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Abstract

Archived data from the WSR-88D network of weather
radars in the US hold detailed information about the
continent-scale migratory movements of birds over the
last 20 years. However, significant technical challenges
must be overcome to understand this information and
harness its potential for science and conservation. We
present an approximate Bayesian inference algorithm to
reconstruct the velocity fields of birds migrating in the
vicinity of a radar station. This is part of a larger project
to quantify bird migration at large scales using weather
radar data.

1 Introduction
The National Weather Service operates the WSR-88D
(Weather Surveillance Radar-1988 Doppler) network of 159
radars in the United States and its territories. The network
covers nearly the entire US and was designed to detect and
study weather phenomena such as precipitation and severe
storms. However, WSR-88D radars also detect biological
phenomena, including movements of birds, bats, and insects
in the atmosphere (Kunz et al. 2008). WSR-88D data are
archived and available from the early 1990s to present. They
provide a rare opportunity to study large-scale movements of
birds to advance science and conservation. However, despite
the fact that a number of bird migration studies have used
WSR-88D data (Gauthreaux, Belser, and Blaricom 2003;
Buler et al. 2012), these have all been limited in scope: for
example, to a subset of the radar stations or to a limited num-
ber of nights within (or among) migration seasons.

A primary challenge that has prevented scientists from
using these data to their full potential is that interpretation
of the data can be difficult. Radar signatures of birds are
similar to those of bats, insects, weather, and even airborne
dust. Consequently, data must be interpreted manually by
a highly-trained expert (Gauthreaux, Belser, and Blaricom
2003; Buler and Diehl 2009). This is not feasible unless the
data used are significantly restricted in scope, either spatially
or temporally. We estimate there are well over 100 million
archived volume scans from single radar sites, and a sin-
gle night during peak migration season will produce about
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15,000 scans nationwide. If we can develop AI tools to auto-
mate the interpretation steps, this vast store of data could en-
able important advances in our understanding of many phe-
nomena, including bird migration.

An accurate algorithm to estimate the velocities of birds
and other targets detected by radar is critical to unlock-
ing the potential of the data. Velocity information is im-
portant for understanding the biology of bird migration. In
addition, there is growing evidence that the structure of
the velocity field is a key to discriminating between birds,
which fly under their own power, and other targets such
as precipitation, insects, and dust, which are primarily car-
ried by the wind (Gauthreaux, Belser, and Blaricom 2003;
Dokter et al. 2011). In this paper, we formulate a novel prob-
abilistic model and develop an approximate inference algo-
rithm based on Expectation Propagation (Minka 2001) to re-
construct the velocity field of migrating birds from the par-
tial velocity information collected by Doppler radar.

Our model is based on wind profiling algorithms from the
weather community. However, unlike previous methods, we
develop a novel likelihood function based on the wrapped
normal distribution to simultaneously reason about the three
sources of noise and incomplete information that are inher-
ent in this problem. First, a Doppler radar can only detect
radial velocity, the speed at which a target is approaching
or departing the radar. The other velocity component is un-
known, so it must be inferred from the global properties of
the velocity field. Second, the true radial velocity value a is
aliased or wrapped to the value a mod 2Vmax by the mea-
surement process, where Vmax is the Nyquist velocity, so the
correct dealiased value must again be inferred from global
properties. Finally, the individual measurements are subject
to noise caused by instrument error and fine-scale variability
in the true target velocities.

Two of these problems are exacerbated specifically by
conditions present during bird migration. First, one of the
clear-air radar operating modes that is commonly used dur-
ing these periods has the lowest Nyquist velocity (11.61
ms−1) of all operating modes, and this leads to the greatest
loss of information due to aliasing. Second, the fine-scale
variability of the velocity field of migrating birds is much
greater than that of wind-borne particles (Dokter et al. 2011),
which means that the data are inherently noisier.

Our method avoids difficulties faced by most previous



methods, which treat the problems of dealiasing (correcting
aliasing errors) and velocity reconstruction separately. Do-
ing so risks compounding of errors as they propagate from
one problem to the next. Furthermore, solving one problem
often assumes that the other has already been solved, which
creates a chicken-and-egg problem unless external informa-
tion is available. Reference wind measurements are often
used for this purpose, but these will inaccurately character-
ize the velocities of migrating birds.

Among the previous algorithms, two notable exceptions
are the gradient-based velocity profiling methods of Tabary,
Scialom, and Germann (2001) and Gao and Droegemeier
(2004), which do not require the radial velocity data to be
dealiased first. Our first contribution, in Section 3, is to im-
prove and analyze the gradient-based velocity azimuthal-
display (GVAD) method of Gao and Droegemeier. We show
theoretically that it is subject to inherent tradeoffs that limit
its accuracy. This motivates our new approach.

In Section 4, we present our new method based on the
wrapped normal likelihood, and also introduce a Gaussian
Markov prior to encourage smoothness in the recovered ve-
locity field. We develop an approximate inference method
based on Expectation Propagation to recover the velocity
field. In Section 5, we evaluate the algorithms and show that
our extensions to GVAD and our new EP algorithm each im-
prove significantly over the previous methods.

2 Background and Problem Definition
Radar Basics. Each radar in the WSR-88D network collects
data by conducting a sequence of volume scans, which com-
plete every six to ten minutes. Each volume scan consists
of a sequence of sweeps during which the antenna rotates
360 degrees around a vertical axis while keeping its eleva-
tion angle fixed. The result of each sweep is a set of raster
data products summarizing the radar signal returned from
targets within discrete pulse volumes, which are the portions
of the atmosphere sensed at a particular antenna position and
range from the radar. The coordinates (r, φ, ρ) of each pulse
volume are measured in a three dimensional polar coordi-
nate system: r is the distance in meters from the antenna;
φ is the azimuth, which is the angle in the horizontal plane
between the antenna direction and a fixed reference direc-
tion (typically degrees clockwise from due north); and ρ is
the elevation angle, which is the angle between the antenna
direction and its projection onto the horizontal plane.

The two primary data products collected from each sweep
are reflectivity z(r, φ, ρ), a measure of the total amount of
power returned to the radar from targets within each pulse
volume, and radial velocity a(r, φ, ρ), an estimate of the av-
erage speed at which the targets in the pulse volume are
approaching or departing the radar, which is measured us-
ing the Doppler shift of the radar signal. For more details,
Doviak and Zrnic (1993) is a comprehensive reference.

Figure 2 (a,b) shows example reflectivity and radial ve-
locity sweeps during a heavy migration event at the KBGM
radar in Binghamton, NY on the night of September 11,
2010. The radial velocity data demonstrate several key ve-
locity profiling concepts: targets approaching the radar have
negative radial velocities (green), whereas those departing

the radar have positive radial velocities (red). For any given
pixel, we have no additional information about the compo-
nent of velocity orthogonal to the radar beam. However, the
overall pattern of the sweep clearly shows that targets to the
NNE are approaching the radar, and those to the SSW are
departing the radar, so we can infer that the targets (in this
case, predominantly migrating birds) are moving uniformly
in a SSW direction. The spiral pattern is due to changes in
target velocity with height, which are driven by changes in
wind direction. The beam samples higher points in the at-
mosphere as it travels away from the radar, due to its upward
angle and the earth’s curvature. In this case, winds at lower
elevations are from the north, whereas those at higher ele-
vations have more of an easterly component, which explains
why the boundary between positive and negative radial ve-
locities rotates clockwise with distance from the radar.

Aliasing significantly complicates the interpretation of ra-
dial velocity data. Our understanding of Figure 2(b) relies on
the fact that the data shown are correctly dealiased. The raw
data for the same sweep are shown in Figure 2(c), in which
aliasing is clearly evident. The fastest moving inbound tar-
gets to the NE of the radar are erroneously measured as
having outbound velocities (red), while the fastest outbound
targets to the SW are erroneously measured as having in-
bound velocities (green). An automatic velocity profiling al-
gorithm must properly account for aliasing to make proper
inferences.

Velocity Model. To reconstruct a complete velocity field
from radial velocity data, we use a uniform wind model
(Doviak and Zrnic 1993) that assumes target velocity is
constant in a given elevation range. Let the true compo-
nents of the velocity in the x, y, and z directions be u0,
v0, and w0, respectively. For a fixed elevation angle ρ and
range r (and thus a fixed height z), the radial velocity as
a function of azimuth is given by (Doviak and Zrnic 1993;
Dokter et al. 2011):

a(φ) = u0 cosφ cos ρ+ v0 sinφ cos ρ+ w0 sin ρ.

Our primary interest is the horizontal velocity (u0, v0), so
we neglect the final term. This is reasonable for our purposes
because w0 is expected to be small for migrating birds, and
because our analyses are restricted to those sweeps at eleva-
tion angles of 5 degrees or smaller, for which sin(ρ) < 0.09.
We also incorporate a Gaussian noise term ε ∼ N (0, σ2) to
obtain the model:

a(φ) = u0 cosφ cos ρ+ v0 sinφ cos ρ+ ε. (1)
Note that this describes a noisy sinusoidal function of φ.

The model is linear in the parameters u0 and v0, so these
can be recovered by a least squares fit. Variants of this fit-
ting approach are referred to either as velocity-azimuthal dis-
play (VAD) algorithms or velocity volume profiling (VVP)
(Doviak and Zrnic 1993).

Aliasing. Aliasing significantly complicates the fitting
process. For any number a ∈ R, let a = a mod 2Vmax

be the aliased measurement of a, where we follow the con-
vention that a lies in the interval [−Vmax, Vmax] instead of
[0, 2Vmax]. The values a + 2kVmax, k ∈ Z all produce
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Figure 1: Radar data from KBGM station in Binghamton, NY during a heavy period of bird migration on 9/11/20100. Top row:
(a) reflectivity data, (b) correctly dealiased radial velocity data, (c) original radial velocity data with clear aliasing. Bottom row:
(d) radial velocity vs. azimuth at fixed range of 25 km (charcoal circle in panel (c)), together with predictions from models fitted
by our method (EP) and GVAD, (e) the GVAD response variable ∆γ(φ) for γ = 0.2, together with the fitted model predictions.

the same measurement, and are called aliases. Note that the
aliasing operation satisfies all of rules of modular arithmetic,
in particular: a+ b = a+ b.

Figure 2(d) shows the aliased radial velocity as a func-
tion of azimuth at 25 km for the scan from Figure 2(c), with
Vmax = 11.61 ms−1. The noisy sinusoidal model is an ex-
cellent fit, but aliasing causes the curve to wrap around at
±Vmax. A least squares fit of Equation (1) directly to the
aliased data will give very poor results, which is why most
existing algorithms assume that the data has already been
properly dealiased.

Noise. The velocity fields of birds are more variable than
those of wind-borne targets. This will have a significant im-
pact on the fitting methods discussed in Section 3. For exam-
ple, in Figure 2(c), the estimated residual standard deviation
is σ = 2.25. Dokter et al. (2011) report that typical values
for bird migration are σ ∈ [2, 6] ms−1, while typical values
for precipitation are σ < 2 ms−1.

3 Gradient-Based Estimation
In this section, we review, extend, and analyze gradient-
based fitting methods that do not require data to be dealiased
first. Tabary, Scialom, and Germann (2001) observed that the
derivative of Equation (1) is also linear in (u0, v0):

a′(φ) = −u0 sinφ cos ρ+ v0 cosφ cos ρ+ ε′.

Thus, (u0, v0) can be fit by least squares after first estimating
a′(φ) from the data. The advantage of this approach is that

a′(φ) can be estimated by fitting a locally linear model or
by finite differences (Gao and Droegemeier 2004) using the
aliased data. Within a small window around φ, changes in
a(φ) are expected to be small, so large changes in a(φ) can
be identified as places where an aliasing boundary has been
crossed and discarded from the analysis.

Our analysis extends and refines this approach. We exam-
ine the assumptions needed to properly recognize outliers as
aliasing errors, and show that discarding outliers is not nec-
essary, because they can be dealiased and used in the fitting
procedure. We also highlight and quantify a tradeoff inher-
ent in this technique. To be as robust as possible to aliasing
errors, the window around φ used to estimate a′(φ) should
be made as small as possible. However, a smaller window
will increase the variance of the estimate of the response
variable a′(φ), and thus the variance of the estimated pa-
rameters (u0, v0).

Our starting point is the gradient-based method of Gao
and Droegemeier (2004), which they called GVAD for
gradient-based VAD. They estimated a′(φ) by (a(φ+ γ) −
a(φ))/γ, where γ is the increment at which the antenna ad-
vances. We observe that this method can be extended to use
any step size γ as follows.
Proposition 1 (GVAD). Let ∆γ(φ) = a(φ+γ)−a(φ−γ),
where a(φ) follows the model in Equation (1). Then

∆γ(φ)

2 sin γ
= −u0 sinφ cos ρ+ v0 cosφ cos ρ+ ε′, (2)



where ε′ ∼ N (0, σ2/(2 sin2 γ)).
All proofs are deferred to a longer version of the paper.
Equation (2) is the basis for a least squares fitting method,
GVAD, which is an alternative to VAD. The original GVAD
method of Gao and Droegemeier (2004) is the special case
when γ is set as small as possible, to be equal to the az-
imuthal increment of the antenna. We will see that, for
small enough γ, GVAD is robust to aliasing errors. How-
ever, Proposition 1 also shows that the variance of the noise
increases by a factor of (2 sin2 γ)−1 relative to Equation (1).
Thus, smaller choices of γ introduce more noise. The fol-
lowing proposition shows that this carries through to the pa-
rameters estimated by a least squares fit.
Proposition 2. Assume that the values a(φ) in Equation (1)
are known without aliasing errors for n evenly spaced val-
ues of φ, and let û0 and v̂0 be the least squares estimates ob-
tained from this model. Then, var(û0) = var(v̂0) = 2σ2

n cos2 ρ ,
and the estimates are uncorrelated. In the analogous situa-
tion using Equation (2), when the values ∆γ(φ) are known
without aliasing errors for n equally spaced points, then
var(û0) = var(v̂0) = σ2

n cos2 ρ sin2 γ
, and the estimates are

uncorrelated.
Figure 2(e) illustrates the increased noise in the response
variable for GVAD; the detrimental effect on the model fit
can be seen in Figure 2(d). In this case, γ is set to a relatively
large value (γ = 0.2 radians; sin γ = 0.19). The fit is still
adequate, because there are n = 711 measurements. The
effect can be much worse when the data are sparser, which
happens when many pulse volumes do not contain enough
targets to permit a radial velocity measurement.

How big can γ be? There is a clear tradeoff when se-
lecting γ: smaller values lead to more noise in the fitting
process, whereas larger values lead to more aliasing errors.
We now analyze this upper limit and set conditions on γ
that will limit the probability of aliasing errors. Intuitively,
the analysis should depend both on γ and on how quickly
the function a(φ) changes, which is determined by the wind
speed r0 =

√
u20 + v20 . Under the appropriate assumptions,

it is not necessary to discard outliers in ∆γ(φ), because
they can be properly dealiased and used in the model fit-
ting process. To set up the analysis, note that the true sig-
nal we receive is not a(φ) but a(φ), so when we mea-
sure the change over an interval, what we really observe is
∆ = a(φ+ γ)−a(φ− γ), which can differ from ∆γ(φ) by
any integer multiple of 2Vmax. By mapping ∆ into the inter-
val [−Vmax, Vmax] using the aliasing operation, we obtain
the aliased value of ∆γ(φ):

∆ = a(φ+γ)− a(φ−γ) = a(φ+γ)− a(φ−γ) = ∆γ(φ).

Now, if we have prior knowledge that the magnitude of
∆γ(φ) is very likely to be small, we can safely assume that

∆γ(φ) = ∆γ(φ) ∈ [−Vmax, Vmax]. (3)

In other words, to dealias the measurement, we simply alias
it into the Nyquist interval. The following proposition de-
scribes conditions on the interval half-width γ, the target

speed r0, the Nyquist velocity Vmax, and the noise standard
deviation σ under which Equation (3) holds with high prob-
ability.
Proposition 3. Let Φ be the cumulative distribution func-
tion of the standard normal distribution, and let δ(p, σ) =√

2σΦ−1(1 − p/2). If r0 ≤ Vmax−δ(p,σ)
2 sin γ ,then ∆γ(φ) =

∆γ(φ) with probability at least 1− p.

Thus, a safe way to choose γ is by first placing conservative
upper bounds on σ and r0, selecting an error tolerance p,
and then selecting γ = sin−1

(
(Vmax− δ(p, σ))/(2r0)

)
. We

have found that this way of choosing γ works well when r0
and σ are known and are not too large, but may not provide
a useful value when conservative upper bounds are chosen.
For example, a good fit to the data in Figure 2 is r0 ≈ 15.61,
σ = 2.25, and Vmax = 11.61. Setting p = 0.05 in the bound
gives γ = .17. However, if we do not know σ in advance,
and take the not-too-conservative upper bound of σ = 5,
then to get any positive bound on γ we must set p ≥ .10;
therefore, we can expect up to 10% aliasing errors in the
portions of the sweep where a(φ) is changing most rapidly.

This discussion highlights the importance of having rea-
sonable upper bounds on both the noise magnitude σ and
the target speed r0 to be able to find a value of γ that is large
enough to keep noise levels under control while still being
robust to aliasing. The increased variability of bird velocities
(compared with wind) makes this more difficult.

4 Our Approach
In contrast with the previous approaches, we develop a prob-
abilistic model that directly accounts for aliasing in the ra-
dial velocity values by considering the probability of each
possible alias in the likelihood model. In this section, we
will first present the model, and then describe our approxi-
mate inference algorithm.

Likelihood. In Equation (1), the density of the random
variable a(φ) can be written as p(a) = N (a |µ, σ2), where
N (· |µ, σ2) is the normal density and µ = u0 cosφ cos ρ +

v0 sinφ cos ρ. The aliased random variable a(φ) has a
wrapped normal density (Breitenberger 1963):

Nw(a |µ, σ2) =

∞∑
k=−∞

N (a+ 2kVmax |µ, σ2),

which is supported on the interval a ∈ (−Vmax, Vmax], and
adds together the normal density of each alias. Our high-
level approach is to use this wrapped normal density instead
of the normal density in the model of Equation (1) and then
fit the parameters. However, the likelihood surface is consid-
erably more complex than that of the simple linear model, so
fitting the parameters is more difficult.

For computations, it is useful to introduce the following
family of finite-sum approximations to the wrapped normal
density (Bahlmann 2006; Agiomyrgiannakis and Stylianou
2009):

N `
w(a |µ, σ2) =

∑̀
k=−`

N (a− µ+ 2kVmax | 0, σ2), (4)



which count only the contributions of the 2`+1 aliases clos-
est to the mean µ. Bahlmann (2006) reports thatN 0

w(·) is an
excellent approximation when σ/Vmax ≤ 0.16. Our exam-
ples are slightly less concentrated, so we will typically use
N 1
w(·) or N 2

w(·).
The overall model for a complete volume scan is as fol-

lows. All pulse volumes with valid radial velocity measure-
ments are grouped into discrete bins based on their height
above ground level. Let wi = (ui, vi)

T be the velocity vec-
tor for height level i, and let aij , φij , and ρij be the una-
liased radial velocity, azimuth, and elevation angle, respec-
tively, for the jth pulse volume at level i. Let ai be the vec-
tor with entries aij , and let Xi be the matrix whose jth row
is (cosφij cos ρij , sinφij cos ρij), so that Xiwi is the pre-
dicted mean. By “wrapping” the normal model of Equation
(1), we see that the aliased vector ai has the joint density:

p(ai |wi) =
∏
j

Nw(aij | (Xiwi)j , σ
2). (5)

The likelihood surface L(wi) = p(ai |wi) can be seen in
examples to be multi-modal. It typically has one high peak
centered near the “true” parameters, which is surrounded by
an annular pattern circular ridges and valleys. Thus, any fit-
ting method risks getting caught in a local optimum, which
can cause the fitted parameters to be worse than those found
by other methods despite having a better model.

Local search. Before presenting the overall inference
procedure, we first describe a particularly simple local
search procedure to find an approximate mode of the likeli-
hood surface. Let L0(wi) be the approximate log-likelihood
obtained using single-term approximation N 0

w(·) to the
wrapped normal. Note that

L0(wi) = max
k∈Zn

logN (ai + 2kVmax |Xiwi, σ
2I).

The problem of maximizing L0(wi) can thus be expressed
as jointly maximizing over wi and k. The problem is easy
when either one of these vectors is fixed. When wi is fixed,
the optimal k selects the alias of each measurement closest
to the predicted mean. When k is fixed, the optimal wi is
found by linear regression with response yi = ai+2kVmax.
It is clear that alternating these two steps will lead to a local
optimum of L0(wi). Later, we will need two small exten-
sions. First, we will need to run the analogous local search
when there is also a prior p(wi), in which case the linear
regression at each step is conducted with a prior. We will
also want to estimate the Hessian of the log-posterior at the
mode, for which we use standard formulas for the (inverse
of) the posterior variance in the final linear regression.

To summarize, the local search alternates between two
simple high-level steps with obvious interpretations: (1)
use the current model to dealias the radial velocity mea-
surements, and then (2) refit the model using the current
dealiased values. We have found that the search is very fast
and usually converges in one or two steps. Our experiments
show that it shows no measurable loss in overall perfor-
mance compared with a much slower numerical search over
the true likelihood.

Prior model. Despite the risk of local optima, most data
we have examined provide overwhelming evidence about

wi

ti

ψe wi+1

ti+1

αi

αimi

βi

αi+1

βi+1mi+1

βi+1

αiβimi αi+1βi+1mi+1

Figure 2: Message passing scheme

the true mode when one looks at the complete volume. Thus,
we incorporate a Gaussian smoothness prior over the veloc-
ities at different elevations to help guide the fitting process
toward the mode that is most compatible with neighboring
elevations:

p({wi}) ∝
m∏
i=1

ψn(wi)

m∏
i=2

ψe(wi−1,wi),

where ψn(wi) = exp(−‖wi‖2
2σ2

n
) and ψe(wi−1,wi) =

exp(−‖wi−wi−1‖2
2σ2

e
) are Gaussian potentials. The parameter

σ2
n is typically set to a large value to provide a weak prior

that encourages lower target speeds; σ2
e controls the strength

of the smoothness prior. The full graphical model, which
combines the prior and the likelihood terms, is illustrated
by the factor graph in Figure 2. For brevity, we collect the
unary terms into the factor ti(wi) = ψn(wi)p(ai |wi).

Message passing. The two primary operations needed to
perform posterior inference by message passing in this prob-
lem are multiplication and marginalization of potentials. For
two potentials ψ1(x) and ψ2(x) on the same variables, let
ψ1ψ2 denote the potential obtained by pointwise multipli-
cation, so that (ψ1ψ2)(x) = ψ1(x)ψ2(x). To multiply two
potentials on different sets of variables, it will be understood
that one first needs to expand each potential to the same set
of variables, and the resulting potential is on the union of
the variables. For a joint potential ψ(xi,xj), let ψ ↓ xi
be the marginal potential on xi, so that (ψ ↓ xi)(xi) =∫
ψ(xi,xj)dxj .
For Gaussian potentials, these operations can be done by

simple parameter updates on the constituent potentials to ob-
tain a new Gaussian potential (Murphy 2002). However, in
our model the likelihood terms ti are not Gaussian, so exact
marginalization is difficult.

Instead, we adopt a message passing scheme based on
the Expectation Propagation (EP) algorithm (Minka 2001),
which approximates each likelihood term by a Gaussian po-
tential that is a good match in the context of the current
posterior distribution. The details of the message passing
scheme are illustrated in Figure 2. Each of αi, βi, and mi

is a unary potential on wi. At any point during the execu-
tion of the algorithm, the approximate posterior over wi is
αiβimi. The updates are:

αi ← αi−1mi−1ψe ↓ wi,

βi ← βi+1mi+1ψe ↓ wi,

mi ← approx(αiβiti)/αiβi.



In the last line, division by a potential ψ is multiplication by
its pointwise inverse, which is also accomplished by a sim-
ple parameter update for Gaussian potentials. The approx(·)
operator returns a Gaussian potential that is a good approx-
imation to its argument. In standard EP, this would be done
by moment matching, but in our case, computing the mo-
ments of αiβiti is also a hard problem. Instead, we use
Laplace’s method: find a mode ŵ of αiβiti using the pre-
viously described local search procedure, and then set mi to
be the Gaussian with mean ŵ and covariance equal to the in-
verse Hessian of −log(αiβiti) evaluated at ŵ. This method
is known as Laplace Propagation (Smola, Vishwanathan,
and Eskin 2003).

Messages may be updated in any order, but a forward-
backward scheme is logical given the chain structure. Two
variants are discussed and evaluated in Section 5.

5 Experiments
We evaluated the accuracy of six different velocity profiling
algorithms on volume scans collected by the KBGM radar
station in Binghamton, NY during the month of Septem-
ber 2010. We screened an initial set of 351 scans (one per
hour for each night of the month) to eliminate scans with
clear non-biological targets (precipitation or ground clutter)
within 37.5 km of the station. Of the remaining 142 scans,
102 operated in the clear-air mode with Vmax = 11.61
ms−1, which is the lowest of all modes. We then used all
pulse volumes with ρ ≤ 5 degrees and r ≤ 37.5 km to fit
velocity vectors for each 20 m elevation bin below 6000 m.
We tested the following algorithms:
• GVAD-0.01, GVAD-0.10: GVAD with γ = 0.01, 0.1, fit

separately for each elevation bin.
• GVAD+LOCAL: GVAD with γ = 0.1, followed by the

local search procedure described in Section 4.
• GVAD+KALMAN: same as above, but followed by for-

ward message passing (update each αi) and then back-
ward message passing (update each βi), while keeping the
mi messages frozen to the final approximate likelihoods
reached during the local search. This is a Kalman filter in
which each ti is approximated by a Gaussian mi a priori.

• EP: same as above, but followed by additional forward
and backward passes that update the mi messages using
EP, with the local search procedure used to find the mode.

• EP+HESS: same as above, but MATLAB’s numerical op-
timizer is used to find the mode and Hessian of αiβiti
under the five-term approximation Nw(·) ≈ N 2

w(·).
In all methods, pulse volumes with radial velocities in

the interval [−1, 1] ms−1 were discarded to suppress ground
clutter (Doviak and Zrnic 1993), and likelihood terms for
elevations with fewer than 5 measurements were excluded.
Parameter settings were: σ = 4, σn = 30, σe = 0.36.

For each scan, the fitted velocities were evaluated by mak-
ing predictions for the scan immediately following it, and
then calculating the root mean squared error (RMSE) be-
tween the predictions and the closest aliases at each eleva-
tion level. These values were averaged over all elevation lev-
els to give the overall RMSE. Figure 3 shows the average

3 4 5 6

GVAD−0.01
GVAD−0.10

GVAD+LOCAL
GVAD+KALMAN

EP
EP+HESS

RMSE

Figure 3: Performance comparison on test scans.

RMSE and 95% confidence interval attained by each algo-
rithm on the 142 test scans. All comparisons are highly sig-
nificant (p < 10−7; paired t-test) except GVAD+LOCAL vs.
GVAD+KALMAN and EP vs. EP+HESS.

It is clear from the results that each of the improvements
we have proposed makes a substantial improvement to per-
formance. The fact that GVAD with γ = 0.1 is much
better than GVAD with γ = 0.01 highlights the impor-
tance of our extension to allow arbitrary values of γ. By
adding the simple dealias-and-refit local search procedure,
GVAD+LOCAL performs much better than GVAD alone.
Finally, by performing approximate Bayesian inference with
the more accurate wrapped normal likelihood, EP performs
significantly better than GVAD+LOCAL. The lesser perfor-
mance of GVAD+KALMAN indicates that smoothing alone
does not explain the better performance EP: the approach of
approximating ti in the context of the current posterior is
important. Finally the performance of EP+HESS shows that
EP loses no accuracy by using the approximate local search
in the Laplace approximation.

We observed that the better models were generally in
close agreement about the direction of travel, but the GVAD-
based models seemed to underestimate speed, which is
likely due to aliasing errors in the ∆γ(·) variables. The di-
rections measured by the different algorithms were also in
excellent agreement with human labeled directions (mean
error less than 10 degrees).

6 Conclusion
Our new approach to reconstructing the velocity fields of mi-
grating birds detected by WSR-88D is a significant improve-
ment over previous methods. Our algorithm will allow us to
overcome a fundamental challenge of analyzing radar data to
tap the potential information about bird migration available
from the continent-scale WSR-88D network. By creating an
AI tool to automate velocity data processing, we can extract
information about bird migration more accurately and at a
substantially larger scale than previously possible, and make
advances in our knowledge of bird movements for science
and conservation.
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