
`

Detecting Insider Threats in a Real Corporate Database
of Computer Usage Activity

Ted E. Senator,
Henry G. Goldberg,

Alex Memory,
William T. Young, Brad Rees,
Robert Pierce, Daniel Huang,

Matthew Reardon
SAIC

{senatort, goldberhg, memoryac,
youngwil, piercer, huangda, reardonmg}

@saic.com

Jay-Yoon Lee, Danai Koutra,
Christos Faloutsos

Carnegie Mellon University
{jaylee, danai, christos} @cs.cmu.edu

David A. Bader, Edmond Chow,
Irfan Essa, Joshua Jones,

Vinay Bettadapura,
Duen Horng Chau,

Oded Green, Oguz Kaya,
Anita Zakrzewska, Erica Briscoe,

Rudolph L. Mappus IV,
Robert McColl, Lora Weiss
Georgia Institute of Technology

{bader,echow,irfan,jkj}
@cc.gatech.edu

{vinay, polo, ogreen, oguzkaya,
azakrzewska3}@gatech.edu
{Erica.Briscoe, Chip.Mappus,
Robert.McColl, Lora.Weiss}

@gtri.gatech.edu

Thomas G. Dietterich,
Alan Fern, Weng-Keen Wong,

Shubhomoy Das,
Andrew Emmott, Jed Irvine

Oregon State University
{tgd, afern, wong, dassh, emmott, irvine}

@eecs.oregonstate.edu

Daniel Corkill, Lisa Friedland,
Amanda Gentzel, David Jensen

University of Massachusetts
{corkill, lfriedl,agentzel, jensen}

@cs.umass.edu

ABSTRACT
This paper reports on methods and results of an applied research
project by a team consisting of SAIC and four universities to
develop, integrate, and evaluate new approaches to detect the
weak signals characteristic of insider threats on organizations’
information systems. Our system combines structural and
semantic information from a real corporate database of monitored
activity on their users’ computers to detect independently
developed red team inserts of malicious insider activities. We
have developed and applied multiple algorithms for anomaly
detection based on suspected scenarios of malicious insider
behavior, indicators of unusual activities, high-dimensional
statistical patterns, temporal sequences, and normal graph
evolution. Algorithms and representations for dynamic graph
processing provide the ability to scale as needed for enterprise-
level deployments on real-time data streams. We have also
developed a visual language for specifying combinations of
features, baselines, peer groups, time periods, and algorithms to
detect anomalies suggestive of instances of insider threat
behavior. We defined over 100 data features in seven categories
based on approximately 5.5 million actions per day from
approximately 5,500 users. We have achieved area under the ROC
curve values of up to 0.979 and lift values of 65 on the top 50
user-days identified on two months of real data.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications – data
mining.

Keywords
Insider Threat, Anomaly Detection

1. INTRODUCTION
Insider threat (IT) is a major problem for many organizations,
including industry and the U.S. Government. [27] ITs may
include intentionally malicious activities by authorized users, such
as information system sabotage, intellectual property (IP) theft,
fraud, and national security crimes (e.g., disclosure of classified
information), as well as unintentional threats introduced
inadvertently by careless use of computing resources. [3]
 IT detection is more difficult than many other anomaly
detection (AD) problems not only because insiders are
knowledgeable about an organization’s computer systems and
procedures and authorized to use these systems, but also, and
more important, because malicious activity by insiders is a small
but critical portion of their overall activity on such systems. IT
detection suffers from the technical challenges of very low signal-
to-noise ratios (i.e., they are extremely rare but exceedingly
important events) and dynamic threat scenarios (i.e., they are
always changing because malicious insiders actively attempt to
avoid being caught and also because computing and
organizational environments evolve). IT instances consist of
complex contextual combinations of activities, each of which may
be authorized and legitimate when performed in different contexts
or combinations. Often, much information necessary to fully
discriminate between ITs and legitimate activities – by providing
the context that explains apparently anomalous computer usage
behavior – requires additional data sources such as employee
personnel records, organizational charts, project assignments,
work hours and locations. Furthermore, data about individuals are
often protected from disclosure due to privacy needs.
 To evaluate the feasibility of automated detection of ITs from
computer usage data, Defense Advanced Research Project’s
Anomaly Detection at Multiple Scales (ADAMS) program [6] has
collected a database of monitored computer usage activity in
business organization, whose identity is not allowed to be
disclosed publicly, of approximately 5,500 people. All data are
used with permission in a closed testbed facility subject to all
necessary privacy protections. Data are collected using a
commercial tool called SureView®(Raytheon Oakley Systems,
Inc.) [21], currently used by commercial and government

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright © 2013 ACM 978-1-4503-2174-7/13/08…$15.00.

`

organizations to monitor suspicious individuals or specific
targeted actions. SureView is resident on user workstations and
captures user actions such as logins, file accesses, emails, instant
messages, printer usage, browser usage (including URLs visited),
process usage, etc. User identifications are anonymized by
hashing. All collected data are treated as legitimate activity, a
valid assumption given the rarity of malicious insider activity in
the organization.
 To provide realistic ground truth instances of ITs, an
independent expert red team (RT) led by CERT develops
scenarios of IT activity based upon case studies of known insider
attacks [3][16] and augments the database with instances of such
scenarios superposed on (sets of) users whose normal activity
corresponds to the background characteristics of users involved in
each scenario. The signal-to-noise ratio is approximately 0.2% of
users and 0.08% of user-days. Scenarios are made available to
researchers monthly, with “answer keys” consisting of identifiers
of the artificially malicious users and descriptions of the scenario
activities provided only after detection results have been
generated. Each month’s data consists of approximately 1,000
actions per day per user, or about 5.5 million records per day.

2. APPROACH AND METHODS
A useful deployable IT detection system encompasses multiple
data sources and multiple detection methods working together to
identify and explain anomalies in context, with sufficient lift to
permit human analyst review of all anomalies and action on all
significant IT instances. This vision, based on how complex event
detection systems operate in real environments, motivates and
guides our work.
 Our ADAMS project, called PRODIGAL (PROactive Detection
of Insider threats with Graph Analysis and Learning), has
developed, applied and evaluated multiple AD algorithms and
supporting technologies based on models of different aspects of
user behavior; over 100 semantic (i.e., domain-knowledge-based)
and structural (graph-based) features; a schema representation for
comparing results of different AD algorithms; a visual AD
language; data extraction, loading, and transformation
components; and an integrating software framework for
experimentation. While not yet ready for deployment, we have
achieved encouraging results that demonstrate the ability to detect
the phenomena of interest in two months’ worth of real data.

2.1 Concepts and Architecture
PRODIGAL supports regular data load and transform processes
that enable feature computation, anomaly detection and results
scoring from three types of starting points.
2.1.1 Feature Construction
Feature definition combined domain knowledge and observable
data knowledge. A retired operations officer from the U.S.
intelligence community with expertise in how IT behaviors
manifest in computer usage data identified three goals of

malicious insider activity related to information or systems: (1)
destruction, (2) misuse or corruption, and (3) theft. Each goal has
specific activities associated with five stages: (1) exploration, (2)
experimentation, (3) exploitation, (4) execution, and (5)
escape/evasion. These goals and stages cover ranges of behavior
such as malicious insiders acting alone or in groups (with
complicit and/or non-complicit group members) across time
periods ranging from days to months. Corresponding observables
in the SureView data were identified, and over 100 aggregate and
ratio features in seven categories were deemed worthwhile to
compute. (See Table 1.)
 Relationship graphs from the base computer usage record were
derived, including the email network among users, email
addresses, computers, and messages; the printer network among
users, printers, and computers; the web network among users,
computers, domains, and individual URLs; the logon-logoff
network between users and computers; and graphs composed of
combinations of two or more of these networks.
 We also explored a range of feature normalizations: raw values
(r); median-difference and percentile of all users on all days in
time period (am & ap); median-difference and percentile of all the
user's days in time period (um & up); median-difference and
percentile of all users on same day (mp & dp); median-difference
and percentile of all users in group i on same day (idm & idp);
and median-difference and percentile of all users in group i’s days
in time period (mp & ip). Intuitively, for a given feature:
normalizing each day’s value to all the user’s days should
highlight unusual days; normalizing each day’s value to all users
on that same day should dampen day-to-day, across-the-board
variations; normalizing each day’s value to a user’s group should
heighten variation from peers. Unlike median-difference
normalization, percentile normalization is insensitive to distant
outliers. The relationship between these normalizations is
illustrated in Figure 1. We found that percentile normalization by
each user’s days (up) gave the best results on our collected data.
2.1.2 Anomaly
Schema
Representation
We designed and
implemented a
common data structure
to capture descriptions
and results of every
AD experiment. Table
2 depicts this data
structure. For each
run, we allow
algorithms to compute
a raw score, an
ordered ranking of all
entities, a normalized

Table 1: Feature Categories
Type # Examples
Email 18 Count of attachments on sent emails
File 28 Count of file events to removable drives
Group 11 Shared printers
Login 4 Count of distinct workstations logged onto
Printer 9 Count of print jobs submitted
URL 13 Count of Blacklist events
Ratio 28 Ratio of file events on removable drives to all file events

Ratio of URL uploads to URL downloads
Ratio of distinct removable drives to URL up/down loads

Figure 1: Feature Normalizations

Table 2: Anomaly Detection Data
Structure

ResultScore ResultMetadata
runID (KEY) runID
flowID (KEY) flowID
alfoID (KEY) algoID
dataTypeID (KEY) dataTypeID (KEY)
nodeID entityXtent (KEY)
rawScore [optional] featureID [optional]
normScore EntityTemp
rankedScore popXtent
Rank popSubXtent
endDate popTemp
analystScore scoreMean
hasAnalystScore scoreStdev
analystUpdateDate scoreCount
 parameters

`

score, and percentile (ranked) scores. The raw scores may be on
different scales and difficult to combine across algorithms.
Normalized scores and ranks enable us to compare scores across
algorithms. Distributional information such as mean and standard
deviation allows us to determine degrees of anomaly.
2.1.3 Starting Points
PRODIGAL’s AD methods serve as the first stage in a multi-
layered detection process [26], leading to further data acquisition
and analysis. Three kinds of starting points, all of which use some
sort of domain knowledge, are employed.
• Indicators – single observables or counts, known or suspectd to

correlate with IT activities, but not necessarily tied to specific
IT scenarios

• Anomalies – unusual patterns, typicaly high-dimensional,
resulting from AD algorithms working over vectors of features,
graphs of relationships, or sequences of activities

• Scenarios – matches of specifically designed patterns that
correspond to known or suspected computer usage activities.

We constructed several scenarios from documented patterns of
known malicious insider behavior. Detectors for these patterns
were implemented in the PRODIGAL framework using available
features, indicators, and outlier detection algorithms, as well as
peer groups discovered in the cyber activities by graph-based
community detection algorithms. A detailed example is found
later in this paper. Table 3 lists the scenarios with the indicators
and anomalies utilized by each.

2.2 Novel Algorithms
Multiple AD algorithms based on suspected scenarios of
malicious insider behavior, indicators of unusual activities, high-
dimensional statistical patterns, temporal sequences, and normal
graph evolution were developed and evaluated. Algorithms and
representations for dynamic graph processing provide the ability
to scale as needed for enterprise-level deployments on real-time
data streams. Each of the algorithms is based on the idea that AD
consists of comparing the observed data to data that would result
from entirely “normal” behavior. The algorithms differ not only
according to what aspects of normal behavior they model, but also
to the techniques they use to determine if observations differ from
normal and the form of their output. In addition to the AD
algorithms, we include descriptions of novel supporting

algorithms that compute relevant peer groups such as those that
perform community detection based on the graph of user
interactions and others that provide the foundation necessary for
scaling-up to a real-time deployed system in an organization of
several 100k people.
2.2.1 Relational Pseudo-Anomaly Detection (RPAD)
RPAD learns a model of normal behavior by first taking a sample
of the observed data instances, treating them as non-anomalous,
and constructing an equal number of pseudo-anomalies. Pseudo-
anomalies are drawn from a joint distribution in which every
feature is drawn independently from its marginal distribution.
RPAD constructs a classifier to distinguish the observed data
instances from the pseudo-anomalies. When given a new
instance, RPAD combines the classifier’s prediction with the
pseudo-anomaly distribution to determine whether the instance is
anomalous. This approach produces a representation of the joint
distribution that is sufficient for anomaly detection and that is
highly efficient to learn and apply [13][14]. RPAD learns the
classifier and assesses all entities in less than 10 minutes on a data
set of 131,729 entities with 83 features, and it outputs a score
corresponding to the degree of anomalousness of an entity extent.
2.2.2 Relational Density Estimation (RDE)
RDE is a simple estimator of joint probability that assumes feature
independence. Each marginal distribution is modeled using a
kernel density estimator, and the joint probability is assumed to be
a simple product of these marginal distributions. Anomalous
points are those that have low probability estimates under this
joint distribution. The probability estimates themselves are biased
when the independence assumptions are violated, although
rankings can still be accurate despite these biases. As with RPAD,
the resulting estimator of the joint distribution is efficient to
construct and apply, although its performance is generally below
that of RPAD.
2.2.3 Gaussian Mixture
Model (GMM)
A GMM models the density of
the data in feature space using a
weighted sum of Gaussians. A
data point is ranked as an
anomaly based on its modeled
density (lower density meaning
more anomalous). For instance
in Figure 2, data are input to the
algorithm as a set of feature
vectors (shown as points). The
model is trained using the EM algorithm [7], and the fitted
Gaussians are shown as ellipses. The 20 lowest-density points are
shown in black. To speed up training, we implemented an
incremental algorithm [20]. The number of Gaussians k is chosen
via cross-validation.
2.2.4 Ensemble Gaussian Mixture Model (EGMM)
Figure 2 illustrates that a single GMM can have gaps between the
Gaussians, and it will underestimate the density in those regions.
We address this by training an ensemble of GMMs. Ensembling is
a general tool for improving learning methods [8, 29]. Each GMM
is trained on a bootstrap replicate of the original data, and we also
vary the number of components k, which eliminates the need to
choose a specific k. EGMM discards individual GMMs that do
not achieve a minimum likelihood. The fitted density is the simple
average of the densities of the individual models. The user must

Table 3: Threat Scenarios
Name Distinguishing Indicators/Anomalies
Saboteur  Indicators: URL; File; Logon

 Anomalies: File accesses in relation to peer
group in LDAP

Intellectual
Property (IP)
Thief-Ambitious
Leader

 Indicators: URL; File; Printer; Login; Email
 Anomalies: File accesses and email

communication graph in relation to peer group
(manager) in LDAP

Intellectual
Property (IP)
Thief-Entitled
Individual

 Indicators: URL; File; Printer; Login; Email
 Anomalies: File accesses compared to peer

group (technical) in LDAP

Fraudster  Indicators: Login; processes; files; and URL
 Anomalies: Email and URL compared to

groups (non-technical)
Careless User  Indicators: File, Email, URL, Process

 Anomalies: Processes run compared to user and
LDAP (function) group

Rager  Indicators: Email, IM, Login
 Anomalies: sentiment and topics in emails sent

Figure 2: GMM with 3

components.

`

specify the number of models to fit, the range of k values to try,
and the minimum likelihood threshold. The results are relatively
insensitive to these choices [5].
2.2.5 Repeated Impossible Discrimination Ensemble
(RIDE)
Suppose that we randomly partition the data into two equal sets (A
and B) and then apply a supervised learning algorithm to attempt
to discriminate A from B. By construction, A and B have the same
probability distribution, so it is impossible to tell them apart.
However, flexible machine-learning algorithms can be encouraged
to overfit the data and find ways of discriminating some points in
A from B. The key claim of RIDE is that outlier points are easier
to discriminate at random from other points [5]. Hence, if—
across many random A/B splits—a point x is persistently overfit,
then that point is ranked as an anomaly. Specifically, we employ
flexible logistic regression (boosted regression trees with a
logistic link function [22]) to discriminate A from B. If a point x
has fitted probability p of belonging to class A (versus B), it is
assigned an anomaly score 2|p−μ|, where μ is the median fitted
probability of belonging to class A. We perform 100 random A/B
splits and average the anomaly scores to obtain the final ranking.
2.2.6 Cross Prediction
Suppose feature vectors have length J. Cross prediction [5] learns
J conditional probability models of the form P(xj|x1,...,xj−1,xj+1,xJ)
by applying a supervised learning algorithm (a modified version
of Quantile Forests [18]) denoted as P(xj|x-j). It then scores a point
x as anomalous according to the score 1−∏j P(xj|x-j). The
underlying assumption is that there are correlations among the
features so that the value of one feature can be predicted from the
others. If this assumption holds, then a point is anomalous if one
or more of its features cannot be predicted from the others (so
P(xj|x-j) is small). The product of the P(xj|x-j) values is very small
if many of the feature values are hard to predict, so this gives a
high anomaly score to such points. We employ a cross-validation
procedure to decide which features j to include in the product and
delete those features that are not predictable.
2.2.7 Grid-based Fast Anomaly Detection Given
Duplicates (GFADD)
Many traditional outlier detection methods are slow due to large
numbers of duplicate points. Given a cloud of multi-dimensional
points, GFADD [15] detects outliers in a scalable way by taking
care of the major problem of duplicate points. Fast Anomaly
Detection given Duplicates (FADD) solves duplicate problems by
treating them as one super node rather than considering them
separately. Moreover, GFADD applies a k-dimensional grid on

the k-dimensional cloud of points and treats as super nodes only
the grid cells that consist of more points than the number of
nearest neighbors we are interested in. This method achieves near-
linear runtime given duplicates, while Local Outlier Factor (LOF),
the traditional outlier method that constitutes our baseline, has
quadratic runtime. GFADD can spot anomalies in data sets with
more than 10 million data points, while the traditional LOF
algorithm runs out of memory even for 20,000 data points.
 One example of AD using GFADD in PRODIGAL is provided
in Figure 3. On the two-dimensional space of log (net event
count) vs. log (remote event count), GFADD spotted circled
points where frequency of a remote event is much higher than that
of net events.
2.2.8 Vector Space Models
VSM [2] deals with sequential data that represents, e.g, a user’s
behavior over time. Specifically, VSM operates over an input
dataset consisting of a set of (finite-length) sequences of events,
where the events are discrete symbols drawn from a known, finite
alphabet. In general, a raw dataset must be preprocessed to
segment and abstract data appropriately into an amenable format.
Given a set of input sequences, we create a single bag-of-words
style feature vector for each sequence through standard n-
gramming. This feature vector consists of a count for each
possible length=n sequence given the finite alphabet. The feature
vector for a given sequence represents the number of times each
n-gram appears in that sequence. We then compute pairwise
cosine similarity over these feature vectors and assign each
sequence a score based on its proximity to its nearest k neighbors
according to this cosine similarity measure. We next rank all
sequences based on this computed score. The higher a sequence’s
rank, the more anomalous it is believed to be based on this
algorithm. Recent approaches that use variants of the n-gram
approach to represent activities in terms of their local event sub-
sequences [12] have inspired this approach.
2.2.9 Temporal-Based Anomaly Detection
Temporal-based AD aims to track and model user behavior at
different temporal scales for detecting anomalies [17]. The
hypothesis is that anomalous behavior is more easily and
accurately recognized using multiple observations at different
temporal resolutions. Further, users’ ability to mask anomalous
behavior is diminished when observed at multiple temporal
resolutions. We have applied temporal-based methods using
hidden Markov models (HMMs) and particle filters for tracking
users. Extending traditional particle filters improves their
sensitivity. We use a gradient method to optimize particle cloud
samples to more tightly track observations. By tightening the
particle cloud to the observations while minimizing the effect to
the variance of the particle cloud, the filter becomes more
sensitive to anomalies.
2.2.10 STINGER
STINGER is a dynamic graph data structure capable of
maintaining and representing temporal and semantic graphs with
millions to billions of relationships between entities [1]. Edges
and vertices are given types, weights, timestamps, and physical
identifiers. Adjacencies are stored in semi-dense lists of blocks of
edges. The data structure’s basic operations are thread-safe, which
enables the insertion and deletion of edges and vertices at rates of
millions of updates per second on a modern multicore shared-
memory x86 platform [9]. Combining this with a convenient
parallel filtering and traversal allows algorithms to easily process
and understand the structural changes in the graph over time to

Figure 3: Anomaly detection using GFADD.

`

identify anomalous relationships, actors, and groups. In
PRODIGAL, STINGER serves as a platform to enable dynamic
graph analysis techniques on the relationships inherent in the
dataset. Graph analysis speed enables recomputation of relational
context, not only with new inputs, but more important, to permit
preliminary detection results to refocus further analysis.
2.2.11 Community Detection
Our community detection algorithm identifies community
structures within graphs stored in STINGER based on
communication patterns, social structure, and resource sharing.
The algorithm takes a similar approach to [25] and leverages
STINGER’s parallel insertion and deletion for in-place operation.
All vertices are initialized to their own communities, and all edges
are scored. Trees of edges within the graph are constructed based
on high-scoring edges and paths. These trees are contracted into
the root communities, and the process is repeated for the resulting
community graph until convergence of the edge scores. The
algorithm is agnostic to the types of edges and vertices in the
graph and the scoring function used; however, the scoring
function can be defined to handle types separately. The algorithm
can be applied repeatedly using different scoring functions to seek
out certain traits in the graph. Each iteration of the algorithm finds
groups at a coarser granularity. Community members that connect
between communities can be explored to find shifting allegiances.
[23]. The resulting communities can serve as baseline comparison
groups, and individual communities can be extracted.
2.2.12 Streaming Community Detection
When dealing with massive and rapidly evolving data, static
community detection approaches may not keep up with the change
in data because they require a very costly total recalculation after
any changes. Streaming community detection computes
incremental updates to the detected communities when data
changes. A community graph is maintained over time. We assume
that the effect of most data changes will be local. When updates
do occur, we break up the maintained community graph by
removing a set of vertices affected by the changes from their
communities. The resulting, broken-down community graph is
then reclustered by a static community detection algorithm. The
speed-up results because the broken-down community graph is
much smaller than the original graph, enabling the graph
community structure to be tracked over time and significant
changes to be detected. Additional details can be found in [23].
2.2.13 Seed Set Expansion
Given a graph and a set of seed vertices in the graph as input, seed
set expansion produces a subgraph, or community, that best
contains the seed vertices. When entities are represented as
vertices and their interactions as edges in a graph, given several
entities of interest, perhaps flagged as anomlous, we may wish to
know other entities related to these flagged ones. It may also be
useful to extract a relevant subgraph containing these flagged
entities in order to perform more computationally intensive
analysis. We use a greedy, modularity maximizing approach to
expand the seed set into a relevant subgraph. Details of the
approach can be found in [24] with additional work in progress.
The initial subgraph contains the seed vertices. In each iteration,
the change in modularity that would occur by adding vertices to
the subgraph is calculated and the highest scoring vertices are
added.
2.2.14 Betweenness Centrality for Streaming Graphs
Within a graph, centrality metrics score the relative importance of
each vertex and/or edge in the graph. In the case of betweenness

centrality, the score given to each vertex s is the sum of the
fraction of the shortest paths between vertices r and t that s lies on
for all pairs r and t (r ≠ s ≠ t). For PRODIGAL, we have
developed a novel algorithm for computing betweenness centrality
for streaming graphs [11]. The new algorithm avoids computing
betweenness centrality scores for vertices that do not have new
paths going through them following the insertion of a new edge. It
uses restricted breadth-first traversals to identify vertices whose
shortest paths were affected and vertices whose betweenness
centrality scores are affected by the those shortest path count
changes. This significantly reduces the number of vertices and
edges that are traversed and improves update response time so that
approximations to betweenness can be maintained at the rate of
change of the graph. We have shown in [11] that the algorithm is
up to two orders of magnitude faster than recomputing. In
PRODIGAL, this algorithm can be used to search out key actors
and information flow points to find weaknesses and leaks within
the organization. In [10] we extend our work and show how to
increase the parallel scaling for computing betweenness centrality
for streaming and static graphs. This approach also improves
performance on a single processor.
2.2.15 Interactive Graph Exploration (Apolo)
Apolo [4] is an interactive graph visualization component of
PRODIGAL, which helps analysts understand the relationships
among anomalous entities flagged by various PRODIGAL
algorithms. Apolo supports real-time graph exploration over
million-node graphs, such as querying for nodes by their
attributes, grouping nodes into super nodes to reduce cluster and
promote understanding, visualizing subgraphs and interactively
expanding them by bringing in neighboring nodes and edges.
Unlike most graph visualization tools that keep the full graph in
the main memory, which prevent them from handling large
datasets, Apolo keeps the graph in an embedded database
(SQLite), significantly reducing memory needs while maintaining
high speed and scalability. Apolo also provides a built-in machine
learning algorithm (Belief Propagation) that helps analysts find
the most relevant subgraphs to visualize, given the analyst’s
current nodes of interest. The algorithms works by computing a
proximity score for each node based on how far it is from those
nodes of interest (e.g., number of hops away, and the number of
paths leading to them). Nodes with higher proximity scores are
deemed more relevant and will be displayed to the analyst.

2.3 Anomaly Detection Language
Effective AD requires combining multiple methods applied to
different baseline and peer group populations over distinct time

Figure 4: Anomaly Detection Language Syntax

`

periods. For example, we may want to detect users (or
collaborating groups of users) whose daily behavior over a recent
month differs from their daily behavior over a previous six-month
period with respect to themselves or to their peers in the same
work group or job role. Traditional data flow diagrams cannot
express these designs concisely, so we developed a visual AD
language that enables the expression of such combinations of
methods, data, baselines, and detection extents. While developed
for IT detection, the language itself is domain-independent and
may be applied to other domains. The language specifies the
extent of the entities to be detected (e.g., individual users or
groups of users) combined with the temporal extent of potential
anomalies. Inputs to these expressions are transactional records of
user activity and outputs are scores on these user-temporal
extents.
 The syntax of the language is shown in Figure 4; we refer to
[19] for details concerning the syntax, and instead illustrate the
language with an example, shown in Figure 5, targeting the IP
Thief/Ambitious Leader scenario. In this scenario, an individual
enlists others to steal portions of IP that, when combined, enable
them to start a competing organization. We begin by filtering
user-days to those with sufficient file activity, join those with the
IM user neighbor adjacency list, and sum up the features for each
neighbor. We next add that total for each user to the user’s own
features and convert the feature totals into ratios that can be
compared across egonets of different sizes. To limit the baseline
population to users fitting the leader profile, we keep those with a
high percentage of file accesses in that category and use this set to
score each user-day. As an additional indicator, we count phrases
seen in IMs between users that fit the scenario, and we finally
combine with the anomaly scores.

3. EXPERIMENTS AND RESULTS
PRODIGAL Framework explored combinations of features,
entities, baselines and peer groups, and detection methods for ITs.
[28] We used two separate months of data, with an unknown in
advance number of independent red team inserts in each. We ran a
wide variety of indicator detectors, AD algorithms, and scenario-
based detectors. We applied several performance metrics to
understand the effectiveness of each, as well as of the whole suite
of methods, for IT detection.

3.1 Test Data
For the experiments discussed in this paper, the primary red team
scenario consisted of three insiders who collude over instant
messages and corporate email to steal IP and form a new

company. This is similar to the IP Thief Ambitious
Leader scenario discussed in section 2.3, without the
presence of an identifiable leader. The inserted
scenario was unknown to the detectors (and to the
research team) prior to the experiments. We
discovered that the red team had inserted two variants
of this scenario over the months of September and
October 2012, inserting a total of six instances. A
second scenario simulated users’ circumventing
SureView’s data collection.

3.2 Metrics
The experiments reported here measure AD
performance on entity-extents, which are either user-
months (the aggregation of a user’s activities over a
month) or user-days. Metrics were chosen not only to
measure detection accuracy of the individual
algorithms, but also to measure their contribution to

the overall task of providing leads to an analyst. We computed
receiver operator characteristic (ROC) curves and area under the
curve (AUC) as well as the approximate lift curves and Average
Lift. AUC directly estimates the probability that a randomly
chosen positive entity extent will be ranked higher than a
randomly chosen negative one. Average lift estimates the
improvement in target density delivered to later stages of a multi-
stage detection process. To directly measure impact on an overall
detection system, we report numbers of targets in the top k.
Number of positives at or above rank k (where k= 5, 10, 50, 100,
500 for user-month methods, and k=50, 100, 500, 1000, 5000 for
user-day methods) allow us to estimate the feasibility of
employing a method of detection to provide starting points for
analysis which may only be able to input a fixed number of such
leads.
3.3 Results
We ran 484 experiments on two months of data with inserted RT
scenario instances. September had 13 RT users with activity on 98
separate user-days and October had 6 RT users with activity on 44
user-days. Examples and discusion of results from five detection
methods are followed by a summary of the entire set of results.

3.3.1 IP Thief Ambitious Leader Scenario Detector
We constructed a scenario-based detector that corresponds to the
design in section 2.3 for the IP Thief Ambitious Leader scenario.
Figure 6 shows the ROC curve resulting from testing this scenario
detector on September data. Note that a significant subset of user-
days rank very highly – one user ranks first, and five are identified
in the top 100, while another set does so poorly as to be
indistinguishable from random choice. In fact, the detector
completely ignores 33 user-days, because they do not fit with its
assumptions. This is exactly what we would expect from a
scenario specifically designed to identify individuals on days
when they behave like leaders of
small groups exfiltrating IP.

3.3.2 File Events
Indicator
With the File Events indicator
method, we are looking for users
who display abnormal behavior
with respect to files, focusing on
file events related to removable
media drives and the number of
distinct files that a user accesses.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario - Ambitious Leader
ROC - Sept

AUC=0.806

Figure 6: Scenario - ROC

Curve

Figure 5: Language Example, IP Thief Ambitious Leader

`

Features include the ratio of file
events on removable media to
all file events and the ratio of
distinct files on removable
media to distinct files overall.
Performance is also strong
against the RT scenarios, which
involved file copies to
removable media. One
advantage of this indicator is
that it ignores user-days with no
removable drive activity. Thus,
when it works at all, it works

well enough to enable subsequent analytics. (See Figure 7 for the
October ROC curve.) When it is
not applicable, it can be safely
ignored.

3.3.3 Relational Pseudo
Anomaly Detection
Results from RPAD were highly
consistent across both test
months. Feature normalization
resulted in very high
performance on our test data,
achieving an AUC of 0.979 on
the October data set. Figure 8
shows the ROC curve.

3.3.4 Repeated Impossible Discrimination Ensemble
RIDE was also consistent across the
test months. Features were derived
from monthly aggregate-activity
counts. Each user’s aggregate is
compared to other users in the
observed population and represented
by the degree of statistical anomaly.
This resulted in the best overall AUC
of any AD algorithm, as well as
placing all six target users in October
in the top 5%. The lift curve is
shown in Figure 9.

3.3.5 Grid-based Fast
Anomaly Discovery given
Duplicates
GFADD estimates the degree of
anomaly of nodes in a graph with
respect to their neighbors in the
graph. As a result, local anomalies in
a complex organization may be

detected, even if they are
globally unremarkable. This is
different from using a priori
peer groups as base
populations. The lift curve
(Figure 10) shows the top 100
nodes contain five RT targets,
resulting in lift values in the
x20-x30 range. Furthermore,
because the algorithm only
returns high-confidence
results, it provides reliable
starting points.

3.3.6 Overall Metrics
Figure 11 shows results from multiple indicator, algorithm, and
scenario-based experiments. The table has been sorted by the
column labeled 500(0), which records the number of positive hits
in the top ranked 500 user-months/top 5,000 user-days (for
algorithms which focus on users’ activities over a month/day,
respectively). AUC and average lift are as described earlier. Note
that methods’ performance per AUC or AvgLift was not always
reflected in their raw hit output. For example, Ambitious Leader
Scenario on September data hit 9 of 98 targets in the top 50, and
48 in the top 5,000. Shading is proportional to the range of values
over each metric separately (hits, AUC, and AvgLift). All
metrics are calculated with respect to the available ground truth
(i.e., RT inserts). As expected, the URL indicator detector
performed poorly, due to the lack of significant web-based
activity in the inserted scenarios. This points out a critical issue in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Indicator Anomaly
Detection - File ROC - Oct

AUC=0.874

Figure 7: Indicator - ROC

Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RPAD UP Feature Norm
ROC - Oct

AUC=0.979

Figure 8: RPAD - ROC

Curve

Figure 9: RIDE - Lift Curve

0

5

10

15

20

25

30

35

0 100 200 300

Grid-based Anomaly Detection
given Duplicates Lift - Sept

AvgLift=2.19

Figure 10: GFADD - Lift

Curve

Month Algo Detection Method 5(0) 10(0) 50(0) 100(0) 500(0) AUC AvgLift

Sept UMASS-1 RPAD up feature normalization 2 2 3 11 72 0.970 17.42

Sept UMASS-1 RPAD dp feature normalization 2 4 20 26 57 0.863 24.07

Sept UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 10 26 56 0.879 16.06

Sept SAIC-6 Indicator Anomaly Detection - File 0 1 17 33 54 0.881 10.58

Sept SAIC-3 Scenario - IP Thief 0 0 7 16 54 0.851 9.79

Sept SAIC-8 Indicator Anomaly Detection - File vs URL 1 2 4 9 50 0.732 6.04

Sept SAIC-5 Scenario - Ambitious Leader 9 12 43 46 48 0.806 34.05

Sept UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 7 12 42 0.864 10.75

Oct UMASS-1 RPAD up feature normalization 2 2 5 11 37 0.979 30.33

Oct SAIC-6 Indicator Anomaly Detection - File 0 0 2 14 31 0.874 8.42

Oct UMASS-1 RPAD g129dm feature normalization 0 0 1 3 29 0.914 13.70

Oct SAIC-8 Indicator Anomaly Detection - File vs URL 0 0 2 8 28 0.824 6.02

Oct UMASS-1 RPAD raw feature set; naive bayes; uniform pseudo-anomaly 0 0 0 3 20 0.909 9.17

Sept SAIC-2 Scenario - Saboteur 0 1 4 6 20 0.746 3.79

Oct SAIC-3 Scenario - IP Thief 0 0 0 3 15 0.839 7.34

Oct SAIC-2 Scenario - Saboteur 0 0 0 0 15 0.810 3.07

Oct SAIC-5 Scenario - Ambitious Leader 6 7 12 12 15 0.789 80.20

Sept SAIC-1 Max(Cross & Long Outliers) 0 0 0 1 14 0.846 3.99

Sept OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 12 0.970 26.17

Oct GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 12 0.849 6.14

Sept OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 10 0.940 7.83

Sept OSU-4 RIDE via unusualness of counts vs. company 0 0 0 2 10 0.920 8.05

Sept SAIC-4 Scenario - Fraudster 0 0 0 1 10 0.693 1.62

Sept SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 3 4 8 0.530 1.26

Sept OSU-2 Cross Prediction via unusualness of counts, vs company 0 1 1 1 7 0.872 8.86

Oct SAIC-4 Scenario - Fraudster 0 1 1 1 7 0.713 4.57

Oct OSU-4 RIDE via unusualness of counts vs. company 0 0 1 3 6 0.981 26.18

Oct OSU-3 Ensemble GMM Density Estimation, Raw Counts 0 0 0 0 6 0.970 15.84

Sept OSU-4 RIDE using Raw Counts 0 0 0 2 6 0.892 7.09

Oct UMASS-2 RDE alpha version; raw feature set; 10k training 0 0 0 0 5 0.895 6.10

Sept SAIC-7 Indicator Anomaly Detection - URL 0 0 0 1 5 0.477 0.91

Sept CMU-6 Grid-based Anomaly Detection given Duplicates 2 5 5 5 5 0.301 2.19

Sept GTRI-5 Temporal Based Anomaly Detection 0 0 0 0 3 0.502 1.00

Oct CMU-6 Grid-based Anomaly Detection given Duplicates 1 1 1 2 3 0.465 1.77

Oct OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 2 0.906 5.32

Oct OSU-4 RIDE using Raw Counts 0 0 0 0 2 0.888 4.69

Oct GTRI-4 Vector Space Models 0 0 1 2 2 0.694 8.64

Sept GTRI-4 Vector Space Models 0 0 1 1 2 0.618 2.61

Oct SAIC-9 Indicator Anomaly Detection - File vs URL vs Logon 0 0 0 0 2 0.425 0.87

Oct OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.881 4.18

Oct OSU-2 Cross Prediction via unusualness of counts, vs company 0 0 0 0 1 0.833 3.15

Sept OSU-3 Ensemble GMM via unusualness of counts, vs company 0 0 0 0 1 0.787 2.20

Sept OSU-1 GMM Density Estimation via unusualness of counts, vs company 0 0 0 0 1 0.780 2.16

Oct OSU-1 GMM Density Estimation using Raw Counts 0 0 0 0 0 0.900 4.99

Oct SAIC-1 Max(Cross & Long Outliers) 0 0 0 0 0 0.828 3.27

Oct SAIC-7 Indicator Anomaly Detection - URL 0 0 0 0 0 0.507 0.93

Oct OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.388 0.92

Sept OSU-2 Cross Prediction using Raw Counts 0 0 0 0 0 0.287 0.66
Figure 11: Overall Metrics

`

testing unsupervised methods against an unknown set of targets –
the metrics are only as perceptive as the ground truth they employ.
Two critical points to take from this are that experiments must be
repeated with different inserted targets to explore the effectiveness
and robustness of methods, and ways of combining multiple
methods must be developed so that the system can build upon the
strengths of each without interfering with one another.

3.4 Effectiveness of Multiple Methods
Measures of performance of individual algorithms are useful;
however, we are also interested in how combining these
algorithms contributes to overall system effectiveness. Methods
which produce the same rankings may be redundant, whereas
methods which rank different targets highly may contribute to
reducing misses in the overall system. To meaningfully measure
this inter-method correlation, it is important to consider the
correlation of non-targets as well as targets.
 Figure 12 shows the ranking performance of four Monthly AD
algorithms on the October data set. Lines connect each of the six
RT augmented users’ positions across four algorithms. Figure 12
also shows the highest rank (as a percentile) each user achieved in
any algorithm. We note that each scenario had at least one
representative at the 99.5% level (positions 30 and 31) from some
AD algorithm. Subsequent analysis, based on observed user
interactions, likely would find the other participants and uncover
the joint scenario activity. Such analysis, although more costly
and involved, can be initiated from the top-scoring starting points.

3.5 Feature Strength Estimation
Eighty-three scalar features are obtained from the collected data.
An interesting question is: Which of these features are the most
useful in detecting anomalies? Intuitively, the potential usefulness
of a percentile-normalized feature when used in combination with
other features depends on the distribution of its values: features
whose values have high variability (“diversity”) have more
potential unusual combinations with other features—a greater
“feature strength”—than features whose values are nearly
constant.

 Figure 13 shows the feature strength (average squared distance
from the mean) of 83 features over a month of all user-days
(features on x-axis sorted by strengths). The dotted vertical line
gives a naïve “cutoff” for weak features.
 Figure 14 extends this analysis to address the following
questions: What features contribute most to a high pseudo-
anomaly detection score? Top shows feature strengths computed
using only the top 5,000 RPAD-ranked user day instances. What
features contribute most to high insert scores? Inserts shows
feature strengths computed using only the RT inserts. What
features differentiate inserts from high non-insert scores?
Relative shows relative feature strengths computed as the
distance between the top 5,000 feature strengths and the inserts
feature strengths. In Figure 14, the x-axis feature ordering is by
relative strength, and the weak feature cutoff line is shown
horizontally. Features with an all-instances strength (all) below
the cutoff line would be excluded by a weak feature cutoff
strategy.
 We found that feature strength analysis indicates that low all-
inserts strength features were significant when used jointly and
that a naïve strategy that focused only on the strongest all-
instances features would miss these important feature correlations.
We validated this observation by running RPAD without the 29
all-instances-strength features below the cutoff line. The AUC
dropped from 0.970 with all features to 0.793 without those
“weak” all-instances-strength features.
 The strongest relative features, determined using only RT insert
user-day labeling and without any semantic knowledge of RT
scenarios, were consistent with user behaviors in the scenarios
once those were revealed to us. (The top four relative-strength
features are shown in the callout box in Figure 14.)
 We concluded that manual methods, in which analysts focus on
small numbers of apparently high-value features, are unlikely to
detect anomalies characteristic of IT scenarios, because they
would miss the most important combinations of individually weak
features and because analysts would be overwhelmed by the
number of relevant features.

4. CONCLUSIONS AND FUTURE WORK
The work reported here demonstrates the feasibility of detecting
the weak signals characteristic of ITs using a novel set of
algorithms and methods. However, additional research and
engineering is needed to enable these techniques to be useful for
real analysts in an integrated system. Some of the methods that we

have developed may be useful as components of existing
systems; and we are actively exploring these possibilities
with various government users. We also anticipate live
field testing of these methods in the near future.
 In the near term, we are continuing to investigate how to
improve our coverage of the IT space by combining results
from indicators, anomalies, and scenario-based detectors
and by exploring different combinations of algorithms. We
will be extending our feature coverage to include topic and
sentiment detected in the contents of email and IM

Figure 13: Feature Strength

Highest
%-ile

a: 98.9

b: 99.5

c: 99.5

d: 97.4

e: 97.1

f: 97.6

VSM EGMM CP RIDE

31 145 216 30

65 145) 800 90

1742 148 1042 100

2365 189 1058 138

2432 286 1607 166

2926 354 1637 228

a:

c:

b:

d:

f:

e:

Figure 12: Target Users’ Ranks by 4 AD Algorithms

(October) data)

Figure 14: Computing Relative Feature Strength

`

communications. And we are continuing our experiments each
month with additional data and new scenarios provided by the red
team. These ongoing experiments enable us to further validate our
current conclusions and to cover a wider range of IT scenarios.
 In the longer term, we hope to be able to use additional data
sources to provide more accurate detection and also to generate
explanations of anomalous behavior that can be understood by
human analysts. We believe that this is a key to developing a
system that is useful by analysts instead of computer scientists.
We also need to scale-up to continuous operation on
organizations of about 100,000 users.

5. ACKNOWLEDGMENTS
Funding was provided by the U.S. Army Research Office (ARO)
and Defense Advanced Research Projects Agency (DARPA)
under Contract Number W911NF-11-C-0088. The content of the
information in this document does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. This
document is Approved for Public Release, Distribution Unlimited.

6. REFERENCES
[1] Bader, D.A., et al. 2009. STINGER: Spatio-Temporal Interaction

Networks and Graphs (STING) Extensible Representation.
Technical Report, May 8, 2009.

[2] Bettadapura, V., et al. 2013. Augmenting Bag-of-Words: Data-
Driven Discovery of Temporal and Structural Information for
Activity Recognition. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[3] Capelli, D., Moore, A., and Trzeciak, R. 2012. The CERT Guide to
Insider Threats. Addison Wesley, Boston, MA

[4] Chau, D. H., et al. 2011. Apolo: making sense of large network data
by combining rich user interaction and machine learning. In CHI
2011.

[5] Das, S., Emmott, A., Dietterich, T. G., Wong, W-K, Fern, A. 2013.
Anomaly Detection with Ensembles of Statistical Models. Technical
Report, Oregon State University.

[6] Defense Advanced Research Projects Agency 2010. Anomaly
Detection at Multiple Scales (ADAMS) Broad Agency
Announcement DARPA-BAA-11-04. Arlington VA.

[7] Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum
Likelihood from Incomplete Data via the EM Algorithm. Journal of
the Royal Statistical Society. Series B (Methodological), 39(1):1-38.

[8] Dietterich, T. G. 2000. Ensemble Methods in Machine Learning. In
J. Kittler and F. Roli (Ed.) First International Workshop on Multiple
Classifier Systems, Lecture Notes in Computer Science (pp. 1-15).
New York: Springer Verlag.

[9] Ediger, D., et al. 2012. STINGER: High Performance Data Structure
for Streaming Graphs. IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, September 10-12, 2012.

[10] Green, O., Bader, D.A. 2013. Faster Betweenness Centrality Based
on Data Structure Experimentation. 13th International Conference
on Computational Science (ICCS).

[11] Green, O., McColl, R., and Bader, D.A. 2012. A Fast Algorithm for
Streaming Betweenness Centrality. ASE/IEEE International
Conference on Social Computing (SocialCom)

[12] Hamid, R., et al. 2009. A Novel Sequence Representation for

Unsupervised Analysis of Human Activities, Artificial Intelligence.
[13] Hastie, T., Tibshirani, R., and Friedman, J. 2008, The Elements of

Statistical Learning (2nd edition). Springer-Verlag.
[14] Hempstalk, K., Frank, E., and Witten, I.H. 2008. One-class

classification by combining density and class probability estimation.
In: W. Daelemans et al. (Eds.), ECML PKDD 2008, Part I, LNAI
5211, pp. 505–519.

[15] Lee, J-Y., et al. 2012. Fast Anomaly Detection Given
Duplicates. CMU Computer Science Technical Reports.

[16] Lindauer, B. and Glasser, J. 2013. Bridging the Gap: A Pragmatic
Approach to Generating Insider Threat Data. Workshop on Research
for Insider Threat (WRIT), IEEE, San Francisco, May 24, 2013.

[17] Mappus, R. and Briscoe, E. 2013. Layered Behavioral Trace
Modeling for Threat Detection. IEEE Intelligence and Security
Informatics.

[18] Meinshausen, N. 2006. Quantile Regression Forests. Journal of
Machine Learning Research, 7, 983-999.

[19] Memory, A. et al. 2013. Context-Aware Insider Threat Detection.
Proceedings of the Workshop on Activity Context System
Architectures. Bellevue, WA.

[20] Neal, R. and Hinton, G. E. 1998. A view of the EM algorithm that
justifies incremental, sparse, and other variants. In Learning in
Graphical Models, (pp. 355-368), Kluwer Academic Publishers.

[21] Raytheon Corporation 2010. SureView™ Proactive Endpoint
Information Protection, DOI=
http://www.raytheon.com/capabilities/rtnwcm/groups/iis/documents/
content/rtn_iis_sureview_datasheet.pdf

[22] Ridgeway, G. 2005. Generalized boosted models: A guide to the
gbm package. DOI= http://cran.r-
project.org/web/packages/gbm/vignettes/gbm.pdf.

[23] Riedy, J. and Bader, D.A. 2013. Multithreaded Community
Monitoring for Massive Streaming Graph Data. 7th Workshop on
Multithreaded Architectures and Applications (MTAAP), Boston,
MA, May 24, 2013.

[24] Riedy, J., Bader, et al. 2011, Detecting Communities from Given
Seeds in Social Networks. CSE Technical Report, GA Inst. of
Technology.

[25] Riedy, J., Meyerhenke, H., and Bader, D.A. 2012. Scalable Multi-
threaded Community Detection in Social Networks. 6th Workshop
on Multithreaded Architectures and Applications (MTAAP),
Shanghai, China, May 25, 2012.

[26] Senator, T. E. 2005. Multi-stage Classification. In ICDM ’05
Proceedings of the Fifth IEEE International Conference on Data
Mining Pages 386-393. IEEE Computer Society Washington, DC.

[27] The White House 2012. Presidential Memorandum -- National
Insider Threat Policy and Minimum Standards for Executive Branch
Insider Threat Programs. Retrieved February 1, 2013 from
http://www.whitehouse.gov/the-press-
office/2012/11/21/presidential-memorandum-national-insider-threat-
policy-and-minimum-stand

[28] Young, W. T et al. 2013. Use of Domain Knowledge to Detect
Insider Threats in Computer Activities. Workshop on Research for
Insider Threat, IEEE CS Security and Privacy Workshops, San
Francisco, May 24, 2013.

[29] Zhou, Z-H. 2012. Ensemble Methods: Foundations and Algorithms,
Chapman & Hall/CR

