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Abstract
The Collective Graphical Model (CGM) models
a population of independent and identically dis-
tributed individuals when only collective statis-
tics (i.e., counts of individuals) are observed. Ex-
act inference in CGMs is intractable, and pre-
vious work has explored Markov Chain Monte
Carlo (MCMC) and MAP approximations for
learning and inference. This paper studies Gaus-
sian approximations to the CGM. As the popula-
tion grows large, we show that the CGM distri-
bution converges to a multivariate Gaussian dis-
tribution (GCGM) that maintains the conditional
independence properties of the original CGM.
If the observations are exact marginals of the
CGM or marginals that are corrupted by Gaus-
sian noise, inference in the GCGM approxima-
tion can be computed efficiently in closed form.
If the observations follow a different noise model
(e.g., Poisson), then expectation propagation pro-
vides efficient and accurate approximate infer-
ence. The accuracy and speed of GCGM infer-
ence is compared to the MCMC and MAP meth-
ods on a simulated bird migration problem. The
GCGM matches or exceeds the accuracy of the
MAP method while being significantly faster.

1. Introduction
Consider a setting in which we wish to model the behavior
of a population of independent and identically distributed
(i.i.d.) individuals but where we can only observe collec-
tive count data. For example, we might wish to model the
relationship between education, sex, housing, and income
from census data. For privacy reasons, the Census Bureau
only releases count data such as the number of people hav-
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ing a given level of education or the number of men living
in a particular region. Another example concerns modeling
the behavior of animals from counts of (anonymous) indi-
viduals observed at various locations and times. This arises
in modeling the migration of fish and birds.

The CGM is constructed by first defining the individual
model—a graphical model describing a single individual.
Let C and S be the clique set and the separator set of a junc-
tion tree constructed from the individual model. Then, we
define N copies of this individual model to create a pop-
ulation of N i.i.d. individuals. This permits us to define
count variables nA, where nA(iA) is the number of indi-
viduals for which clique A ∈ C ∪ S is in configuration iA.
The counts n = (nA : A ∈ C ∪ S) are the sufficient statis-
tics of the individual model. After marginalizing away the
individuals, the CGM provides a model for the joint distri-
bution of n.

In typical applications of CGMs, we make noisy obser-
vations y that depends on some of the n variables, and
we seek to answer queries about the distribution of some
or all of the n conditioned on these observations. Let
y = (yD : D ∈ D), where D is a set of cliques from the
individual graphical model and yD contains counts of set-
tings of clique D. We require each D ⊆ A for some clique
A ∈ C ∪ S the individual model. In addition to the usual
role in graphical models, the inference of the distribution
of n also serves to estimate the parameters of the individ-
ual model (e.g. E step in EM learning), because n are suffi-
cient statistics of the individual model. Inference for CGMs
is much more difficult than for the individual model. Un-
like the individual model, many conditional distributions in
the CGM do not have a closed form. The space of possi-
ble configurations of the CGM is very large, because each
count variable ni can take values in {0, . . . , N}.

The original CGM paper, Sheldon and Dietterich (2011)
introduced a Gibbs sampling algorithm for sampling from
P (n|y). Subsequent experiments showed that this exhibits
slow mixing times, which motivated Sheldon, Sun, Kumar,
and Dietterich (2013) to introduce an efficient algorithm
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for computing a MAP approximation based on minimizing
a tractable convex approximation of the CGM distribution.
Although the MAP approximation still scales exponentially
in the domain size L of the individual-model variables, it
was fast enough to permit fitting CGMs via EM on modest-
sized instances (L = 49). However, given that we wish to
apply this to problems where L = 1000, we need a method
that is even more efficient.

This paper introduces a Gaussian approximation to the
CGM. Because the count variables nC have a multinomial
distribution, it is reasonable to apply the Gaussian approx-
imation. However, this approach raises three questions.
First, is the Gaussian approximation asymptotically cor-
rect? Second, can it maintain the sparse dependency struc-
ture of the CGM distribution, which is critical to efficient
inference? Third, how well does it work with natural (non-
Gaussian) observation distributions for counts, such as the
Poisson distribution? This paper answers these questions
by proving an asymptotically correct Gaussian approxima-
tion for CGMs. It shows that this approximation, when
done correctly, is able to preserve the dependency structure
of the CGM. And it demonstrates that by applying expecta-
tion propagation (EP), non-Gaussian observation distribu-
tions can be handled. The result is a CGM inference pro-
cedure that gives good accuracy and achieves significant
speedups over previous methods.

Beyond CGMs, our main result highlights a remarkable
property of discrete graphical models: the asymptotic dis-
tribution of the vector of sufficient statistics is a Gaussian
graphical model with the same conditional independence
properties as the original model.

2. Problem Statement and Notation
Consider a graphical model defined on the graph G =
(V,E) with n nodes and clique set C. Denote the random
variables by X1, . . . , Xn. Assume for simplicity all vari-
ables take values in the same domain X of size L. Let
x ∈ Xn be a particular configuration of the variables, and
let xC be the subvector of variables belonging to C. For
each clique C ∈ C, let φC(xC) be a non-negative potential
function. Then the probability model is:

p(x) =
1

Z

∏
C∈C

φC(xC)

= exp
(∑
C∈C

∑
iC∈X |C|

θC(iC)·I(xC = iC)−Q(θ)
)
.

(1)

The second line shows the model in exponential-family
form Wainwright & Jordan (2008), where I(π) is an indi-
cator variable for the event or expression π, and θC(iC) =
log φC(iC) is an entry of the vector of natural parame-

ters. The function Q(θ) = logZ is the log-partition func-
tion. Given a fixed set of parameters θ and any subset
A ⊆ V , the marginal distribution µA is the vector with en-
tries µA(iA) = Pr(XA = iA) for all possible iA ∈ X |A|.
In particular, we will be interested in the clique marginals
µC and the node marginals µi := µ{i}.

Junction Trees. Our development relies on the existence of
a junction tree (Lauritzen, 1996) on the cliques of C to write
the relevant CGM and GCGM distributions in closed form.
Henceforth, we assume that such a junction tree exists. In
practice, this means that one may need to add fill-in edges
to the original model to obtain the triangulated graph G,
of which C is the set of maximal cliques. This is a clear
limitation for graphs with high tree-width. Our methods
apply directly to trees and are most practical for low tree-
width graphs. Since we use few properties of the junction
tree directly, we review only the essential details here and
review the reader to Lauritzen (1996) for further details.
Let C and C ′ be two cliques that are adjacent in T ; their
intersection S = C ∩ C ′ is called a separator. Let S be
the set of all separators of T , and let ν(S) be the number of
times S appears as a separator, i.e., the number of different
edges (C,C ′) in T for which S = C ∩ C ′.

The CGM Distribution. Fix a sample size N and let
x1, . . . ,xN be N i.i.d. random vectors distributed accord-
ing to the graphical model G. For any set A ⊆ V and
particular setting iA ∈ X |A|, define the count

nA(iA) =

N∑
m=1

I(xmA = iA). (2)

Let nA = (nA(iA) : iA ∈ X |A|) be the complete vector
of counts for all possible settings of the variables in A. In
particular, let nu := n{u} be the vector of node counts.
Also, let n = (nA : A ∈ C ∪ S) be the combined vector of
all clique and separator counts—these are sufficient statis-
tics of the sample of size N from the graphical model. The
distribution over this vector is the CGM distribution.

Proposition 1 Let n be the vector of (clique and separa-
tor) sufficient statistics of a sample of size N from the dis-
crete graphical model (1). The probability mass function of
n is given by p(n;θ) = h(n)f(n;θ) where

f(n;θ) = exp
( ∑

C∈C,iC∈X |C|

θC(iC) · nC(iC)−NQ(θ)
)

(3)
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h(n) = N ! ·

∏
S∈S

∏
iS∈X |S|

(
nS(iS)!

)ν(S)
∏
C∈C

∏
iC∈X |C| nC(iC)!∏

S∼C∈T ,iS∈X |S|

I
(
nS(iS) =

∑
iC\S

nC(iS , iC\S)
)
·

∏
C∈C

I
( ∑
iC∈X |C|

nC(iC) = N
)
. (4)

Denote this distribution by CGM(N,θ).

Here, the notation S ∼ C ∈ T means that S is adjacent
to C in T . This proposition was first proved in nearly
this form by Sundberg (1975) (see also Lauritzen (1996)).
Proposition 1 differs from those presentations by writing
f(n;θ) in terms of the original parameters θ instead of the
clique and separator marginals {µC ,µS}, and by includ-
ing hard constraints in the base measure h(n). The hard
constraints enforce consistency of the sufficient statistics
of all cliques on their adjacent separators, and were treated
implicitly prior to Sheldon & Dietterich (2011). A proof
of the equivalence between our expression for f(n;θ) and
the expressions from prior work is given in the supple-
mentary material. Dawid & Lauritzen (1993) refer to the
same distribution as the hyper-multinomial distribution due
to the fact that it follows conditional independence prop-
erties analogous to those in the original graphical model.

Proposition 2 Let A,B ∈ S ∪ C be two sets that are sep-
arated by the separator S in T . Then nA ⊥⊥ nB | nS .

Proof: The probability model p(n;θ) factors over the
clique and separator count vectors nC and nS . The only
factors where two different count vectors appear together
are the consistency constraints where nS and nC appear
together if S is adjacent to C in T . Thus, the CGM is a
graphical model with the same structure as T , from which
the claim follows. �

3. Approximating CGM by the Normal
Distribution

In this section, we will develop a Gaussian approximation,
GCGM, of the CGM and show that it is the asymptoti-
cally correct distribution as M goes to infinity. We then
show that the GCGM has the same conditional indepen-
dence structure as the CGM, and we explicitly derive the
conditional distributions. These allow us to use Gaussian
message passing in the GCGM as a practical approximate
inference method for CGMs.

We will follow the most natural approach of approximat-
ing the CGM distribution by a multivariate Gaussian with
the same mean and covariance matrix. The moments of

the CGM distribution follow directly from those of the in-
dicator variables of the individual model: Fix an outcome
x = (x1, . . . , xn) from the individual model and for any
set A ⊆ V let IA =

(
I(xA = iA) : iA ∈ X |A|

)
be the

vector of all indicator variables for that set. The mean and
covariance of any such vectors are given by

E[IA] = µA (5)

cov(IA, IB) = 〈µA,B〉 − µAµ
T
B . (6)

Here, the notation 〈µA,B〉 refers to the matrix whose
(iA, iB) entry is the marginal probability Pr(XA =
iA, XB = iB). Note that Eq. (6) follows immediately
from the definition of covariance for indicator variables,
which is easily seen in the scalar form: cov(I(XA =
iA), I(XB = iB)) = Pr(XA = iA, XB = iB)−Pr(XA =
iA) Pr(XB = iB). Eq. (6) also covers the case whenA∩B
is nonempty. In particular if A = B = {u}, then we re-
cover cov(Iu, Iu) = diag(µu) − µuµ

T
u , which is the co-

variance matrix for the marginal multinomial distribution
of Iu.

From the preceding arguments, it becomes clear that the co-
variance matrix for the full vector of indicator variables has
a simple block structure. Define I = (IA : A ∈ C∪S) to be
the vector concatention of all the clique and separator indi-
cator variables, and let µ = (µA : A ∈ C ∪ S) = E[I] be
the corresponding vector concatenation of marginals. Then
it follows from (6) that the covariance matrix is

Σ := cov(I, I) = Σ̂− µµT , (7)

where Σ̂ is the matrix whose (A,B) block is the marginal
distribution 〈µA,B〉. In the CGM model, the count vector
n can be written as n =

∑N
m=1 I

m, where I1, . . . , IN are
i.i.d. copies of I. As a result, the moments of the CGM are
obtained by scaling the moments of I by N . We thus arrive
at the natural moment-matching Gaussian approximation
of the CGM.

Definition 1 The Gaussian CGM, denoted GCGM(N,θ)
is the multivariate normal distribution N (Nµ, NΣ),
where µ is the vector of all clique and separator marginals
of the graphical model with parameters θ, and Σ is defined
in Equation (7).

In the following theorem, we show the GCGM is asymptot-
ically correct and it is a Gaussian graphical model, which
will lead to efficient inference algorithms.

Theorem 1 Let nN ∼ CGM(N,θ) for N = 1, 2, . . ..
Then following are true:

(i) The GCGM is asymptotically correct. That is, as
N →∞ we have

1√
N

(nN −Nµ)
D−→ N (0,Σ). (8)
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(ii) The GCGM is a Gaussian graphical model with the
same conditional independence structure as the CGM.
Let z ∼ GCGM(N,θ) and let A,B ∈ C ∪ S be two
sets that are separated by separator S in T . Then
zA ⊥⊥ zB | zS .

Proof: Part (i) is a direct application of the multivariate
central limit theorem to the random vector nN , which, as
noted above, is a sum of i.i.d. random vectors I1, . . . , IN

with mean µ and covariance Σ (Feller, 1968).

Part (ii) is a consequence of the fact that these conditional
independence properties hold for each nN (Proposition 2),
so they also hold in the limit asN →∞. While this is intu-
itively clear, it seems to require further justification, which
is provided in the supplementary material. �

3.1. Conditional Distributions

The goal is to use inference in the GCGM as a tractable ap-
proximate alternative inference method for CGMs. How-
ever, it is very difficult to compute the covariance matrix Σ
over all cliques. In particular, note that the (C,C ′) block
requires the joint marginal 〈µC,C′〉, and ifC andC ′ are not
adjacent in T this is hard to compute. Fortunately, we can
sidestep the problem completely by leveraging the graph
structure from Part (ii) of Theorem 1 to write the distribu-
tion as a product of conditional distributions whose param-
eters are easy to compute (this effectively means working
with the inverse covariance matrix instead of Σ). We then
perform inference by Gaussian message passing on the re-
sulting model.

A challenge is that Σ is not full rank, so the GCGM distri-
bution as written is degenerate and does not have a den-
sity. This can be seen by noting that any vector n ∼
CGM(N ;θ) with nonzero probability satisfies the affine
consistency constraints from Eq. (4)—for example, each
vector nC and nS sums to the population size N—and that
these affine constraints also hold with probability one in
the limiting distribution. To fix this, we instead use a linear
transformation T to map z to a reduced vector z̃ = T z
such that the reduced covariance matrix Σ̃ = T Σ TT is in-
vertible. The work by Loh & Wainwright (2013) proposed
a minimal representation of the graphical model in (1), and
the corresponding random variable has a full rank covari-
ance matrix. We will find a transformation T to project our
indicator variable I into that form. Then T I (as well as
T n and T z) will have a full rank covariance matrix.

Denote by C+ the maximal and non-maximal cliques in the
triangulated graph. Note that each D ∈ C+ must be a sub-
set of some A ∈ C ∪S and each subset of A is also a clique
in C+. For every D ∈ C+, let XD0 = (X\{L})|D| denote
the space of possible configurations of D after excluding
the largest value, L, from the domain of each variable in

D. The corresponding random variable I in the minimal
representation is defined as (Loh & Wainwright, 2013):

Ĩ = (I(xD = iD) : iD ∈ XD0 , D ∈ C+) . (9)

ĨD can be calculated linearly from IA when D ⊆ A via the
matrix TD,A whose (iD, iA) entry is defined as

TD,A(iD, iA) = I(iD ∼D iA), (10)

where ∼D means that iD and iA agree on the setting of
the variables in D. It follows that ĨD = TD,A IA. The
whole transformation T can be built in blocks as follows:
For every D ∈ C+, choose A ∈ C ∪ S and construct the
TD,A block via (10). Set all other blocks to zero. Due to
the redundancy of I, there might be many ways of choosing
A for D and any one will work as long as D ⊆ A.

Proposition 3 Define T as above, and define z̃ = T z,
z̃A+ = (z̃D : D ⊆ A), A ∈ C ∪ S. Then

(i) If A,B ∈ C ∪ S are separated by S in T , it holds that
z̃A+ ⊥⊥ z̃B+ | z̃S+ .

(ii) The covariance matrix of z̃ has full rank.

Proof: In the appendix, we show that for any A ∈ C ∪ S ,
IA can be linearly recovered from ĨA+ = (ĨD : D ⊆ A).
So there is a linear bijection between IA and ĨA+ (The
mapping from IA to ĨA+ has been shown in the defini-
tion of T). The same linear bijection relation also exists
between nA and ñA+ =

∑N
m=1 Ĩ

m
A+ and between zA and

z̃A+ .

Proof of (i): Since zA ⊥⊥ zB | zS , it follows that z̃A+ ⊥⊥
z̃B+ | zS because z̃A+ and z̃B+ are deterministic functions
of zA and zB respectively. Since zS is a deterministic func-
tion of z̃S+ , the same property holds when we condition on
z̃S+ instead of zS .

Proof of (ii): The bijection between I and Ĩ indicates that
the model representation of Loh & Wainwright (2013) de-
fines the same model as (1). By Loh & Wainwright (2013),
Ĩ has full rank covariance matrix and so do ñ and z̃. �

With this result, the GCGM can be decomposed into
conditional distributions, and each distribution is a non-
degenerate Gaussian distribution.

Now let us consider the observations y = {yD, D ∈ D},
where D is the set of cliques for which we have observa-
tions. We require each D ∈ D be subset of some clique
C ∈ C. When choosing a distribution p(yD|zC), a mod-
eler has substantial flexibility. For example, p(yD|zC)
can be noiseless, yD(iD) =

∑
iC\D

zC(iD, iC\D), which
permits closed-form inference. Or p(yD|zC) can con-
sist of independent noisy observations: p(yD|zC) =∏
iD
p(yD(iD)|

∑
iC\D

zC(iD, iC\D)). With a little work,
p(yD|zC) can be represented by p(yD|z̃C+).
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3.2. Explicit Factored Density for Trees

We describe how to decompose GCGM for the special case
when the original graphical model G is a tree. We assume
that only counts of single nodes are observed. In this case,
we can marginalize out edge (clique) counts z{u,v} and re-
tain only node (separator) counts zu. Because the GCGM
has a normal distribution, marginalization is easy. The con-
ditional distribution is then defined only on node counts.
With the definition of z̃ in Proposition (3) and the property
of conditional independence, we can write

p(z̃1, . . . , z̃n) = p(z̃r)
∏

(u,v)∈E

p(z̃v | z̃u). (11)

Here r ∈ V is an arbitrarily-chosen root node, and E is
the set of directed edges of G oriented away from r. The
marginalization of the edges greatly reduces the size of the
inference problem, and a similar technique is also applica-
ble to general GCGMs.

Now specify the parameters of the Gaussian conditional
densities p(z̃v | z̃u) in Eq. (11). Assume the blocks Tu,u
and Tv,v are defined as (10). Let µ̃u = Tu,u µu be the
marginal vector of node u without its last entry, and let
〈µ̃u,v〉 = Tu,u 〈µu,v〉 TTv,v be the marginal matrix over
edge (u, v), minus the final row and column. Then the
mean and covariance martix of the joint distribution are

η := N

[
µ̃u
µ̃v

]
, N2

[
diag(µ̃u) 〈µ̃u,v〉
〈µ̃v,u〉 diag(µ̃v)

]
− ηηT . (12)

The conditional density p(z̃v | z̃u) is obtained by standard
Gaussian conditioning formulas.

If we need to infer z{u,v} from some distribution q(z̃u, z̃v),
we first calculate the distribution p(z̃{u,v}|z̃u, z̃v). This
time we assume blocks T{u,v}+,{u,v} = (Tu,{u,v} : D ∈
{u, v}) are defined as (10). We can find the mean and
variance of p(z̃u, z̃v, z̃{u,v}) by applying linear transfor-
mation T{u,v}+,{u,v} on the mean and variance of z{u,v}.
Standard Gaussian conditioning formulas then give the
conditional distribution p(z̃{u,v} | z̃u, z̃v). Then we
can recover the distribution of z{u,v} from distribution
p(z̃{u,v}|z̃u, z̃v)q(z̃u, z̃v).

Remark: Our reasoning gives a completely different way
of deriving some of the results of Loh & Wainwright (2013)
concerning the sparsity pattern of the inverse covariance
matrix of the sufficient statistics of a discrete graphical
model. The conditional independence in Proposition 2 for
the factored GCGM density translates directly to the spar-
sity pattern in the precision matrix Γ = Σ̃−1. Unlike the
reasoning of Loh & Wainwright, we derive the sparsity di-
rectly from the conditional independence properties of the
asymptotic distribution (which are inherited from the CGM
distribution) and the fact that the CGM and GCGM share
the same covariance matrix.

4. Inference with Noisy Observations
We now consider the problem of inference in the GCGM
when the observations are noisy. Throughout the remainder
of the paper, we assume that the individual model—and,
hence, the CGM—is a tree. In this case, the cliques cor-
respond to edges and the separators correspond to nodes.
We will also assume that only the nodes are observed. For
notational simplicity, we will assume that every node is ob-
served (with noise). (It is easy to marginalize out unob-
served nodes if any.) From now on, we use uv instead of
{u, v} to represent edge clique. Finally, we assume that the
entries have been dropped from the vector z as described
in the previous section so that it has the factored density
described in Eq. 11.

Denote the observation variable for node u by yu, and as-
sume that it has a Poisson distribution. In the (exact) CGM,
this would be written as yu ∼ Poisson(nu). However, in
our GCGM, this instead has the form

yu ∼ Poisson(λzu), (13)

where zu is the corresponding continuous variable and λ
determines the amount of noise in the distribution. Denote
the vector of all observations by y. Note that the missing
entry of zu must be reconstructed from the remaining en-
tries when computing the likelihood.

With Poisson observations, there is no longer a closed-form
solution to message passing in the GCGM. We address this
by applying Expectation Propagation (EP) with the Laplace
approximation. This method has been previously applied to
nonlinear dynamical systems by Ypma and Heskes (2005).

4.1. Inferring Node Counts

In the GCGM with observations, the potential on each edge
(u, v) ∈ E is defined as

ψ(zu, zv) ={
p(zv, zu)p(yv|zv)p(yu|zu) if u is root
p(zv|zu)p(yv|zv) otherwise. (14)

We omit the subscripts on ψ for notational simplicity.
The joint distribution of (zv, zu) has mean and covariance
shown in (12).

With EP, the model approximates potential on edge
(u, v) ∈ E with normal distribution in context q\uv(zu)
and q\uv(zv). The context for edge (u, v) is defined as

q\uv(zu) =
∏

(u,v′)∈E,v′ 6=v

quv′(zu) (15)

q\uv(zv) =
∏

(u′,v)∈E,u′ 6=u

qu′v(zv), (16)
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where each quv′(zu) and qu′v(zv) have the form of normal
densities.

Let ξ(zu, zv) = q\uv(zu)q\uv(zv)ψ(zu, zv). The EP up-
date of quv(zu) and quv(zv) is computed as

quv(zu) =
projzu [ξ(zu, zv)]

q\uv(zu)
(17)

quv(zv) =
projzv [ξ(zu, zv)]

q\uv(zv)
. (18)

The projection operator, proj, is computed in two steps.
First, we find a joint approximating normal distribution via
the Laplace approximation and then we project this onto
each of the random variables zu and zv . In the Laplace ap-
proximation step, we need to find the mode of log ξ(zu, zv)
and calculate its Hessian at the mode to obtain the mean and
variance of the approximating normal distribution:

µξuv = arg max
(zu,zv)

log ξ(zu, zv) (19)

Σξuv =

(
∇2

(zu,zv)=µ
ξ
uv

log ξ(zu, zv)

)−1
. (20)

The optimization problem in (19) is solved by optimizing
first over zu then over zv . The optimal value of zu can be
computed in closed form in terms of zv , since only nor-
mal densities are involved. Then the optimal value of zv
is found via gradient methods (e.g., BFGS). The function
log ξ(zu, zv) is concave, so we can always find the global
optimum. Note that this decomposition approach only de-
pends on the tree structure of the model and hence will
work for any observation distribution.

At the mode, we find the mean and variance of the normal
distribution approximating p(zu, zv|y) via (19) and (20).
With this distribution, the edge counts can be inferred with
the method of Section 3.2. In the projection step in (17)
and (18), this distribution is projected to one of zu or zv by
marginalizing out the other.

4.2. Complexity analysis

What is the computational complexity of inference with
the GCGM? When inferring node counts, we must solve
the optimization problem and compute a fixed number of
matrix inverses. Each matrix inverse takes time L2.5. In
the Laplace approximation step, each gradient calculation
takes O(L2) time. Suppose m iterations are needed. In the
outer loop, suppose we must perform r passes of EP mes-
sage passing and each iteration sweeps through the whole
tree. Then the overall time is O(r|E|max(mL2, L2.5)).
The maximization problem in the Laplace approximation
is smooth and concave, so it is relatively easy. In our ex-
periments, EP usually converges within 10 iterations.

In the task of inferring edge counts, we only consider the
complexity of calculating the mean, as this is all that is
needed in our applications. This part is solved in closed
form, with the most time-consuming operation being the
matrix inversion. By exploiting the simple structure of
the covariance matrix of zuv , we can obtain an inference
method with time complexity of O(L3).

5. Experimental Evaluation
In this section, we evaluate the performance of our method
and compare it to the MAP approximation of Sheldon, Sun,
Kumar, and Dietterich (2013). The evaluation data are gen-
erated from the bird migration model introduced in Shel-
don et al. (2013). This model simulates the migration of a
population of M birds on an L = ` × ` map. The entire
population is initially located in the bottom left corner of
the map. Each bird then makes independent migration de-
cisions for T = 20 time steps. The transition probability
from cell i to cell j at each time step is determined by a lo-
gistic regression equation that employs four features. These
features encode the distance from cell i to cell j, the degree
to which cell j falls near the path from cell i to the destina-
tion cell in the upper right corner, the degree to which cell
j lies in the direction toward which the wind is blowing,
and a factor that encourages the bird to stay in cell i. Let w
denote the parameter vector for this logistic regression for-
mula. In this simulation, the individual model for each bird
is a T -step Markov chain X = (X1, . . . , X20) where the
domain of each Xt consists of the L cells in the map. The
CGM variables n = (n1,n1,2,n2, . . . ,nT ) are vectors of
length L containing counts of the number of birds in each
cell at time t and the number of birds moving from cell i to
cell j from time t to time t + 1. We will refer to these as
the “node counts” (N) and the “edge counts” (E). At each
time step t, the data generation model generates an obser-
vation vector yt of length L which contains noisy counts
of birds at all map cells at time t, nt. The observed counts
are generated by a Poisson distribution with unit intensity.

We consider two inference tasks. In the first task, the pa-
rameters of the model are given, and the task is to infer
the expected value of the posterior distribution over nt for
each time step t given the observations y1, . . . ,yT (aka
“smoothing”). We measure the accuracy of the node counts
and edge counts separately.

An important experimental issue is that we cannot com-
pute the true MAP estimates for the node and edge counts.
Of course we have the values generated during the sim-
ulation, but because of the noise introduced into the ob-
servations, these are not necessarily the expected values
of the posterior. Instead, we estimate the expected val-
ues by running the MCMC method (Sheldon & Dietterich,
2011) for a burn-in period of 1 million Gibbs iterations
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and then collecting samples from 10 million Gibbs iter-
ations and averaging the results. We evaluate the ac-
curacy of the approximate methods as the relative error
||napp − nmcmc||1/||nmcmc||1, where napp is the approx-
imate estimate and nmcmc is the value obtained from the
Gibbs sampler. In each experiment, we report the mean
and standard deviation of the relative error computed from
10 runs. Each run generates a new set of values for the node
counts, edge counts, and observation counts and requires a
separate MCMC baseline run.

We compare our method to the approximate MAP method
introduced by Sheldon et al. (2013). By treating counts
as continuous and approximating the log factorial function,
their MAP method finds the approximate mode of the pos-
terior distribution by solving a convex optimization prob-
lem. Their work shows that the MAP method is much more
efficient than the Gibbs sampler and produces inference re-
sults and parameter estimates very similar to those obtained
from long MCMC runs.

The second inference task is to estimate the parameters w
of the transition model from the observations. This is per-
formed via Expectation Maximization, where our GCGM
method is applied to compute the E step. We compute the
relative error with respect to the true model parameters.

Table 1 compares the inference accuracy of the approxi-
mate MAP and GCGM methods. In this table, we fixed
L = 36, set the logistic regression coefficient vector
w = (1, 2, 2, 2), and varied the population size N ∈
{36, 360, 1080, 3600}. At the smallest population size, the
MAP approximation is slightly better, although the result
is not statistically significant. This makes sense, since the
Gaussian approximation is weakest when the population
size is small. At all larger population sizes, the GCGM
gives much more accurate results. Note that the MAP ap-
proximation exhibits much higher variance as well.

Table 1. Relative error in estimates of node counts (“N”) and edge
counts (“E”) for different population sizes N .

N = 36 360 1080 3600
MAP(N) .173±.020 .066±.015 .064±.012 .069±.013
MAP(E) .350±.030 .164±.030 .166±.027 .178±.025

GCGM(N) .184±.018 .039±.007 .017±.003 .009±.002
GCGM(E) .401±.026 .076±.008 .034±.003 .017±.002

Our second inference experiment is to vary the magnitude
of the logistic regression coefficients. With large coeffi-
cients, the transition probabilities become more extreme
(closer to 0 and 1), and the Gaussian approximation should
not work as well. We fixed N = 1080 and L = 36
and evaluated three different parameter vectors: w0.5 =
(0.5, 1, 1, 1), w1 = (1, 2, 2, 2) and w2 = (2, 4, 4, 4). Ta-
ble 2 shows that for w0.5 and w1, the GCGM is much
more accurate, but for w2, the MAP approximation gives a

slightly better result, although it is not statistically signifi-
cant based on 10 trials.

Table 2. Relative error in estimates of node counts (“N”) and edge
counts (“E”) for different settings of the logistic regression param-
eter vector w

w0.5 w1 w2

MAP(N) .107±.014 .064±.012 .018±.004
MAP(E) .293±.038 .166±.027 .031±.004

GCGM(N) .013±.002 .017±.003 .024±.004
GCGM(E) .032±.004 .034±.003 .037±.005

Our third inference experiment explores the effect of vary-
ing the size of the map. This increases the size of the do-
main for each of the random variables and also increases
the number of values that must be estimated (as well as
the amount of evidence that is observed). We vary L ∈
{16, 25, 36, 49}. We scale the population size accordingly,
by setting N = 30L. We use the coefficient vector w1.
The results in Table 3 show that for the smallest map, both
methods give similar results. But as the number of cells
grows, the relative error of the MAP approximation grows
rapidly as does the variance of the result. In comparison,
the relative error of the GCGM method barely changes.

Table 3. Relative inference error with different map size
L = 16 25 36 49

MAP(N) .011±.005 .025±.007 .064±.012 .113±.015
MAP(E) .013±.004 .056±.012 .166±.027 .297±.035

GCGM(N) .017±.003 .017±.003 .017±.003 .020±.003
GCGM(E) .024±.002 .027±.003 .034±.003 .048±.005

We now turn to measuring the relative accuracy of the
methods during learning. In this experiment, we setL = 16
and vary the population size for N ∈ {16, 160, 480, 1600}.
After each EM iteration, we compute the relative error as
||wlearn−wtrue||1/||wtrue||1, where wlearn is the param-
eter vector estimated by the learning methods and wtrue

is the parameter vector that was used to generate the data.
Figure 1 shows the training curves for the three parame-
ter vectors w0.5,w1, and w2. The results are consistent
with our previous experiments. For small population sizes
(N = 16 and N = 160), the GCGM does not do as well as
the MAP approximation. In some cases, it overfits the data.
For N = 16, the MAP approximation also exhibits over-
fitting. For w2, which creates extreme transition probabil-
ities, we also observe that the MAP approximation learns
faster, although the GCGM eventually matches its perfor-
mance with enough EM iterations.

Our final experiment measures the CPU time required to
perform inference. In this experiment, we varied L ∈
{16, 36, 64, 100, 144} and set N = 100L. We used pa-
rameter vector w1. We measured the CPU time consumed
to infer the node counts and the edge counts. The MAP
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Figure 1. EM convergence curve different feature coefficient and population sizes
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Figure 2. A comparison of inference run time with different num-
bers of cells L

method infers the node and edge counts jointly, whereas
the GCGM first infers the node counts and then computes
the edge counts from them. We report the time required
for computing just the node counts and also the total time
required to compute the node and edge counts. Figure 2
shows that the running time of the MAP approximation is
much larger than the running time of the GCGM approx-
imation. For all values of L except 16, the average run-
ning time of GCGM is more than 6 times faster than for
the MAP approximation. The plot also reveals that the
computation time of GCGM is dominated by estimating
the node counts. A detailed analysis of the implementa-
tion indicates that the Laplace optimization step is the most
time-consuming.

In summary, the GCGM method achieves relative error that
matches or is smaller than that achieved by the MAP ap-

proximation. This is true both when measured in terms of
estimating the values of the latent node and edge counts and
when estimating the parameters of the underlying graphi-
cal model. The GCGM method does this while running
more than a factor of 6 faster. The GCGM approxima-
tion is particularly good when the population size is large
and when the transition probabilities are not near 0 or 1.
Conversely, when the population size is small or the prob-
abilities are extreme, the MAP approximation gives better
answers although the differences were not statistically sig-
nificant based on only 10 trials. A surprising finding is that
the MAP approximation has much larger variance in its an-
swers than the GCGM method.

6. Concluding Remarks
This paper has introduced the Gaussian approximation
(GCGM) to the Collective Graphical Model (CGM). We
have shown that for the case where the observations only
depend on the separators, the GCGM is the limiting dis-
tribution of the CGM as the population size N → ∞.
We showed that the GCGM covariance matrix maintains
the conditional independence structure of the CGM, and
we presented a method for efficiently inverting this covari-
ance matrix. By applying expectation propagation, we de-
veloped an efficient algorithm for message passing in the
GCGM with non-Gaussian observations. Experiments on a
bird migration simulation showed that the GCGM method
is at least as accurate as the MAP approximation of Shel-
don et al. (2013), that it exhibits much lower variance, and
that it is 6 times faster to compute.
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A. Proof of Proposition 1
The usual way of writing the CGM distribution is to replace
f(n;θ) in Eq. (3) by

f ′(n;θ) =

∏
C∈C,iC∈X |C| µC(iC)nC(iC)∏

S∈S,iS∈X |S|

(
µS(iS)nS(iS)

)ν(S) (21)

We will show that f(n;θ) = f ′(n;θ) for any n such that
h(n) > 0 by showing that both descibe the probability of
an ordered sample with sufficient statistics n. Indeed, sup-
pose there exists some ordered sample X = (x1, . . . ,xN )
with sufficient statistics n. Then it is clear from inspection
of Eq. (3) and Eq. (21) that f(n;θ) =

∏N
m=1 p(x

m;θ) =
f ′(n;θ) by the junction tree reparameterization of p(x;θ)
(Wainwright & Jordan, 2008). It only remains to show that
such an X exists whenever h(n) > 0. This is exactly what
was shown by Sheldon & Dietterich (2011): for junction
trees, the hard constraints of Eq. (4), which enforce local
consistency on the integer count variables, are equivalent
to the global consistency property that there exists some or-
dered sample X with sufficient statistics equal to n. (Since
these are integer count variables, the proof is quite differ-
ent from the similar theorem that local consistency implies
global consistency for marginal distributions.) We briefly
note two interesting corollaries to this argument. First, by
the same reasoning, any reparameterization of p(x;θ) that
factors in the same way can be used to replace f(n;θ) in
the CGM distribution. Second, we can see that the base
measure h(n) is exactly the number of different ordered
samples with sufficient statistics equal to n.

B. Proof of Theorem 1: Additional Details
Suppose {nN} is a sequence of random vectors that con-
verge in distribution to n, and that nNA , nNB , and nNS are
subvectors that satisfy

nNA ⊥⊥ nNB | nNS (22)

for all N . Let α, β, and γ be measurable sets in the appro-
priate spaces and define

z = Pr(nA ∈ α,nB ∈ β | nS ∈ γ)− (23)
Pr(nA ∈ α | nS ∈ γ) Pr(nB ∈ β | nS ∈ γ)

Also let zN be the same expression but with all instances of
n replaced by nN and note that zN = 0 for allN by the as-
sumed conditional independence property of Eq. (22). Be-
cause the sequence {nN} converges in distribution to n, we
have convergence of each term in zN to the corresponding
term in z, which means that

z = lim
N→∞

zN = lim
N→∞

0 = 0,

so the conditional independence property of Eq. (22) also
holds in the limit.

C. Proof of Theorem 3: Linear Function from
Ĩ to I

We need to show IA can be recovered from ĨA+ with a
linear function.

Suppose the last indicator variable in IA is i0A, which cor-
responds to the setting that all nodes in A take value L. Let
I′A be a set of indicators which contains all entries in IA but
the last one i0A. Then IA can be recovered from I′A by the
constraint

∑
iA

IA(iA) = 1.

Now we only need to show that I′A can be recovered from
IA+ linearly. We claim that there exists an invertible matrix
H such that H I′A = ĨA+ .

Showing the existence of H. Let ĨA+(iD) be the iD entry
of ĨA+ , which is for configuration iD of clique D,D ⊆ A.

ĨA+(iD) =
∑
iA\D

I′A(iD, iA\D) (24)

Since no nodes in D take value L by definition of ĨD,
(iD, iA\D) cannot be the missing entry i0A of I′A, and the
equation is always valid.

Showing that H is square. For each D, there are (L− 1)|D|

entries, and A has
(|A|
|D|
)

sub-cliques with size |D|. So ĨA+

have overall L|A| − 1 entries, which is the same as I′A. So
H is a square matrix.

We view I′A and ĨA+ as matrices and each row is a indi-
cator function of graph configurations. Since no trivial lin-
ear combination of ĨA+ is a constant by the conclusion in
Loh and Wainwright (2013), ĨA+ has linearly independent
columns. Therefore, H must have full rank and I′A must
have linearly independent columns.


