the literature, the anomalies have a relative
frequency between 0.01 and 0.1, but some go as high as 0.3
[14].

Semantic Variation is a measure of the degree to which the
anomalies are generated by more than one underlying pro-
cess. In this paper, we employ a measure of clusteredness as
a proxy for this. If the anomalies are tightly clustered, then
some anomaly detection algorithms will fail. For example,
methods based on measures of local probability density will
conclude that tightly clustered anomalies have high local
density and hence are not anomalous.

Feature Relevance/Irrelevance. In applications, many can-
didate features are often available. However, many anomaly
detection methods do not provide good feature selection
mechanisms. Benchmark data sets should systematically
vary the set of features to manipulate both the power of
the relevant features and the number of irrelevant or “noise”
features.

3. METHODOLOGY
We have developed a methodology that achieves most of

the requirements listed above. To achieve the first three re-
quirements, we develop 4,369 benchmark data sets by trans-
forming 19 data sets chosen from the UC Irvine reposi-
tory [2]. For each data set, we separate its data (e.g., the

classes of a classification problem) into two sets: “normal”
and “anomalous”. This ensures that these data points are
generated by distinct real-world processes rather than from
synthesized distributions. To develop a measure of point dif-
ficulty, we fit a kernel logistic regression classifier to all of the
available “normal” and “anomalous” data. This gives us an
approximation to the oracle estimate of P (y = normal|x).
We can then manipulate the point difficulty of a benchmark
data set by sampling the “anomalous” data points according
to their point difficulty. It is easy to manipulate the relative
frequency by varying the number of“anomalous”data points
to include. We vary the degree of semantic variation by se-
lecting data points that are either close together or far apart
according to a simple distance metric. Our current method-
ology does not vary the feature relevance/irrelevance. This
dimension is challenging to manipulate in a realistic manner,
and we will investigate it further in future work.

3.1 Selecting Data Sets
To ensure reproducibility of our experiments, we only worked

with data sets from the UCI data repository [2]. We selected
all data sets that match the following criteria:

• task : Classification (binary or multi-class) or Regres-
sion. No Time-Series.

• instances: At least 1000. No upper limit.

• features: No more than 200. No lower limit.

• values: Numeric only. Categorical features are ignored
if present. No missing values, except where easily ig-
nored.

To ensure objectivity, we applied this fixed set of criteria
rather than choosing data sets based on how well particular
anomaly detection algorithms performed or based on our
intuitions about which data sets might be better suited to
creating anomaly detection problems.

If necessary, each data set was sub-sampled to 10,000 in-
stances (while maintaining the class proportions for classifi-
cation problems). Each feature was normalized to have zero
mean and unit sample variance. We avoid time series be-
cause the majority of existing anomaly detection methods
are based on models intended for independent and identi-
cally distributed data rather than for structured data such
as time series data.

The 19 selected sets (grouped into natural categories) are
the following:

• binary classification: MAGIC Gamma Telescope, Mini-
BooNE Particle Identification, Skin Segmentation, Spam-
base

• multi-class classification: Steel Plates Faults, Gas Sen-
sor Array Drift, Image Segmentation, Landsat Satel-
lite, Letter Recognition, Optical Recognition of Hand-
written Digits, Page Blocks, Shuttle, Waveform, Yeast

• regression: Abalone, Communities and Crime, Con-
crete Compressive Strength, Wine, Year Prediction

3.2 Defining Normal versus Anomalous Data
Points

A central goal of our methodology is that the “normal”
and “anomalous” points should be produced by semantically
distinct processes. To achieve this, we did the following.

For Irvine data sets that were already binary classification
problems, we choose one class as “normal” and the other as
“anomalous”. Note that there is some risk that the “anoma-
lous” points will have low semantic variation, since they all
belong to a single class.

For multi-class data sets, we partition the available classes
into two sets with the goal of maximizing the difficulty of
telling them apart. Our heuristic procedure begins by train-
ing a Random Forest [3] to solve the multi-class classification
problem. Then we calculate the amount of confusion be-
tween each class. For each data point xi, the Random Forest
computes an estimate of P (ŷi|xi), the predicted probability
that xi belongs to class ŷi. We construct a confusion ma-
trix C in which cell C[j, k] contains the sum of P (ŷi = k|xi)
for all xi whose true class yi = j. We then define a graph
in which each node is a class and each edge (between two
classes j and k) has a weight equal to C[j, k] +C[k, j]. This
is the (unnormalized) probability that a data point in class j
will be confused with a data point in class k. We then com-
pute the maximum weight spanning tree of this (complete)
graph to identify a graph of “most-confusable” relationships
between pairs of classes. We then two-color this tree so that
no adjacent nodes have the same color. The two colors define
the two sets of points. This approximately maximizes the
confusions between “normal” and “anomalous” data points
and also tends to make both the “normal” and “anomalous”
sets diverse, which increases semantic variation in both sets.

For regression data sets, we compute the median of the
regression response and partition the data into two classes
by thresholding on this value. To the extent that low versus
high values of the response correspond to different generative
processes, this will create a semantic distinction between the
“normal” and the “anomalous” data points. Points near the
median will exhibit less semantic distinction, and they will
also have high point difficulty.

3.3 Computing Point Difficulty
After reformulating all 19 Irvine tasks as binary classifica-

tion problems, we simulate an omniscient oracle by applying
Kernel Logistic Regression (KLR [12, 30, 13]) to fit a condi-
tional probability model P (y|x) to the data. Anomalies are
labeled with y = 0 and normal points as y = 1. We then
compute the logistic response for each candidate anomaly
data point. Observe that points that are easy to discern from
the “normal” class will have responses P (y = 1|x) tending
toward 0, while points that KLR confuses with the “normal”
class will have responses above 0.5. Hence, for anomalous
points, this response gives us a good measure of point diffi-
culty.

For purposes of generating data sets, we assign each“anoma-
lous” data point to one of four difficulty categories:

• easy : Difficulty score ∈ (0, 0.16)

• medium: Difficulty score ∈ [0.16, 0.3)

• hard : Difficulty score ∈ [0.3, 0.5)

• very hard : Difficulty score ∈ [0.5, 1)

Although we doubt that experiments derived from “very
hard”candidate anomalies will resemble any real application
domain, we decided to include them in our tests to see what
impact they have on the results.

3.4 Semantic Variation and Clusteredness
Given a set of candidate “anomalous” data points, we ap-

plied the following algorithms to generate sets (of desired
size) that are either widely dispersed or tightly clustered
(as measured by Euclidean distance). To generate K dis-
persed points, we apply a facility location algorithm [9] to
choose K points as the locations of the facilities. To gen-
erate K tightly clustered points, we choose a seed point at
random and then compute the K − 1 data points that are
closest to it in Euclidean distance. Note that when the point
difficulty is constrained, then only candidate points of the
specified difficulty are considered in this process. To quan-
tify the clusteredness of the selected points, we measure the
normalized clusteredness, which is defined as ratio of the
sample variance of the “nominal” points to the sample vari-
ance of K selected “anomalous” points. When clusteredness
is less than 1, the “anomalous” points exhibit greater seman-
tic variance than the “normal” points. When clusteredness
is greater than 1, the “anomalous” points are more tightly
packed than the “normal” points (on average).

For purposes of analysis, we grouped the clusteredness
scores into six qualitative levels: high scatter (0, 0.25), medium
scatter [0.25, 0.5), low scatter [0.5, 1), low clusteredness [1, 2),
medium clusteredness [2, 4), and high clusteredness [4,∞).

3.5 Generating Benchmark Data Sets
To generate a specific data set, we choose a level of diffi-

culty (easy, medium, hard, very hard), a relative frequency
(0.001, 0.005, 0.01, 0.05, and 0.1), and a semantic varia-
tion setting (low or high). Then we apply the corresponding
semantic variation procedure (with K set to achieve the de-
sired relative frequency) to the set of available points of the
desired difficulty level. For each combination of levels, we
attempted to create 40 replicate data sets. However, when
the number of candidate anomalous data points (at the de-
sired difficulty level) is small, we limit the number of data
sets to ensure that the replicates are sufficiently distinct.
Specifically, let N be the number of available points. We
create no more than bN/Kc replicates.

In total, from the 19 “mother” sets listed earlier, this
methodology produced 4,369 problem set replicates, all of
which we employed to test several statistical outlier detec-
tion algorithms.

4. ALGORITHMS
To simultaneously assess the effectiveness of our method-

ology and compare the performance of various statistical
anomaly detection algorithms, we conducted an experimen-
tal study using several well-known anomaly detection algo-
rithms. In this section, we describe each of those algorithms.
For algorithms that required parameter tuning, we employed
cross-validation (where possible) to find parameter values to
maximize an appropriate figure of merit (as described be-
low). In all cases, we made a good faith effort to maximize
the performance of all of the methods. Some parameter-
ization choices had to be made to ensure that the given
algorithm implementation would return real-valued results.

4.1 One-Class SVM (ocsvm)
The One-Class SVM algorithm (Scholkopf et al. [24])

shifts the data away from the origin and then searches for a
kernel-space decision boundary that separates fraction 1− δ

of the data from the origin. We employ the implementa-
tion of Chang and Lin [6] available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm/. For each benchmark, we em-
ploy a radial basis kernel and search parameter space until
approximately 5% (δ = 0.05) of the data lies outside the
decision boundary in cross-validation. We would have pre-
ferred to use smaller values for δ, but OCSVM would not
execute reliably for smaller values. The distance of a point
from the decision boundary determines the anomaly score
of that point.

4.2 Support Vector Data Description (svdd)
As proposed by Tax and Duin [25], Support Vector Data

Description finds the smallest hypersphere (in kernel space)
that encloses 1 − δ of the data. We employed the libsvm

implementation available at http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/ with a Gaussian radial basis function
kernel. We search for parameters such that approximately
1% (δ = 0.01) of the data lie outside the decision surface in
cross validation. The distance of a point from the decision
surface determines the anomaly score of that point.

4.3 Local Outlier Factor (lof)
The well-known Local Outlier Factor algorithm (Breunig,

et al. [4]) computes the outlier score of a point x by comput-
ing its average distance to its k nearest neighbors. It normal-
izes this distance by computing the average distance of each
of those neighbors to their k nearest neighbors. So, roughly
speaking, a point is declared to be anomalous if it is signif-
icantly farther from its neighbors than they are from each
other. We employed the R package rlof available at http:

//cran.open-source-solution.org/web/packages/Rlof/.
We chose k to be 3% of the data set. This was the smallest

value for which LOF would reliably run on all data sets.

4.4 Isolation Forest (if) and Split-selection Cri-
terion Isolation Forest (scif)

The Isolation Forest algorithm (Liu, et al. [18]) creates
a forest of random axis-parallel projection trees. It derives
a score based on the observation that points that become
isolated closer to the root of a tree are easier to separate
from the rest of the data and therefore are more likely to
be anomalous. This method has a known weakness when
the anomalous points are tightly clustered. To address this
weakness, Liu, et al. [19] developed the Sparse-selection
Criterion Isolation Forest. SCiForest subsamples the data
points and features when growing each tree. An implementa-
tion was obtained from http://sourceforge.net/projects/

iforest/.
Isolation Forest is parameter-free. For SCiForest, we chose

the number of data points to subsample to be 0.66 of avail-
able data points and the number of features to consider to
be 0.66 of the available features.

4.5 Ensemble Gaussian Mixture Model (egmm)
A classic approach to anomaly detection is to fit a prob-

abilistic model to the available data to estimate the density
P (x) of each data point x. Data points of low density are de-
clared to be anomalies. One approach to density estimation
is to fit a Gaussian mixture model (GMM) using the EM al-
gorithm. However, a single GMM is not very robust, and it
requires specifying the number of Gaussians k. To improve
robustness, we generate a diverse set of models by varying

the number of clusters k, the EM initializations, and train-
ing on 15 bootstrap replicates of the data [29]. We choose a
set of possible values for k, {6, 7, 8, 9, 10}, and try all values
in this set. The average out-of-bag log likelihood for each
value of k is computed, and values of k whose average is less
than 85% of the best observed value are discarded. Finally,
each data point x is ranked according to the average log
likelihood assigned by the remaining GMMs (equivalent to
the geometric mean of the fitted probability densities).

5. SUMMARY OF RESULTS
To assess performance, we employed the AUC (area under

the ROC curve). Table 1 provides an overall summary of the
algorithms. It shows the number of data sets in which each
algorithm appeared in the top 3 algorithms when ranked
by AUC (averaged over all settings of difficulty, relative fre-
quency, and clusteredness). We see that Isolation Forest
(IF) is the top performer, followed by EGMM and SCIF.

Table 1: # Times in Top 3
egmm if lof ocsvm scif svdd

14 17 6 5 13 2

To quantify the impact of each of the design properties
(relative frequency, point difficulty, and clusteredness) as
well as the relative effect of each algorithm and “mother”
data set, we performed an ordinary linear regression to model
the logit(AUC) of each replicate data set as a linear function
of each of these factors. The logit transform (log[AUC/(1−
AUC)]) transforms the AUC (which can be viewed as a prob-
ability) onto the real-valued log-odds scale. We employed
the following R formula:

logit(AUC) ∼ set + algo + diff + rfreq + cluster (1)

where, set is the dataset (abalone, shuttle, etc.), algo is the
algorithm, diff is the point difficulty level, rfreq is the relative
frequency of anomalies in the benchmark, and cluster is the
clusteredness of the anomaly class. The diff, rfreq, and clus-
ter values were binned into qualitative factors as described
above. Despite the simplicity of this model, inspection of
the residuals showed that it gives a reasonable fit.

We found all factors included in the regression to be signif-
icant (p � 0.001, t-test). Figure 1 shows that as the point
difficulty increases, the performance degrades for all algo-
rithms. Error bars in this and all subsequent figures show
± one standard error for the estimates from the regression.
Figure 2 shows that anomalies are harder to detect as they
become more frequent. And Figure 3 shows that they be-
come harder to detect as they become more clustered. These
results all confirm that the benchmark data sets achieve our
design goals.

Figure 4 shows the performance on all datasets relative
to abalone. Anomalies were hardest to detect for yearp and
easiest for wave. Finally, Figure 5 shows the contribution of
each algorithm to the logit(AUC) relative to EGMM. This
suggests that EGMM and Isolation Forest are giving very
similar performance, while the other algorithms are substan-
tially worse.

We also fit a version of Equation (1) with pairwise in-
teraction terms between algorithm, point difficulty, relative
frequency, and clusteredness. Very few of these interactions

Figure 1: Change in Logit(AUC) with Difficulty

Figure 2: Change in Logit(AUC) with Rel. Freq.

Figure 3: Change in Logit(AUC) with Clusteredness

Figure 4: Performance on Datasets

Figure 5: Change in Logit(AUC) with Algorithm

were statistically significant, which confirms that our simple
model gives a good characterization of the benchmarks.

6. CONCLUSIONS
We have described a methodology for creating anomaly

detection benchmarks and techniques for controlling three
important properties of those benchmarks (point difficulty,
relative frequency and clusteredness). Experimental tests
based on thousands of replicate data sets demonstrate that
these three properties strongly influence the behavior of sev-
eral leading anomaly detection algorithms.

7. FUTURE WORK
We consider these results a work in progress and intend

to develop this study further. Our plan is to include more
algorithms and metrics and to provide additional statisti-
cal analysis of the results. This will include more rigorous
statistical justification for our findings, an empirical com-
parison of algorithms, and an exploration of which settings
cause shifts in the relative performance of the algorithms.

An important goal for future work is to validate the pre-
dictive value of our benchmarks against real anomaly detec-
tion problems. In particular, if we measure the point dif-
ficulty, relative frequency, and clusteredness of a real prob-
lem, does the most similar benchmark problem predict which
anomaly detection algorithms will work best on the real
problem? Another important goal is to develop a method
for controlling the proportion of relevant (versus irrelevant)
features. This would help the research community develop
better methods for feature selection in anomaly detection
algorithms.

8. ACKNOWLEDGMENTS
Funding was provided by the U.S. Army Research Office
(ARO) and Defense Advanced Research Projects Agency
(DARPA) under Contract Number W911NF-11-C-0088. The
content of the information in this document does not nec-
essarily reflect the position or the policy of the Govern-
ment, and no official endorsement should be inferred. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

9. REFERENCES
[1] A. Alzghoul and M. Löfstrand. Increasing availability

of industrial systems through data stream mining.

Computers & Industrial Engineering, 60(2):195 – 205,
2011.

[2] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[3] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[4] M. Breunig, H.-P. Kriegel, R. T. Raymond T. Ng, and
J. Sander. LOF: identifying density-based local
outliers. ACM SIGMOD Record, pages 93–104, 2000.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):15:1–15:58, July 2009.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011.

[7] E. Dereszynski and T. G. Dietterich. Spatiotemporal
models for anomaly detection in dynamic
environmental monitoring campaigns. ACM
Transactions on Sensor Networks, 8(1):3:1–3:26, 2011.

[8] J. Glasser and B. Lindauer. Bridging the gap: A
pragmatic approach to generating insider threat data.
In 2013 IEEE Security and Privacy Workshops, pages
98–104. IEEE Press, 2013.

[9] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38(0):293 – 306, 1985.

[10] J. Greensmith, J. Twycross, and U. Aickelin.
Dendritic cells for anomaly detection. In Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on,
pages 664–671. IEEE, 2006.

[11] V. J. Hodge and J. I. M. Austin. A survey of outlier
detection methodologies. AI Review, 22:85–126, 2004.

[12] T. Jaakkola and D. Haussler. Probabilistic kernel
regression models. In Proceedings of the 1999
Conference on AI and Statistics, volume 126, pages
00–04. San Mateo, CA, 1999.

[13] S. Keerthi, K. Duan, S. Shevade, and A. Poo. A fast
dual algorithm for kernel logistic regression. Machine
Learning, 61(1-3):151–165, 2005.

[14] J. S. Kim and C. Scott. Robust kernel density
estimation. In Acoustics, Speech and Signal
Processing, 2008. ICASSP 2008. IEEE International
Conference on, pages 3381–3384, 2008.

[15] T. Lane and C. E. Brodley. Sequence matching and
learning in anomaly detection for computer security.
In AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management, pages 43–49, 1997.

[16] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and
J. Srivastava. A comparative study of anomaly
detection schemes in network intrusion detection. In
In Proceedings of SIAM Conference on Data Mining,
2003.

[17] A. Liu, C. Martin, T. Hetherington, and S. Matzner.
A comparison of system call feature representations
for insider threat detection. In Information Assurance
Workshop, 2005. IAW ’05. Proceedings from the Sixth
Annual IEEE SMC, pages 340–347, 2005.

[18] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation
forest. In Proceedings of the IEEE International
Conference on Data Mining, pages 413–422, 2008.

[19] F. T. Liu, K. M. Ting, and Z.-H. Zhou. On detecting
clustered anomalies using SCiForest. In Machine
Learning and Knowledge Discovery in Databases,
pages 274–290, 2010.

[20] M. Markou and S. Singh. Novelty detection: a review -
part 1: statistical approaches. Signal Processing,
83(12):2481–2497, 2003.

[21] D. Pokrajac, A. Lazarevic, and L. Latecki.
Incremental local outlier detection for data streams. In
Computational Intelligence and Data Mining, 2007.
CIDM 2007. IEEE Symposium on, pages 504–515,
2007.

[22] K. Polat, S. Sahan, H. Kodaz, and S. Günes. A new
classification method for breast cancer diagnosis:
Feature selection artificial immune recognition system
(fs-airs). In L. Wang, K. Chen, and Y. Ong, editors,
Advances in Natural Computation, volume 3611 of
Lecture Notes in Computer Science, pages 830–838.
Springer Berlin Heidelberg, 2005.

[23] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion
detection with unlabeled data using clustering. In In
Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMSA-2001. Citeseer, 2001.

[24] B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. J.
Smola, and R. C. Williamson. Estimating the support
of a high-dimensional distribution, 1999.

[25] Tax and Duin. Support vector data description.
Machine Learning, 54:45–66, 2004.

[26] K. L. Wagstaff, N. L. Lanza, D. R. Thompson, T. G.
Dietterich, and M. S. Gilmore. Guiding scientific
discovery with explanations using DEMUD. In
Proceedings of the Association for the Advancement of
Artificial Intelligence AAAI 2013 Conference, 2013.

[27] F. Xue, W. Yan, N. Roddy, and A. Varma.
Operational data based anomaly detection for
locomotive diagnostics. In International Conference on
Machine Learning, pages 236–241, 2006.

[28] B. Zhang, C. Sconyers, C. Byington, R. Patrick,
M. Orchard, and G. Vachtsevanos. Anomaly detection:
A robust approach to detection of unanticipated faults.
In Prognostics and Health Management, 2008. PHM
2008. International Conference on, pages 1–8, 2008.

[29] Z.-H. Zhou. Ensemble Methods: Foundations and
Algorithms. Chapman and Hall/CRC, 2012.

[30] J. Zhu and T. Hastie. Kernel logistic regression and
the import vector machine. In Journal of
Computational and Graphical Statistics, pages
1081–1088. MIT Press, 2001.

[31] A. Zimek, E. Schubert, and H.-P. Kriegel. A survey on
unsupervised outlier detection in high-dimensional
numerical data. Statistical Analysis and Data Mining,
5(5):363–387, 2012.

