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Abstract 

This paper proposes a new generic object 
recognition system based on multi-scale affine-
invariant image regions. Image segments are obtained 
by a watershed transform of the principal curvature of 
a contrast enhanced image. Each region is described 
by an intensity-based statistical descriptor and a PCA-
SIFT descriptor. The spatial relations between regions 
are represented by a cluster-index distribution 
histogram. With these new descriptors, we develop a 
hierarchical object recognition system which uses an 
improved boosting feature selection method [9] to 
construct layer classifiers by automatically selecting 
the most discriminative features in each layer. All 
layer classifiers are then combined to give the final 
classification. This system is tested on various object 
recognition problems. Experimental results show that 
the new hierarchical system outperforms the 
comparable solutions on most of the datasets tested. 

1. Introduction 

The description of object classes is a crucial issue in 
the design of object recognition systems. Previous 
description methods include single-scale fragment-
based [12] and interest-region approaches [1,3,5,8,9]. 
While fragment or part features are usually very 
informative for object categories, they can be too class-
specific and are not transform invariant. Interest 
regions are more generic and more robust to occlusion 
and transformations, but they are too local and often 
noisy. Probabilistic constellation models [5] and 
clustering-based methods [3] have been proposed to 
recognize image categories based on these fragments 
or interest regions.  

Instead of describing objects at a single scale, other 
methods represent object information at multiple scales 
[2,4,10]. These descriptions are biologically motivated 
— the human visual system selects and combines both 

coarse (global) and detailed (local) object features for 
recognition. Shokoufandeh et al. [10] use saliency map 
graphs to capture the salient image structure using 
multi-scale wavelet transforms. Epshtein and Ullman 
[4] propose feature hierarchies based on mutual 
information feature selection and parameter adaptation. 
The work of Bouchard and Triggs [2] model each 
object as a hierarchy of parts and subparts with partial 
transformations (translation and scale transformations) 
that softly relate the parts and sub-trees to their parents. 
But there is a common weakness existing in these 
hierarchical object descriptions: all these descriptions 
are highly concrete models (trees or graphs). Applying 
these types of descriptions to classification requires 
graph matching [10] or model instantiation [2,4] 
algorithms.  

In this paper, we propose a new generic object 
description which characterizes the global and local 
features of an object class based on multi-scale 
principal curvature regions. This new object 
description method is introduced in Section 2. Given 
these multi-scale descriptors, Section 3 introduces and 
details a hierarchical object recognition system using 
an improved boosting feature selection method. Finally, 
experimental results and conclusions are given in 
Sections 4 and 5, respectively. 

2. Multi-scale principal curvature regions 

2.1. Decoloring 
To facilitate computation of feature descriptors, we 

convert color images to intensity images while 
preserving contrast between regions. We employ the 
decolorization algorithm proposed by Grundland and 
Dodgson [6] to do color contrast enhancement when 
converting color images to grayscale images. This 
algorithm enhances contrast in a meaningful way by 
adjusting luminance to reflect chromatic differences. 



2.2. Multi-scale principal curvature 
We adapt the curvilinear structures detector of 

Steger [11] to generate structural object regions 
defined by the watershed of the image’s principal 
curvature. It has been our experience that using the 
principal curvature produces fairly stable regions that 
can be detected over a range of viewpoints, scales, and 
appearance changes. Further, these regions seem more 
characteristic of object classes compared with local 
corners and blobs. 

The local shape characteristics of an image, viewed 
as a surface, can be described by the Hessian matrix 
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where Ixx(x,σD), Ixy(x,σD), and Iyy(x,σD) are the second-
order derivatives of the image as computed by 
convolving the image with the appropriate second-
derivative of a Gaussian with scale σD. For every pixel, 
the eigenvalues, (λ1, λ2), of (1) are proportional to the 
local principal curvatures while the corresponding 
eigenvectors, v1 and v2, specify the directions of 
principal curvature. Each pixel of the principal 
curvature image is simply the largest eigenvalue of 
H(x, σD). To reduce the impact of noise, we suppress 
all principal curvature pixels (i.e., assign them to zero) 
that are below a threshold τ0. We then apply a 
watershed transform to the “cleaned” principal 
curvature image using the immersion simulation 
method proposed by Vincent and Soille [13]. Finally, 
each watershed region is approximated with an ellipse 
having the same second moment. 

To extract a multi-scale object description that 
integrates both global and local information of object 
class, we apply the region detection algorithm at 
various scales. Figure 1 shows examples of multi-scale 
principal curvature regions. We see that a larger scale 
produces fewer and global regions while a smaller 
scale results in more local features. 

2.3. Principal curvature region descriptions 
To more comprehensively describe each region, we 

employ both statistical measurements of region 
intensities and PCA-SIFT [7] features. The statistical 
feature combines coefficient of variation, skewness, 
kurtosis, and moment invariants to form a 9-
dimensional feature vector for each region. The PCA-
SIFT features are 36-dimensional and have been 
demonstrated to be more compact and distinctive than 
SIFT [7].  

 

 
(a) Original image  

 
(b) Principal curvature image at scale = 4.0 

 
(c) Segmented regions at scale = 4.0 

 
(d) Detected features at scale = 4.0  

 
(e) Detected features at scale = 2.0 

 
(f) Detected features at scale = 1.0 

Figure 1. Multi-scale region detections. 
 



Figure 2. Hierarchical object recognition 
system. 

 
In addition, we characterize the spatial 

configuration of the regions with bins-based cluster 
index distribution histograms. The construction of 
spatial relation features involves three steps. First, we 
cluster the PCA-SIFT features from the positive 
training images using E-M to fit a Gaussian mixture 
model with C = 16 clusters. Second, for each region in 
the training and testing images, we compute the index 
of the Gaussian cluster most likely to have generated 
its PCA-SIFT vector. And third, we discretize the 
distances and directions between regions into M = 36 
bins with 12 directions and 3 distance ranges. The sizes 
of the bins are fixed relative to the image sizes. Thus, 
the spatial configuration of regions in each image is 
described by a histogram R composed of D = C×M×C 
= 16×36×16 = 9216 feature elements. An element 
Ri,m,j  in R records the number of times a region with 
cluster index j falls into bin m with center region index 
i.  

3. Hierarchical object recognition system 

Using our new object descriptions, we designed a 
hierarchical object recognition system which uses 
multi-scale image analysis to do classification. This 
system is illustrated in Figure 2. From the top layer to 
the bottom, we train layer classifiers L1,...,Ln based on 
the region features obtained at scales s1,...,sn, which are 
in decreasing order (global to local). We then combine 
the outputs of layer classifiers to predict the class 
labels of new images.  

3.1. Layer classifier 
Using our new description method above, object 

images are described by normal feature vectors of three 
types (intensity statistical features, PCA-SIFT, and 
spatial relation features) instead of concrete models. 
This permits standard classification algorithms to be 
employed as layer classifiers. According to our 
experiments, we noticed that for most of the image sets, 
only a small portion of the image features are useful 
for classification. So we employ and improve the 
boosting feature selection algorithm proposed by Opelt 
et al. [9] that searches among all the available features 
and automatically selects the most stable and 
discriminative ones to form the final classifier. 
    The layer classifiers are learned using the AdaBoost 
algorithm which maintains a weight for each training 
image. In iteration t of AdaBoost, all the unselected 
feature vectors of the training images are evaluated 
based on the current image weights to find the most 
discriminative feature. 
    We evaluate the statistical intensity features and the 
PCA-SIFT features in the same way as Opelt et al. [9]. 
The stability and discriminating power of a feature 
vector vf is evaluated in three steps. First, calculate the 
distance from vf to each of the training images. This is 
done by finding the minimum distance between vf and 
all the feature vectors of the same type in the training 
image. We use the Mahalanobis distance metric for the 
statistical intensity feature and the Euclidean distance 
for PCA-SIFT. Second, sort the training images into 
ascending order according to their distances to vf. Third, 
we apply the scanline algorithm [9] to the sorted 
distance array to determine a threshold θf that 
maximizes the weighted accuracy of using vf as a weak 
classifier. The maximal weighted sum is adopted as the 
evaluation of vf.  

Evaluating the spatial relation features is simpler 
because there is no need to calculate the feature-to-
image distances. The training images are directly 
sorted according to their spatial relation feature values. 
More specifically, all the spatial relation features of K 
training images are assembled into a D× K matrix A 
(where D is the dimension of the spatial configuration 
histogram). Then for each row of A, training images 
are sorted by decreasing order of their corresponding 
feature values. Finally, the scanline algorithm scans the 
sorted array and outputs the optimal threshold and the 
maximal weighted sum evaluation for the row, which 
indicates the significance of the specific spatial 
configuration for classification.  

A perfect feature should have all of the positive 
images (+1) sorted before all the negative images (–1) 
so that the feature vector gives a weak classifier that is 
perfectly discriminative. The feature and threshold {v*, 
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θ*} which has maximal score among all the available 
feature vectors is selected as the weak classifier for 
iteration t. We construct T weak classifiers for each 
layer. All these T weak classifiers are then combined 
into a strong classifier (called the layer classifier) using 
standard AdaBoost. The output of a strong classifier Li 
is given by 
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where hi,t(I) represents the output of the tth weak 
classifier of layer classifier Li. εi,t is the weighted 
classification error rate of the tth weak classifier 
computed based on the AdaBoost weights.  
     For presence/absence 2-class object recognition 
problems, it is not plausible to use background features 
to recognize object examples. So we modified the 
original algorithm in [9] to select only among the 
features from positive images.  

3.2. Final classification 
    The final result of the hierarchical system is simply 
the sign of the sum of the outputs of layer classifiers, 
which is given by:  
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In our tentative experiments, we also tried to set 
weights for layer classifiers, and use the Voted 
Perceptron algorithm to adapt the weights to minimize 
the classification error on training images, but it 
overfits the data and the performance degrades.  

4. Experimental results 

We did experiments on various 2-class object 
recognition image sets in order to test the performance 
of our system. We employed a four-layer system with 
scales {4.0, 3.0, 2.0, 1.0} and the number of boosting 
iterations T = 100. The system is tested on six object 
classes in the Caltech dataset1: airplanes (1074), cars 
(rear) (526), cars (side) (123), faces (450), leaves (186) 
and motorbikes (826). The background set in Caltech 
contains 451 images. We also tested on a stonefly larva 
set containing 70 Doroneuria images (positive) and 57 
Hesperoperla images (negative). Examples of Caltech 
images and stonefly images are shown in Figure 3. 
                                                        
1http://www.vision.caltech.edu/feifeili/Datasets.htm 

Half of the images in each set are used for training, and 
the rest are held out for testing. Recognition 
performance is evaluated by ROC equal error rates.  

 

 

 

 

 

 

 

 
 

Figure 3. Sample images from Caltech and 
stonefly larva dataset with rows 

corresponding to: airplanes, cars (rear), cars 
(side), faces, leaves, motorbikes, Caltech 

background, and Doroneuria (left two images) 
and Hesperoperla (right two images).   

 
The hierarchical system based on the new 

descriptions is tested on these datasets and compared 
with the constellation model of Fergus et al. [5] and the 
boosting feature selection approach by Opelt et al. [9]. 
The results are summarized in Table 1. The 
comparison indicates that our hierarchical object 
recognition system outperforms the other methods on 
most of the comparable datasets. 

In order to test the value of our hierarchical 
structure, we compared the equal error rates of the 
whole 4-layer system (denoted as 4-layer with spatial) 
to the best single layer classifier (1-layer). The results 
are summarized in the second and third columns of 
Table 2. In the forth column of Table 2, we show the 
performance of the 4-layer system without spatial 
relation (4-layer without spatial) to test the utility of 
the spatial configuration descriptor. 
    We noticed that on all these datasets, there are 
significant gaps between the performance of the multi-



layer system and that of the best one-layer classifier. 
This demonstrates that the multi-scale object 
description is more generic and informative for object 
classes than single scale description. 

On most of the datasets, spatial relation features 
improve the performance of the system, thus 
supporting our claim that spatial configurations of 
detected regions are also valuable cues for recognition.  

 
Table 1. ROC equal error rates of our 

approach and other approaches. 
 

Dataset Ours Fergus [5] Opelt [9] 
Airplane 90.6 90.2 88.9 

Cars(rear) 94.3 90.3 / 
Cars(side) 83.6 88.5 83.0 

Faces 98.8 96.4 93.5 
Leaves 97.5 / / 

Motorbikes 94.3 92.5 92.2 
Stoneflies 88.6 / / 
 

Table 2. ROC equal error rates of the 4-layer 
classifier with spatial relation features 

compared to 1-layer classifier and 4-layer 
classifier without spatial relation features. 

 
 

Dataset 
4-layer  
with 

spatial 

 
1-layer 

4-layer 
without 
spatial 

Airplanes 90.6 89.0 90.0 
Cars(rear) 94.3 91.0 89.2 
Cars(side) 83.6 81.6 80.3 

Faces 98.8 97.2 98.8 
Leaves 97.5 96.0 97.3 

Motorbikes 94.3 92.0 93.5 
Stoneflies 88.6 80.0 82.9 

5. Conclusion and future work 

In this paper, we propose a novel object description 
based on multi-scale principal curvature regions. This 
description is invariant to rotation and view 
transformations and robust to scale changes. The 
texture and geometric information of detected regions 
are represented by their intensity-based and spatial 
relation features respectively. A generic hierarchical 
object recognition system using boosting feature 
selection is developed and outperforms two other 
approaches on various object classes.   
    There are two future directions we wish to 
investigate. One is to further improve the robustness of 
the principal curvature region detector. The other is 
incorporating inter-layer spatial relations into the 

hierarchical system to further exploit the spatial 
constraints. 
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