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Abstract

We study the problem of learning general rules
from concrete facts extracted from natural data
sources such as the newspaper stories and med-
ical histories. Natural data sources present two
challenges to automated learning, namely,radi-
cal incompletenessand systematic bias. In pre-
vious work we proposed an approach that com-
bines simultaneous learning of multiple predictive
rules with differential scoring of evidence based on
implicit observation models to address the above
problems. In this paper, we further evaluate our
approach empirically on natural datasets based on
both textual and non-textual sources. We present
a theoretical analysis that elucidates our approach
and explains the empirical results.1

1 Introduction
Learning common sense knowledge in the form of rules by
reading from natural texts has long been a dream of AI
[Guha and Lenat, 1990]. This problem presents an oppor-
tunity to exploit the long strides of research progress made
in natural language processing and machine learning in re-
cent years[Nahm and Mooney, 2000; Carlsonet al., 2010;
Schoenmackerset al., 2010].

Unfortunately there are two major obstacles to fully realiz-
ing the dream of robust learning of general rules from natural
sources. First, natural data sources such as texts and medi-
cal histories areradically incomplete— only a tiny fraction
of all true facts are ever mentioned. More importantly, nat-
ural sources aresystematically biasedin what is mentioned.
In particular, news stories emphasize newsworthiness, which
correlates with rarity or novelty, sometimes referred as “the
man bites dog phenomenon.” For example, consider the fol-
lowing sentence in a real news story:

“Ahmed Said Khadr, an Egyptian-born Canadian, was
killed last October in Pakistan.”

Presumably, the phrase “Egyptian-born” was considered
important by the reporter because it violates the expectation

1This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL) under Contract No. FA8750-09-C-0179.

that most Canadians are born in Canada. The birth place
would most likely have been omitted if it was Canada.

In previous work, learning from incomplete examples or
partial assignments has been studied under noise-free settings
in the probably approximately correct learning framework.
The goal is to learn an approximation of a function that has
a small error with respect to the training distribution fromin-
completely described examples. It has been shown that the
sample complexity of finite hypothesis spaces remains the
same under incomplete examples as under complete exam-
ples[Khardon and Roth, 1999]. Further, when the hypothesis
space obeys certain conditions such as “shallow monotonic-
ity,” the problem of learning from incomplete examples poly-
nomially reduces to that of learning from complete examples
[Michael, 2009]. In fact, the same learning algorithm can be
used after the missing data is completed in a way that guar-
antees consistency with the target function. This approachis
validated on an extensive study of sentence completion tasks
on a natural dataset[Michael and Valiant, 2008].

Our approach to learning from incomplete examples ex-
tends the above work in multiple directions. First, we learn
multiple rules for several predicates simultaneously and use
the rules to complete the missing data to improve learn-
ing. We call this approach “multiple predicate bootstrapping
(MPB)” [Doppaet al., 2010]. Second, we adopt the above
approaches to noisy observations and systematic bias.

Our main solution to deal with systematic bias is to dif-
ferentially score the evidence for rules based on a presumed
model of observation. In the “missing at random” (MAR)
model[Little and Rubin, 1987; Jaeger, 2006], data is omitted
based only on information that is already mentioned. In this
case, conservative scoring of evidence, where rules are only
evaluated when all relevant data is present, gives an unbiased
estimate of the rule correctness. In thenovelty mention model,
a special case of “missing not at random” (MNAR) model
and illustrated by the above Egyptian-born Canadian exam-
ple, data is mentioned with a higher probability if it cannot
be inferred from the remaining data. We show that under this
model, aggressive scoring of rules, where we count evidence
against a rule only if it contradicts the rule regardless of how
the missing information transpires, gives a better approxima-
tion to the accuracy of the rule. Our empirical results compare
favorably to baselines such as EM and Structural EM and are
consistent with the theoretical predictions.



2 Multiple-Predicate Bootstrapping

Algorithm 1 Multiple-Predicate Bootstrapping (MPB)
Input: DI = Incomplete training examples,M = Implicit
mention model,τ = support threshold,θ = confidence
threshold
Output: set of learned rulesR
1: repeat
2: LEARN RULES: R = φ
3: for each hypothesized ruler do
4: compute supportτr and confidenceθr of the ruler

usingDI and implicit mention modelM
5: if τr > τ andθr > θ then R = R∪ {r}
6: end for
7: IMPUTE M ISSING DATA :
8: for each missing factfm ∈ DI do
9: Predictfm using the most-confident applicable rule

r ∈ R
10: if fm is predictedthen DI = DI − {fm}
11: end for
12: until convergence
13: return the set of learned rulesR

Our algorithmic approach, called “Multiple-Predicate
Bootstrapping,” (MPB) is inspired by several lines of work
including co-training[Blum and Mitchell, 1998], multitask
learning[Caruana, 1997], coupled semi-supervised learning
[Carlsonet al., 2010], and self-training[Yarowsky, 1995]. It
simultaneously learns a set of rules for each predicate in the
domain given other predicates and then applies the learned
rules to impute missing facts in the data. This is repeated un-
til no new fact can be added. Following the data mining liter-
ature, we evaluate each rule using two measures: support and
confidence. The support of a rule is measured by the number
of examples that satisfy the body of the rule. The higher the
support, the more statistical evidence we have on the predic-
tive accuracy of the rule. In order to use a rule to impute facts,
we require its support to be greater than asupport threshold.
We measure the confidence of a rule as the ratio of the number
of records that satisfy both body and head of the rule to the
number that satisfy the body, which estimates the conditional
probability of the head of the rule given its body.

We use a relational data mining algorithm called FARMER
[Nijssen and Kok, 2003] for learning rules. FARMER sys-
tematically searches the space of possible rules up to a fixed
depthd (candidate rules) whose support and confidence ex-
ceed the given thresholds using depth first search. Its advan-
tages over other rule learning systems such as FOIL are that
a) it can learn redundant rules, which is useful with incom-
plete data; and b) it has the flexibility to vary the depth for
search efficiency. Given multiple learned rules that are ap-
plicable to a given instance, we use the “most confident” one
to make predictions. The overall algorithm is summarized in
Algorithm 1.

Implicit Mention Models. We address the problem of sys-
tematic bias by adapting the scoring function for the hypoth-
esized rules according to a presumedimplicit mention model.

Figure 1: Bayes nets for data generation using (a) Random
Mention Model (b) Novelty Mention Model.A ⇒ B is a
rule,M is a random variable that represents the fact that B is
mentioned,B′ indicates the observed value ofB and random
variableV denotes the violation of rule.

We now discuss two specific mention models and two meth-
ods for scoring evidence for rules.

Random Mention Model (RMM):This is equivalent to the
Missing At Random (MAR) statistical model. In this model,
it is assumed that facts are mentioned based on other known
facts but not based on missing facts. For example, a doctor
might omit a test if some other tests come out negative. A
Bayesian network that illustrates this case is shown in Fig-
ure 1(a).B′ is equal toB if M is true.

Novelty Mention Model (NMM):In this model, facts that
are not entailed by the previously mentioned facts and prior
knowledge are more likely to be mentioned. This is a special
case of Missing Not At Random (MNAR) statistical model,
since whether a fact is missing depends on the value of the
fact itself as illustrated in Figure 1(b). In the novelty mention
model, consider aα-general rule (i.e., a rule with confidence
≥ α) A ⇒ B, B will be mentioned with higher probability
when the rule is violated, i.e.,P (M |V ) > P (M |¬V ). Note
that for rules that are notα-general, the facts entailed by these
rules will not be missing because they are not consideredα-
general predictable due to the lack of generality of the rules.
This model more closely captures the citizenship-birth place
example, since whether or not the birth place of a person is
mentioned depends on the birth place and other mentioned
facts of the person such as the citizenship.

Inspired by the two types of mention models, we propose
two different ways of scoring rules. We use the following
notation to define our rule scoring functions. Each literal may
be either true, false or unknown. We writen(A = t, B =
f, C = u) to be the count of examples where A is true, B is
false and C is unknown. For brevity we writeA for A = t.
TheSupport of a ruleA ⇒ B is defined as the number of
examples in whichA is known to be true i.e.,n(A), for both
conservative and aggressive scoring.

In conservative scoring, evidence is counted in favor of a
rule only when all facts relevant to determining the truth value
of the rule are actually known. The confidence of the rule in
this case is defined as follows:

pc(A ⇒ B) =
n(A,B)

n(A,B 6= u)
(1)

In aggressive scoring, a fact is counted as evidence for a



rule if the rule’s premise is satisfied and the conclusion is not
contradicted. The confidence of a rule is defined as follows:

pa(A ⇒ B) =
n(A,B) + n(A,B = u)

n(A)
(2)

For example, consider the text “Khadr, a Canadian citi-
zen, was killed in Pakistan”. For conservative scoring, it
is counted as neither supporting nor contradicting the rule
citizen(X,Y) ⇒ bornIn(X,Y), as we are not told
thatbornIn(Khadr,Canada). In contrast, it is counted
as supporting the rulecitizen(Y) ⇒ bornIn(Y) for
aggressive scoring because, addingbornIn(Canada) sup-
ports the rule without contradicting the available evidence.

3 Analysis of Implicit Mention Models
This section analyzes aggressive and conservative scoringof
data generated using different mention models.

Consider a ruleA ⇒ B. Figure 1 shows the Bayes nets
that explains the data generation process in the random and
novelty mention models. LetS be the support set of the rule
A ⇒ B, i.e., the set of examples where A is true. Letp(r) be
the true confidence of the ruler, i.e., the conditional probabil-
ity of B given A. Let p̂c(r) andp̂a(r) denote the conservative
and aggressive estimates of confidence of the ruler.
Theorem 1. If the data is generated by the random men-
tion model then̂pc(r) is an unbiased estimate and̂pa(r) is
an overestimate of the true confidence of rulep(r).

Proof. Conservative scoring estimates the confidence of the
rule from only a subset ofS whereB is not missing.

p̂c(r) =
|S| p(r)P (M |A)

|S|P (M |A)
= p(r) (3)

Therefore,̂pc is a unbiased estimate of the true confidence.
Aggressive scoring deterministically imputes the missing

value ofB such that it satisfies the hypothesized rule.

p̂a(r) =
|S| p(r)P (M |A) + |S| (1− P (M |A))

|S|

= p(r)P (M |A) + (1− P (M |A)) (4)

= p(r) + (1− P (M |A)) (1− p(r))

≥ p(r)

Therefore,p̂a(r) overestimates the confidence of the rule.
The bias of̂pa(r) increases with decreasedP (M |A).

Theorem 2. If the data is generated by the random mention
model, then the true ranking order of rules is preserved with
both conservative and aggressive scoring.

Proof. It is enough to show that the ordering is preserved for
any two rulesr1 andr2 that predict the value of the same vari-
able. Without loss of generality, letp(r1) > p(r2). From (3),
p̂c(r1) > p̂c(r2). Therefore, order is preserved with conser-
vative scoring.

p(r1) > p(r2)

⇒ p(r1)P (M |A) + (1− P (M |A))

> p(r2)P (M |A) + (1− P (M |A))

⇒ p̂a(r1) > p̂a(r2) (From (4) )

Thus, aggressive scoring also preserves the ordering.

Theorem 3. If the data is generated by the novelty mention
model, then̂pc(r) is an underestimate and̂pa(r) is an over-
estimate of true confidence of the rulep(r).

Proof. In what followsV stands for a random variable that
represents a violation of a confident rule in predictingB. If V
is true, according to the novelty model,B has a higher prob-
ability of being mentioned. HenceP (M |V ) > P (M |¬V ).

p̂c(r) =
|S| p(r)P (M |¬V )

|S| p(r)P (M |¬V ) + |S| (1− p(r))P (M |V )

=
p(r)P (M |¬V )

p(r)P (M |¬V ) + (1− p(r))P (M |V )

To compare this withp(r), we estimate the odds:

p̂c(r)

1− p̂c(r)

=
p(r)P (M |¬V )

(1− p(r))P (M |V )

= true odds×
P (M |¬V )

P (M |V )

< true odds

Since in the novelty mention modelP (M |¬V ) <
P (M |V ), p̂c(r) underestimatesp(r) and significantly so if
P (M |¬V ) << P (M |V ).

It is easy to show that for aggressive scoring, we have:

p̂a(r) =
|S| p(r) + |S| (1− p(r)) (1− P (M |V ))

|S|

= p(r) + (1− p(r)) (1− P (M |V )) (5)

≥ p(r)

Therefore, similar to the random mention model,p̂a(r) over-
estimates the true confidence of the rulep(r). However,
when the novelty mention model is strongly at play, i.e.,
P (M |V ) ≈ 1, it provides a good estimate ofp(r).

Theorem 4. If the data is generated by the novelty mention
model, then the true ranking order of the rules is preserved
with aggressive scoring.

Proof. We first show that the ordering is preserved for any
α-general rulesr1 andr2 wherep(r1) > p(r2).

p(r1) > p(r2)

⇒ p(r1)P (M |V ) > p(r2)P (M |V )

⇒ p(r1)P (M |V ) + (1− P (M |V ))

> p(r2)P (M |V ) + (1− P (M |V ))

⇒ p̂a(r1) > p̂a(r2) (From (5) )

We then compare anα-general ruler1 with a rule r2 that
is notα-general. Forr1, p̂a(r1) ≥ p(r1) over-estimates the
confidence based on Theorem 3. Forr2, because no data is
missing, p̂a(r2) = p(r2) is an unbiased estimate ofp(r2).
p̂a(r1) ≥ p(r1) > p(r2) = p̂a(r2). Thus,r1 will be cor-
rectly ranked higher thanr2 by aggressive scoring. Finally
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consider two rules that are both notα-general, because there
is no missing data, aggressive scoring provides unbiased esti-
mate of the confidences and preserves their rank order.

It is interesting to note that while conservative scoring pre-
serves the ranking order ofα-general rules, it can potentially
reverse the order of anα-general rule with a rule that is not
α-general. This is because conservative scoring correctly es-
timates the confidence of rules that are notα-general but un-
derestimates the confidence of theα-general rules.

4 Experimental Results
In this section, we describe our experimental results with both
synthetic and natural datasets and carefully analyze them.

Synthetic Experiments. To test our analysis of implicit
mention models, we perform experiments on synthetic data
generated using different missing mechanisms, i.e., RMM
and NMM. We use the UCI databaseSPECT Heart, which
describes diagnosing of Single Proton Emission Computed
Tomography (SPECT) images2. This database contains 267
examples with 23 binary features extracted from the SPECT
image sets (patients). A 70% / 30% split of the data is cre-
ated for training and testing respectively. We generate two
different synthetic versions based on RMM and NMM miss-
ing mechanisms (see Figure 1). We first learn a set of de-
terministic rules from the training data, and then retain those
that have a confidence of 80% or more. These rules are then
used to create training and testing data with varying levels
of missingness. For NMM, if some rule is violated, then the
consequent is always mentioned. If no rule is violated, then
the consequent is omitted based on the missingness level. We
evaluate the learning algorithms on the test data generatedby
the same mention model that generates its training data. Ex-
periments are performed with different levels of missingness
in both training and testing data and we report the accuracies
(averaged over all attributes) with which the missing data is
predicted correctly w.r.t the gold standard data. The averaged

2http://archive.ics.uci.edu/ml/datasets/SPECT+Heart

results over 10 different versions of the generated data are
reported (see Table 1 and Table 2).
Baselines: We compare the results of our Multiple-Predicate
Bootstrapping (MPB) approach using the relational data min-
ing algorithm FARMER[Nijssen and Kok, 2003] with Struc-
tural EM (SEM)[Friedman, 1998] and EM implemented us-
ing Markov Logic Networks(MLNs). Structural EM learns
both structure and parameters of the Bayes net from incom-
plete data, and then the learned Bayes net is used to make
predictions on the test dataset. To run EM, we initialize an
MLN with high support rules learned from incomplete data
and learn its weights generatively[Richardson and Domin-
gos, 2006].
Analysis of Results: For the RMM data, both conservative
and aggressive scoring perform equally well (see Figure 2(a)),
which was expected based on Theorem 2. Since the ranking
order of rules is the same in both scoring methods, they make
the same prediction by picking the same rule that is appli-
cable. SEM performs better than both conservative and ag-
gressive when missingness in training data is small, i.e., 0.2
and 0.4 (see�’s in Figure 2(b)), but conservative/aggressive
scoring significantly outperforms SEM when missingness in
training data is large, i.e., 0.6 and 0.8 (see♦’s in Figure 2(b)).
Performance of all the algorithms decreases as the percentage
of missingness in training data increases.

For the NMM data, aggressive scoring significantly out-
performs conservative scoring (see Figure 3(a)) which is con-
sistent with our analysis in Theorem 4. Since the novelty
mention model was strongly at play, i.e.,P (M |V ) ≈ 1, ag-
gressive scoring provides a very good estimate of the true
confidence of the rules, resulting in excellent performance.
Aggressive scoring significantly outperforms SEM when the
missingness in data is tolerable, i.e., 0.2, 0.4 and 0.6. How-
ever, all algorithms including SEM perform poorly with ex-
ceedingly high missingness, i.e., 0.8. Note that, althoughour
analysis of implicit mention models is for the simple case
where only the head of the rule can be missing, our synthetic
data were generated for a more difficult problem where the
body of the rule could be missing as well.

Experiments with Real data. We also performed experi-
ments on two real world domains: 1. NFL data, 2. Birthplace-
Citizenship data. We used data extracted by BBN’s infor-
mation extraction system on a LDC (Linguistic Data Con-
sortium) training corpus of 110 NFL sports articles and 248
news stories related to the topics of people, organizationsand
relationships respectively.

For the NFL domain, the following predicates were
provided for each game with natural interpretations:
gameWinner, gameLoser, homeTeam, awayTeam,
gameTeamScore, andteamInGame. A test set of 100 ex-
amples was used, to evaluate the performance of the learned
rules based on the accuracy of predicting the missing facts
w.r.t the ground truth. We observed that most of the input ex-
tractions are noisy and inconsistent, that makes the problem
of rule learning even harder. These inconsistent examples are
due to co-reference errors, e.g., the extractor may not realize
that two mentions of the same team in a football article are in
fact the same. We want to use this insight while scoring each
rule. To address this we learned integrity constraints froma
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Table 1: Accuracy results of synthetic experiments with Random Mention Model (RMM) data
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Figure 2: Accuracy for Random Mention Model (RMM) data : (a) Conservative vs. Aggressive (b) Conservative vs. SEM

small number of complete examples, and applied the learned
integrity constraints to generate consistent versions of the in-
consistent examples (e.g., by deleting a literal) in all possible
ways. Finally, we scored the rules against these ‘corrected’
examples with a lower weightγ(< 1). The prediction accu-
racy of the learned rules is reported as a function of number
of clean examples (see Figure 4). The results of this approach
are compared with Structural EM (SEM) and EM algorithm
using Markov Logic Networks (MLNs) initialized with the
highest support rules learned from incomplete data. We then
perform generative weight learning of MLNs via EM. We use
Lazy MCSAT to do MAP inference for predicting the miss-
ing facts in the test set. For both SEM and EM, we use the
ground-truth (instead of the learned) integrity constraints to
correct the noisy examples and hence, there is only one point
for each of them in Figure 4.

Analysis of Results: As we can see in Figure 4, both conser-
vative and aggressive scoring significantly outperform both
SEM and EM. Since the NFL domain is deterministic, i.e.,
∀ r, p(r) = 1, and similar to RMM data, both conservative
and aggressive scoring perform equally. We observed that
once we learn the true integrity constraints from the clean ex-
amples, conservative scoring exactly learns the ground truth
rules and aggressive scoring learns a few other spurious rules
as well. However, the ground-truth rules are ranked higher
than the spurious rules based on the estimated confidences
and therefore, the spurious rules do not degrade the perfor-
mance. Similar to the results on the synthetic data, SEM does
not perform very well when the data is radically incomplete.

Birthplace-Citizenship data: Manual analysis of this train-
ing corpus revealed that the birth place of some person is

only mentioned 23 times in the 248 documents. Moreover,
in 14 of the 23 mentions, the information violates the de-
fault rule citizen(Y) ⇒ bornIn(Y). Since the data
matches the assumption of aggressive scoring, it is expected
to learn the correct rule. However, our extracted data was
highly noisy and inaccurate. More specifically, the extracted
data had 479 examples which mentioned only the citizenship
of a person, 4 examples where both birth place and citizenship
were mentioned out of which only 1 example violated the de-
fault rule. Therefore, confidence of the rulecitizen(Y)
⇒ bornIn(Y)was0.75 based on conservative scoring and
0.9967 based on aggressive scoring. Since we used a confi-
dence threshold of0.8 for all our experiments, only aggres-
sive scoring learned the correct rule. We also did this exper-
iment with EM using MLNs and found that its performance
was similar to conservative scoring.

5 Conclusions and Future Work
We motivated and studied the problem of learning from natu-
ral data sources which presents the dual challenges of radical
incompleteness and systematic bias. Our solutions to these
problems consist of bootstrapping from learning of multiple
relations and scoring the rules or hypotheses differently based
on an assumed mention model. Our experimental results val-
idate the usefulness of differential scoring of rules and show
that our approach can outperform other state-of-the-art meth-
ods such as Structural EM and EM. Our theoretical analy-
sis gives insights into why our approach works, and point to
some future directions. One of the open questions is the anal-
ysis of multiple-predicate bootstrapping and the conditions
under which it works. Another avenue of future research is
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the use of explicit mention models and their use in learning
from radically incomplete and biased examples. Exploration
of the relationship of this work to the statistical models of
missing data is another fruitful direction.
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