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Learning common sense knowledge in the form of rules b){e
reading from natural texts has long been a dream of Al
[Guha and Lenat, 1990 This problem presents an oppor-

tunity to exploit the long strides of research progress mad
in natural language processing and machine learning in r
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Abstract

We study the problem of learning general rules
from concrete facts extracted from natural data
sources such as the newspaper stories and med-
ical histories. Natural data sources present two
challenges to automated learning, namebgli-

cal incompletenesand systematic bias In pre-
vious work we proposed an approach that com-
bines simultaneous learning of multiple predictive
rules with differential scoring of evidence based on
implicit observation models to address the above
problems. In this paper, we further evaluate our
approach empirically on natural datasets based on
both textual and non-textual sources. We present
a theoretical analysis that elucidates our approach
and explains the empirical resulfs.

I ntroduction

cent yeardNahm and Mooney, 2000; Carls@t al., 2010;
Schoenmackerst al., 201(.

Unfortunately there are two major obstacles to fully realiz
ing the dream of robust learning of general rules from natur
sources. First, natural data sources such as texts and me

cal histories areadically incomplete— only a tiny fraction

of all true facts are ever mentioned. More importantly, nat-
ural sources arsystematically biaseith what is mentioned.
In particular, news stories emphasize newsworthinesg;whi
correlates with rarity or novelty, sometimes referred e “t
man bites dog phenomenon.” For example, consider the fo

lowing sentence in a real news story:

“Ahmed Said Khadr, an Egyptian-born Canadian, was

killed last October in Pakistan.

Presumably, the phrase “Egyptian-born”

a
&

that most Canadians are born in Canada. The birth place
would most likely have been omitted if it was Canada.

In previous work, learning from incomplete examples or
partial assignments has been studied under noise-frémgsett
in the probably approximately correct learning framework.
The goal is to learn an approximation of a function that has
a small error with respect to the training distribution fraom
completely described examples. It has been shown that the
sample complexity of finite hypothesis spaces remains the
same under incomplete examples as under complete exam-
ples[Khardon and Roth, 1999Further, when the hypothesis
space obeys certain conditions such as “shallow monotonic-
ity,” the problem of learning from incomplete examples poly
nomially reduces to that of learning from complete examples
[Michael, 2009. In fact, the same learning algorithm can be
used after the missing data is completed in a way that guar-
antees consistency with the target function. This appra&ach
validated on an extensive study of sentence completiors task
on a natural dataséMichael and Valiant, 2008
Our approach to learning from incomplete examples ex-
nds the above work in multiple directions. First, we learn
multiple rules for several predicates simultaneously asel u
he rules to complete the missing data to improve learn-
ng. We call this approach “multiple predicate bootstragpi

e('MPB)” [Doppaet al, 2014. Second, we adopt the above

approaches to noisy observations and systematic bias.

Our main solution to deal with systematic bias is to dif-
ferentially score the evidence for rules based on a presumed
nodel of observation. In the “missing at random” (MAR)
model[Little and Rubin, 1987; Jaeger, 2d06ata is omitted
based only on information that is already mentioned. In this
case, conservative scoring of evidence, where rules aye onl
evaluated when all relevant data is present, gives an wzias
estimate of the rule correctness. In ti@velty mention model

@ special case of “missing not at random” (MNAR) model

and illustrated by the above Egyptian-born Canadian exam-
ple, data is mentioned with a higher probability if it cannot
be inferred from the remaining data. We show that under this

was considere&nOdel’ aggressive scoring of rules, where we count evidence

against a rule only if it contradicts the rule regardlessaf h

important by the reporter because it violates the expectati NN . ) - ;
the missing information transpires, gives a better apjpnaxi

'This material is based upon work supported by the Defense Adtion to the accuracy of the rule. Our empirical results corapa
vanced Research Projects Agency (DARPA) and the Air Force Refavorably to baselines such as EM and Structural EM and are
search Laboratory (AFRL) under Contract No. FA8750-09-C2017 consistent with the theoretical predictions.



2 Multiple-Predicate Bootstrapping (/\/ @ () )
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Algorithm 1 Multiple-Predicate Bootstrapping (MPB) (g ;7!/ )
Input: Dy = Incomplete training examplegy! = Implicit g \/\J A -
mention model,r = support thresholdf = confidence M) M)
threshold @ ®)
Output: set of learned rule®
1: repeat

2. LEARNRULES: R =¢ ) . .
3:  for each hypothesized rutedo Figure 1. Bayes nets for data generation using (a) Random

4: compute support, and confidencé, of the ruler Mention_ Model (b) Nov_elty Mention Model.A = B is a _
usingD; and implicit mention modeM rule, M is a random variable that represents the fact that B is
if 7, > randd, > OthenR = R U {r} mentioned B’ indicates the observed value Bfand random

2 end for variableV’ denotes the violation of rule.

7:  IMPUTE MISSING DATA:

8:  for each missing facf,, € D; do We now discuss two specific mention models and two meth-

9: Predictf,, using the most-confident applicable rule ods for scoring evidence for rules.

reRr Random Mention Model (RMMXhis is equivalent to the

10: if fm is predictedhen Dy = Dy — {fm} Missing At Random (MAR) statistical model. In this model,
11 e_nd for it is assumed that facts are mentioned based on other known
12: until convergence facts but not based on missing facts. For example, a doctor
13: return the set of learned rule® might omit a test if some other tests come out negative. A

Bayesian network that illustrates this case is shown in Fig-
ure 1(a).B’ is equal toB if M is true.

Novelty Mention Model (NMM)tn this model, facts that
are not entailed by the previously mentioned facts and prior
knowledge are more likely to be mentioned. This is a special

Py case of Missing Not At Random (MNAR) statistical model,
[Carlsonet al, 2014, and self-trainind Yarowsky, 1995, It since whether a fact is missing depends on the value of the

Egn#;%nesgilyoltizrrnsrg dsic?;toefsn;lr?c? Iﬂ;ﬁaaCh ﬁ;id;ﬁit?sgr:g ctitself as illustrated in Figure 1(b). In the novelty rtien
rules to i?n ute missiﬁ facts in the data Thrifis repeated u odel, consider a-general rule (i.e., a rule with confidence
p 9 f P a) A = B, B will be mentioned with higher probability

til no new fact can be added. Following the data mining liter-— o .

. X when the rule is violated, i.eR(M|V) > P(M|-V). Note
ature, we evaluate each rule using two measures: support arﬂﬁgt for rules that are net-general, the facts entailed by these
g?gzgm;gém:tSsirzig(f);ttﬁ];abgudls |Osf Eiafuﬂ;edeﬁtﬁgﬁngZDles will not be missing because they are not considered

" . : . general predictable due to the lack of generality of thestule
support, the more statistical evidence we have on the predl%his model more closely captures the citizenship-birtitgla
tive accuracy of the rule. In order to use a rule to imputesfact example, since whether or not the birth place of a person is
we require its support to be greater thasu@por_t threshold mentioned depends on the birth place and other mentioned
We measure the confidence of a rule as the ratio of the numb%mS of the person such as the citizenship
of records that _sat|sfy both body and head of the rule to the Inspired by the two types of mention médels we propose
number that satisfy the body, which estimates the condition two different ways of scoring rules. We use tr’1e following

probability of the head of the rule given its body. : defi I ina f . hii
We use a relational data mining algorithm called FARMERnOtat-Ion to define our rule scoring functions. Each literaym
be either true, false or unknown. We writd A = ¢, B =

[Nijssen and Kok, 2003for leaming rules. FARMER sys-  +""_" ) 5 be the count of examples where A is true, B is
tematically searches the space of possible rules up to a fix Ise and C is unknown. For brevity we writefor A4 — t

depthd (candidate rules) whose support and confidence eXTheSupport ofaruled — B is defined as the number of

ceed the given thresholds using depth first search. Its adva@gamples in whichd is known to be true i.ez(A), for both

tages over other rule learning systems such as FOIL are th@ nservative and aggressive scoring

a) it can learn redundant rules, which is useful with incom- . X ; h .
i . P In conservative scoringevidence is counted in favor of a
plete data; and bj it has the flexibility to vary the depth forrule only when all facts relevant to determining the trutiuea

search efficiency. Given multiple learned rules that are apg¢ o e are actually known. The confidence of the rule in
plicable to a given instance, we use the “most confident

one, . ! . .
to make predictions. The overall algorithm is summarized ir?hIS case is defined as follows:

Algorithm 1.
o . n(A, B)
Implicit Mention M odels. We address the problem of sys- p.(A= B) = TABZ
tematic bias by adapting the scoring function for the hypoth n(A, B # u)
esized rules according to a presuniaglicit mention model. In aggressive scoringa fact is counted as evidence for a

Our algorithmic approach, called “Multiple-Predicate
Bootstrapping,” (MPB) is inspired by several lines of work
including co-training[Blum and Mitchell, 1998 multitask
learning[Caruana, 1997 coupled semi-supervised learning

)



rule if the rule’s premise is satisfied and the conclusiorois n - Thus, aggressive scoring also preserves the ordering
contradicted. The confidence of a rule is defined as follows:
Theorem 3. If the data is generated by the novelty mention
n(A, B) + n(A, B = u) (2y model, them.(r) is an underestimate ang,(r) is an over-
n(A) estimate of true confidence of the ryilg').

For example, consider the text “Khadr, a Canadian citi-proof. In what followsV stands for a random variable that
zen, was killed in Pakistan”. For conservative scoring, itrepresents a violation of a confident rule in predictihgf V
is counted as neither supporting nor contradicting the rulgs trye, according to the novelty modé?, has a higher prob-

citizen(X Y) = bornln(X Y), as we are not told apility of being mentioned. HencB(M|V) > P(M|-V).
thatbor nl n( Khadr, Canada) . In contrast, it is counted

as supporting the rulei ti zen(Y) = bornln(Y) for 18| p(r) P(M]|-V')

aggressive scoring because, addiog nl n( Canada) sup- Pe(r) = -

ports the rule without contradicting the available evidenc 151 p(T)P(M(‘ﬁ)QAZ”S"/()l p(r))P(M|V)
_ p(r -

3 Analysisof Implicit Mention Models p(r)P(M[=V) + (1 = p(r)) P(M|V)
This section analyzes aggressive and conservative scofing To compare this witlp(r), we estimate the odds:
data generated using different mention models.

Consider a ruled = B. Figure 1 shows the Bayes nets
that explains the data generation process in the random and
novelty mention models. Lef be the support set of the rule =

pa(A = B) =

Pe(r)
1 —pe(r)
p(r)P(M|-V)

A = B, i.e., the set of examples where A is true. pét) be (1 =p(r)P(M|V)
the true confidence of the rutei.e., the conditional probabil- — true odds x EAMI2V)
ity of B given A. Letp.(r) andp,(r) denote the conservative P(M|V)

and aggressive estimates of confidence of therrule < true odds

Theorem 1. If the data is generated by the random men-
tion model therp.(r) is an unbiased estimate anig (r) is

: . in in the novelty mention m M|
an overestimate of the true confidence of ru(e). Since the - novelty mentio odeP(M|-V) * <

P(M|V), p.(r) underestimateg(r) and significantly so if
Proof. Conservative scoring estimates the confidence of thd’(M|-V) << P(M[V).

rule from only a subset of whereB is not missing. It is easy to show that for aggressive scoring, we have:
S| p(r P(M]A) p(r) = S1PE) 1S (L= p(r)) (1 = POMIV)
Pe(r) = ST BOMA = p(r) (3) 5]

S| P(M|A) = p(r) + (1~ p(r)) (1 ~ P(M|V)) ©)

Thereforep. is a unbiased estimate of the true confidence. > p(r)

Aggressive scoring deterministically imputes the missing = PAr
value of B such that it satisfies the hypothesized rule. O
R S| p(r)P(M|A) + |S| (1 — P(M|A)) Thgrefore, similar to the_random mention modgl(r) over-
a(r) = IS] estimates the true confidence of the rple). However,

when the novelty mention model is strongly at play, i.e.,

=p(rPM|A) + (1 = P(M]A)) @) p(M|V) ~ 1, it provides a good estimate pfr).
=p(n) + (1= PIMIA) (1~ p(r) Theorem 4. If the data i ted by the novelty menti
> p(r) eorem 4. e data is generated by the novelty mention
=P model, then the true ranking order of the rules is preserved
Therefore,p,(r) overestimates the confidence of the rule.with aggressive scoring.
The bias oy, (r) increases with decreasl{ M| A4). 0 Proof. We first show that the ordering is preserved for any
Theorem 2. If the data is generated by the random mention®-9€neral rules; andr, wherep(ry) > p(r2).
model, then the true ranking order of rules is preserved with p(r1) > p(ra)
both conservative and aggressive scoring. = p(r1)P(M|V) > p(r2) P(M|V)
Proof. It is enough to show that the ordering is preserved for = p(r))P(M|V) + (1 = P(M|V))
any two rules-; andr, that predict the value of the same vari- > p(ra) P(M|V) 4 (1 — P(M|V))

able. Without loss of generality, Ietr;) > p(rz). From (3),

pe(r1) > p.(r2). Therefore, order is preserved with conser- = Pa(r1) > pa(r2) (From (5))

vative scoring. We then compare an-general ruler; with a ruler, that
p(r1) > p(r2) is n?éa—gengral. dForrl_i_éﬁa(rl) zsp(;_:l) gver—estimatgstthg
= p(r)P(M]A) + (1 — P(M]A)) confidence based on Theorem 3. Fgrbecause no data is

missing, p.(r2) = p(r2) is an unbiased estimate p{rs).
>pA(T2)P(MJA) + (1 - P(M]A)) Pa(r1) > p(r1) > p(r2) = pa(r2). Thus,r; will be cor-
= Pa(r1) > Pa(r2) (From (4)) rectly ranked higher than, by aggressive scoring. Finally



Learning curve for NFL data results over 10 different versions of the generated data are
100 T , s s s reported (see Table 1 and Table 2).

Baselines: We compare the results of our Multiple-Predicate
. 1 Bootstrapping (MPB) approach using the relational data min
8 @ ing algorithm FARMER{Nijssen and Kok, 2003with Struc-
3 1 tural EM (SEM)[Friedman, 199Band EM implemented us-
= . ing Markov Logic Networks(MLNSs). Structural EM learns
g wf 1 both structure and parameters of the Bayes net from incom-
2 plete data, and then the learned Bayes net is used to make
el pyuctural EM —2— predictions on the test dataset. To run EM, we initialize an
Féi“.éﬁﬁmﬁ;;gfgsgixg 228:223 = MLN with high support rules learned from incomplete data
50 : ! i i . and learn its weights generativelRichardson and Domin-
2 4 6 8 10 gOS, 2006

No. of clean examples Analysis of Results: For the RMM data, both conservative

and aggressive scoring perform equally well (see Figurg,2(a
Figure 4: Results of NFL domain: no. of clean examples vswhich was expected based on Theorem 2. Since the ranking
prediction accuracy order of rules is the same in both scoring methods, they make
the same prediction by picking the same rule that is appli-
] cable. SEM performs better than both conservative and ag-
consider two rules that are both netgeneral, because there gressive when missingness in training data is small, i.2., 0
is no missing data, aggressive scoring provides unbiased esand 0.4 (se&'s in Figure 2(b)), but conservative/aggressive
mate of the confidences and preserves their rank ordef;  scoring significantly outperforms SEM when missingness in
training data is large, i.e., 0.6 and 0.8 (fe&in Figure 2(b)).
It is interesting to note that while conservative scoring-pr Performance of all the algorithms decreases as the pegeenta
serves the ranking order ofgeneral rules, it can potentially Of missingness in training data increases.
reverse the order of an-general rule with a rule that is not ~ For the NMM data, aggressive scoring significantly out-
a-general. This is because conservative scoring correstly e performs conservative scoring (see Figure 3(a)) whichiis co
timates the confidence of rules that are anegeneral but un- ~ sistent with our analysis in Theorem 4. Since the novelty

derestimates the confidence of theeneral rules. mention model was strongly at play, i.¢2(M|V) ~ 1, ag-
gressive scoring provides a very good estimate of the true

. confidence of the rules, resulting in excellent performance
4 Experimental Results Aggressive scoring significantly outperforms SEM when the
In this section, we describe our experimental results withhb  missingness in data is tolerable, i.e., 0.2, 0.4 and 0.6. -How
synthetic and natural datasets and carefully analyze them. ever, all algorithms including SEM perform poorly with ex-
Synthetic Experiments. To test our analysis of implicit ceedingly high missingness, i.e., 0.8. Note that, althaugh
mention models, we perform experiments on synthetic dat@nalysis of implicit mention models is for the simple case
generated using different missing mechanisms, i.e., RMMvhere only the head of the rule can be missing, our synthetic
and NMM. We use the UCI databaS®PECT Heartwhich  data were generated for a more difficult problem where the
describes diagnosing of Single Proton Emission Compute&ody of the rule could be missing as well.
Tomography (SPECT) imagésThis database contains 267  Experiments with Real data. We also performed experi-
examples with 23 binary features extracted from the SPECTnents on two real world domains: 1. NFL data, 2. Birthplace-
image sets (patients). A 70% / 30% split of the data is creCitizenship data. We used data extracted by BBN’s infor-
ated for training and testing respectively. We generate twdnation extraction system on a LDC (Linguistic Data Con-
different synthetic versions based on RMM and NMM miss-sortium) training corpus of 110 NFL sports articles and 248
ing mechanisms (see Figure 1). We first learn a set of derews stories related to the topics of people, organizatods
terministic rules from the training data, and then retaosth  relationships respectively.
that have a confidence of 80% or more. These rules are then For the NFL domain, the following predicates were
used to create training and testing data with varying levelprovided for each game with natural interpretations:
of missingness. For NMM, if some rule is violated, then thegameW nner, ganelLoser, honeTeam awayTeam
consequent is always mentioned. If no rule is violated, thergameTeancor e, andt eam nGane. A test set of 100 ex-
the consequent is omitted based on the missingness level. Vénples was used, to evaluate the performance of the learned
evaluate the learning algorithms on the test data genebgted rules based on the accuracy of predicting the missing facts
the same mention model that generates its training data. Exv.r.t the ground truth. We observed that most of the input ex-
periments are performed with different levels of missirgge tractions are noisy and inconsistent, that makes the proble
in both training and testing data and we report the accusacieof rule learning even harder. These inconsistent exampées a
(averaged over all attributes) with which the missing data i due to co-reference errors, e.g., the extractor may ndzesal
predicted correctly w.r.t the gold standard data. The @yexta that two mentions of the same team in a football article are in
- fact the same. We want to use this insight while scoring each
2http://archive.ics.uci.edu/ml/datasets/SPECT+Heart rule. To address this we learned integrity constraints feom



Testing
Missing % 0.2 0.4 0.6 0.8
CONS | AGGR | SEM | CONS | AGGR | SEM | CONS | AGGR | SEM | CONS | AGGR | SEM
= 0.2 778 | 778 | 88| 779 | 779 | 819 | 778 | 778 | 8L4 | 775 | 77.6 | 80.0
= 0.4 76.7 76.7 | 7195 | 77.1 771 | 794 | 77.0 76.9 | 793 | 76.9 76.8 | 78.2
®© 0.6 776 | 777 | 722 779 | 780 | 733 | 774 | 775 | 729| 772 | 715 | 725
= 0.8 754 75.2 | 70.2 | 756 75.1 | 71.6 | 750 745 | 71.2 | 749 745 | 70.9

Table 1: Accuracy results of synthetic experiments withdtan Mention Model (RMM) data
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Figure 2: Accuracy for Random Mention Model (RMM) data : (@nServative vs. Aggressive (b) Conservative vs. SEM

small number of complete examples, and applied the learneanly mentioned 23 times in the 248 documents. Moreover,
integrity constraints to generate consistent versionb®fri-  in 14 of the 23 mentions, the information violates the de-
consistent examples (e.g., by deleting a literal) in allgide  fault ruleciti zen(Y) = bornln(Y). Since the data
ways. Finally, we scored the rules against these ‘corréctednatches the assumption of aggressive scoring, it is exppecte
examples with a lower weight(< 1). The prediction accu- to learn the correct rule. However, our extracted data was
racy of the learned rules is reported as a function of numbehighly noisy and inaccurate. More specifically, the extdct

of clean examples (see Figure 4). The results of this approacdata had 479 examples which mentioned only the citizenship
are compared with Structural EM (SEM) and EM algorithm of a person, 4 examples where both birth place and citizpnshi
using Markov Logic Networks (MLNS) initialized with the were mentioned out of which only 1 example violated the de-
highest support rules learned from incomplete data. We thefault rule. Therefore, confidence of the rudeti zen(Y)
perform generative weight learning of MLNs via EM. We use = bor nl n(Y) was0.75 based on conservative scoring and
Lazy MCSAT to do MAP inference for predicting the miss- 0.9967 based on aggressive scoring. Since we used a confi-
ing facts in the test set. For both SEM and EM, we use thelence threshold 0.8 for all our experiments, only aggres-
ground-truth (instead of the learned) integrity constsato  sive scoring learned the correct rule. We also did this exper
correct the noisy examples and hence, there is only one poiinent with EM using MLNs and found that its performance
for each of them in Figure 4. was similar to conservative scoring.

Analysis of Results: As we can see in Figure 4, both conser- .
vative and aggressive scoring significantly outperformhbot 5 Conclusions and Future Work

SEM and EM. Since the NFL domain is deterministic, i.€.,\ye motivated and studied the problem of learning from natu-
v r, p(r) = 1, and similar to RMM data, both conservative 5| gata sources which presents the dual challenges ofadic
and aggressive scoring perform equally. We observed thghcompleteness and systematic bias. Our solutions to these
once we learn the true integrity constraints from the clean e problems consist of bootstrapping from learning of muttipl
amples, conservative scoring exactly learns the grourtl tru e|ations and scoring the rules or hypotheses differerthet
rules and aggressive scoring learns a few other spurioes rul 5, 54 assumed mention model. Our experimental results val-
as well. However, the ground-truth rules are ranked highe[yate the usefulness of differential scoring of rules anaish
than the spurious rules based on the estimated confidencgs,; our approach can outperform other state-of-the-aiftme
and therefore, the spurious rules do not degrade the perfogys sych as Structural EM and EM. Our theoretical analy-
mance. Similar to the results on the synthetic data, SEM doegg gives insights into why our approach works, and point to
not perform very well when the data is radically incomplete. 5o me future directions. One of the open questions is the anal
Birthplace-Citizenship data: Manual analysis of this train- ysis of multiple-predicate bootstrapping and the condgio
ing corpus revealed that the birth place of some person ignder which it works. Another avenue of future research is



Testing
Missing % 0.2 0.4 0.6 0.8
CONS | AGGR | SEM | CONS | AGGR | SEM | CONS | AGGR | SEM | CONS | AGGR | SEM
= 0.2 97.1 | 981 | 900| 968 | 978 | 88.0| 96.7 | 975 | 87.0| 969 | 976 | 86.0
‘= 0.4 925 | 972 | 87.0| 918 | 964 | 850| 913 | 961 | 84.0| 91.7 | 96.2 | 82.0
®© 0.6 644 | 868 | 770| 630 | 83 | 75.0| 62.1 | 838 | 73.0| 61.8 | 833 | 70.0
= 0.8 11.6 | 21.0 | 530 | 11.8 | 20.7 | 490 | 116 | 199 | 420 | 115 | 198 | 340

Table 2: Accuracy results of synthetic experiments with &ltyvMention Model (NMM) data
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Figure 3: Accuracy for Novelty Mention Model data: (a) Aggsere vs. Conservative (b) SEM vs. Aggressive

the use of explicit mention models and their use in learnindKhardon and Roth, 1999Roni Khardon and Dan Roth.
from radically incomplete and biased examples. Exploratio  Learning to Reason with a Restricted ViewMachine
of the relationship of this work to the statistical models of Learning 35(2):95-116, 1999.

missing data is another fruitful direction. [Little and Rubin, 198F R. J. A. Little and D. B. RubinSta-
tistical Analysis with Missing Data Wiley-Interscience,
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