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Abstract

We study the problem of approximate infer-
ence in collective graphical models (CGMs),
which were recently introduced to model the
problem of learning and inference with noisy
aggregate observations. We first analyze the
complexity of inference in CGMs: unlike in-
ference in conventional graphical models, ex-
act inference in CGMs is NP-hard even for
tree-structured models. We then develop a
tractable convex approximation to the NP-
hard MAP inference problem in CGMs, and
show how to use MAP inference for ap-
proximate marginal inference within the EM
framework. We demonstrate empirically that
these approximation techniques can reduce
the computational cost of inference by two
orders of magnitude and the cost of learning
by at least an order of magnitude while pro-
viding solutions of equal or better quality.

1. Introduction

Sheldon & Dietterich (2011) introduced collective
graphical models (CGMs) to model the problem of
learning and inference with noisy aggregate data.
CGMs are motivated by the growing number of ap-
plications where data about individuals are not avail-
able, but aggregate population-level data in the form
of counts or contingency tables are available. For ex-
ample, the US Census Bureau cannot release individ-
ual records for privacy reasons, so they commonly re-
lease low-dimensional contingency tables that classify
each member of the population according to a few de-
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mographic variables. In ecology, survey data provide
counts of animals in different locations, but they can-
not identify individuals.

CGMs are generative models that serve as a link be-
tween individual behavior and aggregate data. As a
concrete example, consider the model illustrated in
Figure 1(a) for modeling bird migration from obser-
vational data collected by citizen scientists through
the eBird project (Sheldon et al., 2008; Sheldon, 2009;
Sullivan et al., 2009). Inside the plate, an indepen-
dent Markov chain describes the migration of each bird
among a discrete set of locations: Xm

t represents the
location of the mth bird at time t. Outside the plate,
aggregate observations are made about the spatial dis-
tribution of the population: the variable nt is a vector
whose ith entry counts the number of birds in location
i at time t. By observing temporal changes in the vec-
tors {nt}, one can make inferences about migratory
routes without tracking individual birds.

In general CGMs, any discrete graphical model can ap-
pear inside the plate to model individuals in a popula-
tion, and observations are made in the form of (noisy)
low-dimensional contingency tables (Sheldon & Diet-
terich, 2011). A key problem we would like to solve
is learning the model pararameters (of the individual
model) from the aggregate data, for which inference is
the key subroutine. Unfortunately, standard inference
techniques applied to CGMs quickly become compu-
tationally intractable as the population size increases,
due to the large number of hidden individual-level vari-
ables that are all connected by the aggregate counts.

A key to efficient inference in CGMs is the fact that,
when only aggregate data is being modeled, the same
data-generating mechanism can be described much
more compactly by analytically marginalizing away
the individual variables to obtain a direct probabilis-
tic model for the sufficient statistics (Sundberg, 1975;
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Figure 1. CGM example: (a) Individuals are explicitly
modeled. (b) After marginalization, the hidden variables
are the sufficient statistics of the individual model.

Sheldon & Dietterich, 2011). Figure 1(b) illustrates
the resulting model for the bird migration example.
The new hidden variables nt,t+1 are tables of suffi-
cient statistics: the entry nt,t+1(i, j) is the number of
birds that fly from location i to location j at time
t. For large populations, the resulting model is much
more amenable to inference, because it has many fewer
variables and it retains a graphical structure analogous
to that of the individual model. However, the reduc-
tion in the number of variables comes at a cost: the
new variables are tables of integer counts, which can
take on many more values than the original discrete
variables in the individual model, and this adversely
affects the running time of inference algorithms.

The first contribution of this paper is to character-
ize the computational complexity of exact inference
in CGMs. For tree-structured graphical models, the
running time of exact inference (MAP or marginal)
by message passing in the CGM is polynomial in ei-
ther the population size or the cardinality of the vari-
ables in the individual model (when the other pa-
rameter is fixed). However, there is no algorithm
that is polynomial in both parameters unless P=NP.
This is a striking difference from inference in stan-
dard tree-structured graphical models, for which the
running time of message passing is always polynomial
in the variable cardinality. We also analyze the run-
ning time of message passing in a junction tree for
general (non-tree-structured) CGMs to draw out an-
other difference between CGMs and standard graphi-
cal models: the dependence on clique-width is doubly-
exponential instead of singly-exponential for some pa-
rameter regimes.

Our second main contribution is an approximate algo-
rithm for MAP inference in CGMs that is based on a
continuous and convex approximation of the MAP op-
timization problem. The algorithm finds a fractional
approximation of the most likely sufficient statistics,

which are integer counts, given the observations, and
it can be used for reconstruction and data exploration.
For large populations, which is the regime where ex-
act inference is most difficult, replacing integer counts
by continuous values will result in little loss of util-
ity. One can interpret fractional contingency tables
as describing percentages of the population instead of
absolute counts.

Our final main contribution is to show that approxi-
mate MAP inference in CGMs is an excellent approx-
imation for a very important marginal inference prob-
lem. In particular, to learn the model parameters via
the EM algorithm, one must compute the posterior
mean—the expected value of the sufficient statistics
given the observations—which is a marginal inference
problem. Our approximate MAP algorithm computes
a fractional approximation to the posterior mode, and
we show empirically that it is also an excellent ap-
proximation of the posterior mean. For a fixed time
budget, it is usually significantly more accurate than
approximate marginal inference via Gibbs sampling.
We show that our approach can be used within an EM
algorithm to dramatically accelerate parameter learn-
ing while still achieving less than 1% error.

2. Related Work

Sheldon et al. (2008) solved a related MAP infer-
ence problem on a chain-structured CGM using linear
programming and network flow techniques. Sheldon
(2009) extended those algorithms to the case when ob-
servations are corrupted by log-concave noise models.
The MAP problem in those papers is slightly differ-
ent from ours: it seeks the most likely setting of all of
the individual variables, while we seek the most likely
setting of the sufficient statistics, which adds together
the probability of all possible settings of the individ-
ual variables that give the same counts. This gives
rise to combinatorial terms in the probability model
(see Equation (2) of Section 3) and leads to harder
non-linear optimization problems.

Sheldon & Dietterich (2011) generalized the previous
ideas from chain-structured models to arbitrary dis-
crete graphical models and developed the first algo-
rithms for marginal inference in CGMs, which were
based on Gibbs sampling and Markov bases (Diaconis
& Sturmfels, 1998; Dobra, 2003). They showed empir-
ically that Gibbs sampling is much faster than exact
inference: for some tasks, the running time to achieve
a fixed error level is independent of the population
size. However, no analogous approximate method was
developed for MAP inference.



Collective Graphical Models

Inference in CGMs is related to lifted inference in re-
lational models (Getoor & Taskar, 2007). A CGM can
be viewed as a simple relational model with only one
logical variable to describe the repetition over indi-
viduals. A unique feature of CGMs is that all evi-
dence occurs at the aggregate level. The most related
ideas from lifted inference are counting elimination
(de Salvo Braz et al., 2007) and counting conversion
(Milch et al., 2008), which perform aggregation oper-
ations similar those performed by a CGM. See also
(Apsel & Brafman, 2011). Fierens & Kersting (2012)
recently proposed to “lift” probabilistic models instead
of inference algorithms, which is very similar in spirit
to CGMs, but they did not present a general approach
to do so. CGMs lift any model with a single logical
variable when all evidence is at the population level.
In general, while lifted inference algorithms use count-
ing arguments similar to those that appear in CGMs,
they cannot reproduce the CGM model, and none of
our results are consequences of any of the results in
those papers.

Multiple authors in econometrics and statistics have
considered the problem of fitting the transition prob-
abilities of a Markov chain from aggregate data by a
conditional least squares approach (Lee et al., 1970;
MacRae, 1977; Kalbfleisch et al., 1983). Van Der Plas
(1983) showed that the conditional least squares es-
timator is consistent and asymptotically normal un-
der weak assumptions about the Markov model. This
problem can be viewed as learning in the CGM in Fig-
ure 1, where the graphical model is chain-structured
and single-variable contingency tables are observed ex-
actly for each node. In our work, the CGM may take
on a more general graph structure, some nodes may be
unobserved, and the observations may be noisy, so the
conditional least squares estimator is not applicable.

3. Problem Statement

In this section, we describe the generative model for
aggregate data, introduce collective graphical models,
and state the problems of (collective) marginal and
MAP inference.

Generative Model for Aggregate Data. The
probability model starts with a tree-structured graph-
ical model over random variables X1, . . . , XN . Let
x = (x1, . . . , xN ) be a particular assignment to the
variables (for simplicity, assume that each takes val-
ues in [L] = {1, . . . , L}), and let G = (V,E) be the
independence graph. The probability model is

p(x) =
1

Z

∏
(i,j)∈E

φij(xi, xj). (1)

Here Z is the normalization constant and φij : [L]2 →
R+ are edge potentials. We refer to this as the individ-
ual model. For the remainder of the paper, we assume
that G is a tree to develop the important ideas while
keeping the exposition manageable. For a graph with
cycles, the methods of this paper can be applied to
perform inference on a junction tree derived from G.

To generate the aggregate data, first assume that M
independent vectors x(1), . . . ,x(M) are drawn from the
individual probability model to represent the individ-
uals in a population. Aggregate observations are then
made in the form of contingency tables on small sets of
variables, which count the number of times that each
possible combination of those variables appears in the
population. Specifically, a contingency table nA on
variable set A is a table with entries

nA(xA) =

M∑
m=1

1
{
x
(m)
A = xA

}
, xA ∈ [L]|A|,

where x
(m)
A is the subvector corresponding to the vari-

able subset A. In this section, we will focus first on ob-
served tables ni := n{i} over single variables, which we
refer to as node tables. Later, the tables nij := n{i,j}
for edges (i, j), which are the sufficient statistics of the
individual model, will play a prominent role. We will
refer to these as edge tables.

We will consider two different observation models. Let
U be an observed subset of nodes. For each i ∈ U we
observe a table yi of the same dimension as ni, where
the entry yi(xi) has one of the following distributions:

Exact observations: yi(xi) = ni(xi).

Noisy observations: yi(xi) |ni(xi) ∼ Pois(α ·ni(xi))
The Poisson model is motivated by the bird migration
problem, and models birds being counted at a rate
proportional to their true density. While it is helpful
to focus on these two observation models, considerable
variation is possible without significantly changing the
results: (1) observations of the different types can be
mixed, (2) higher-order contingency tables, such as
the edge tables nij , may be observed, either exactly
or noisily, (3) some table entries may be unobserved
while others are observed, or, in the noisy model, they
may have multiple independent observations, and (4)
the Poisson model can be replaced by any other noise
model p(y |n) that is log-concave in n. Sheldon & Diet-
terich (2011) discuss some of these extensions further.

In this paper, the exact observation model is used to
prove the hardness results, while the Poisson model
is used in the algorithms and experiments. Since the
exact model can be obtained as the limiting case of a
log-concave noise model (e.g., y | n ∼ Normal(n, σ2)
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as σ2 → 0), we do not expect that noisy observations
lead to a more tractable problem.

Inference Problems. Suppose we wish to learn the
parameters of the individual model from these aggre-
gate observations. To do this, we need to know the val-
ues of the sufficient statistics of the individual model—
namely, nij for all edges (i, j) ∈ E. Our observation
models do not directly observe these. Fortunately, we
can apply the EM algorithm, in which case we need
to know the expected values of the sufficient statistics
given the observations: E[nij |y].

This leads us to define two inference problems:
marginal inference and MAP inference. The aggregate
marginal inference problem is to compute the condi-
tional distributions p(nij | y) for all (i, j) ∈ E. Al-
though these are finite discrete distributions, the vari-
able nij can take a very large number of values,1 so
we typically don’t want to represent its distribution ex-
plicitly in tabular form. An important special case of
marginal inference that does not require a large tabu-
lar potential is to compute the L×L tables of expected
values E[nij | y], which are the quantities needed for
the E step of the EM algorithm in an exponential fam-
ily. Sheldon & Dietterich (2011) also showed how to
generate samples from p(nij | y), which is an alterna-
tive way to query the posterior distribution without
storing a huge tabular potential.

The aggregate MAP inference problem is to find the
tables n = (nij)(i,j)∈E that jointly maximize p(n | y).
A primary focus of this paper is approximate algo-
rithms for aggregate MAP inference. One reason for
conducting MAP inference is the usual one: to recon-
struct the most likely value of n given the evidence as
a way of “reconstruction” (e.g., for data exploration).
However, a second and important motivation is the
fact that the posterior mode p(n | y) is an excellent
approximation for the posterior mean E[n | y] in this
model, so approximate MAP inference also gives an
approximate algorithm for the important marginal in-
ference problem needed for the EM algorithm.

Collective Graphical Models. Notice that in the
setting we are considering, our observations and
queries only concern aggregate quantities. The obser-
vations are (noisy) counts and the queries are MAP or
marginal probabilities over sufficient statistics (which
are also counts). In this setting, we don’t care about
the values of the individual variables {x(1), . . . ,x(M)},
so we can marginalize them away. This marginaliza-

1There are
(
M+L2−1

L2−1

)
= O(ML2−1) different L × L ta-

bles of non-negative integers that sum to M .

tion can be performed analytically to obtain a proba-
bility model with many fewer variables. It results in
a model whose random variables are the vector n of
sufficient statistics and the vector y of observations.

For trees (and, more generally, for junction trees), the
distribution of n can be written in closed form given
the marginal probabilities µi(xi) = Pr(Xi = xi) and
µij(xi, xj) = Pr(Xi = xi, Xj = xj).

2 The following
expression is originally due to Sundberg (1975):

p(n) = M !
∏
i∈V

∏
xi

(
ni(xi)!

µi(xi)ni(xi)

)ν(i)−1
∏

(i,j)∈E

∏
xi,xj

µij(xi, xj)
nij(xi,xj)

nij(xi, xj)!
, (2)

subject to:

ni(xi) =
∑
xj
nij(xi, xj), ∀i, xi, j ∼ i (3)∑

xi
ni(xi) = M, ∀i. (4)

Here, ν(i) is the degree of node i, and the notation
j ∼ i means that j is a neighbor of i. By “subject to”
we mean that the probability is zero if the constraints
are not satisfied.

The distribution p(n) is the collective graphical model,
which is defined over the random variables {ni} and
{nij}. The CGM distribution satisfies a hyper Markov
property : it has conditional independence properties
that follow the same essential structure as the original
graphical model (Dawid & Lauritzen, 1993). (To see
this, note that Eq. (2) factors into separate terms for
each node and edge contingency table; when the hard
constraints of Eq. (3) are also included as factors, this
has the effect of connecting the tables for edges inci-
dent on the same node, as illustrated in Figure 1.)

Likelihood. We can combine the CGM with the like-
lihood term to derive an explicit expression for the
(unnormalized) posterior p(n |y) ∝ p(n)p(y |n). Un-
der the Poisson observation model, the likelihood has
the form

p(y |n) =
∏
i∈U

∏
xi

(αni(xi))
yi(xi)e−αni(xi)

yi(xi)!
.

Generalizations. For general graph structures, Shel-
don & Dietterich (2011) give a probability model anal-
ogous to Eq. (2) defined over a junction tree for the
graphical model. In that case, the vector n includes
contingency tables nC for each clique C of the junction

2If marginal probabilities are not given, they can be
computed by performing inference in the individual model.
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tree. Different junction trees may be chosen for a par-
ticular model, which will lead to different definitions
of the hidden variables n and thus slightly different
inference problems, but always the same marginal dis-
tribution p(y) over observed variables. Higher-order
contingency tables may be observed as long as each ob-
served table nA satisfies A ⊆ C for some clique C, so
it can be expressed using marginalization constraints
such as Eq. 3. The approximate inference algorithms
in Section 5 extend to these more general models in a
straightforward way by making the same two approx-
imations presented in that section for the expression
log p(n |y) to derive a convex optimization problem.

4. Computational Complexity

There are a number of natural parameters quantify-
ing the difficulty of inference in CGMs: the popula-
tion size M ; the number of variables N ; the variable
cardinality L; and the clique-width K (largest clique
size) of the junction tree used to perform inference,
which is bounded below by the tree-width of G plus
one. The input size is poly(N,L, logM). The inputs
are: the vector y, the integer M , and the CGM prob-
ability model. The vector y has at most NL entries of
magnitude O(M), so each can be represented in logM
bits, and the CGM is fully specified by the potential
functions in Equation (1), which have size O(NL2).

We first describe the best known running time for ex-
act inference in trees (K = 2), which are the focus of
this paper.

Theorem 1. When G is a tree, message passing in the
CGM solves the aggregate MAP or marginal inference
problems in time O(N ·min(ML2−1, L2M )).

Proof sketch. Because of the hyper-Markov property,
the CGM also has the form of a tree-structured graph-
ical model. Message passing gives an exact solution to
the MAP or marginal inference problem in two passes
through the tree, which takes O(N) messages (Koller
& Friedman, 2009). In a standard implementation of
message passing, the time per message is bounded by
the maximum over all factors of the product of the car-
dinalities of the variables in that factor. However, due
to the nature of the hard constraints in the CGM, it is
possible to bound the time per message by a smaller
number, which is the number of values for the random
variable nij (details omitted). The number of contin-

gency tables with c entries that sum to M is
(
M+c−1
c−1

)
,

which is the number of ways of placing M identical
balls in c distinct bins. This number is bounded above
by M c−1 and by (c − 1)M . In a CGM, the table
nij has L2 entries, so the number of values for nij is

O(min(ML2−1, L2M )), which gives the desired upper
bound.

For general graphical models, message passing on junc-
tion trees can be implemented in a similar fashion. For
a clique of size K, the contingency table will have LK

entries, so there are O(min(MLK−1, LKM )) possible
values of the contingency table. This gives us the fol-
lowing result.

Theorem 2. Message passing on a junction tree with
maximum clique size K and maximum variable cardi-

nality L takes time O(N ·min(MLK−1, LKM )).

Thus, if either L or M is fixed, message passing runs
in time polynomial in the other parameter. When M
is constant, then the running time is exponential in
the clique-width, which captures the familiar case of
discrete graphical models. When L is constant, how-
ever, the running time is not only exponential in L but
doubly-exponential in the clique-width. Thus, despite
being polynomial in one of the parameters, message
passing is unlikely to give satisfactory performance on
real problems. Finally, the next result tells us that we
should not expect to find an algorithm that is polyno-
mial in both parameters.

Theorem 3. Unless P=NP, there is no algorithm for
MAP or marginal inference in a CGM that is polyno-
mial in both M and L. This remains true when G is
a tree and N = 4.

Proof of Theorem 3. The proof is by reduction from
exact 3-dimensional (3D) matching. An instance of
exact 3D matching consists of finite sets A1, A2, and
A3, each of size M , and a set of hyperedges T ⊆ A1 ×
A2 ×A3. A hyperedge e = (a1, a2, a3) is said to cover
a1, a2, and a3. The problem of determining whether
there is a subset S ⊆ T of size M that covers each
element is NP-complete (Karp, 1972).

To reduce exact 3D matching to inference in col-
lective graphical models, define a graphical model
with random variables X0, X1, X2, X3 such that X0 ∈
{1, . . . , |T |} is a hyperedge chosen uniformly at ran-
dom, and X1, X2, and X3 are the elements covered by
X0 (see Figure 2). Define the observed counts to be
ni(a) = 1 for all a ∈ Ai, i = 1, 2, 3, which specify that
M hyperedges are selected that cover each element ex-
actly once. These counts have nonzero probability if
and only if there is an exact 3D matching. Thus, MAP
or marginal inference can be used to decide exact 3D
matching. For MAP, there exist tables n0i such that
p({n0i}, {ni}) > 0 if and only if there is a 3D match-
ing. For marginal inference p({ni}) > 0 if and only if
there is a 3D matching.
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Figure 2. Reduction from 3-dimensional matching.

Because the model used in the reduction is a tree with
only four variables, the hardness result clearly holds
under that restricted case.

5. Approximate MAP Inference

In this section, we address the problem of MAP infer-
ence in CGMs under the noisy observation model from
Section 3. That is, the node tables for an observed set
U are corrupted independently by noise, which is con-
ditionally Poisson:

p(y |n) =
∏
i∈U

∏
xi

p
(
yi(xi) |ni(xi)

)
, (5)

p
(
yi(xi) |ni(xi)

)
=

(αni(xi))
yi(xi)e−αni(xi)

yi(xi)!
. (6)

Our goal is to maximize the following objective:

log p(n |y) = log p(n) + log p(y |n) + constant (7)

As highlighted earlier, it is computationally intractable
to directly optimize log p(n|y). Therefore, we intro-
duce two approximations. First, we relax the con-
straint that the entries of n be integers. For large
sample size M , the effect of allowing fractional val-
ues is minimal. Second, as it is hard to incorpo-
rate factorial terms log n! directly into an optimiza-
tion framework, we employ Stirling’s approximation:
log n! ≈ n log n− n.
Using these two approximations, we arrive at the fol-
lowing optimization problem:

max
n

∑
i∼j

∑
xi,xj

(
logµij(xi, xj)+1

)
nij(xi, xj)−

∑
i∈U,xi

αni(xi)

+
∑
i∈V

(
1 − ν(i)

)∑
xi

(
logµi(xi) + 1

)
ni(xi)

+
∑
i∈U

∑
xi

yi(xi) logni(xi)−
∑
i∼j

∑
xi,xj

nij(xi, xj)lognij(xi, xj)

−
∑
i∈V

(
1 − ν(i)

)∑
xi

ni(xi) logni(xi) + const., (8)

subject to (3) and (4), for ni(xi), nij(xi, xj) ∈ R+.

Theorem 4. The optimization problem (8) for ap-
proximate MAP inference in tree-structured CGMs is
convex.

Proof. The constraints are linear and thus the feasi-
ble set is convex. Since this is a maximization prob-
lem, we must show that the objective is concave in n,
which is clearly true for each term but the last one:
the first three terms are linear, and the functions log n
and −n log n are concave. The last term is convex.
However, the sum of the last two terms:∑

i∼j

∑
xi,xj

−nij(xi, xj) log nij(xi, xj)

+
∑
i∈V

(
1− ν(i)

)∑
xi

−ni(xi) log ni(xi) (9)

is concave over the feasible set. Indeed, this is ex-
actly the expression for the Bethe entropy of a graph-
ical model, and the constraints (3) and (4) are identi-
cal to the constraints for pairwise and node marginals
used in Bethe entropy. Bethe entropy is concave over
the constraint set of a tree-structured graphical model
(Heskes, 2006). The only difference between this and
the conventional Bethe entropy is that the variables
are normalized to sum to M instead of 1, but scaling
in this way does not affect concavity. Therefore, the
problem is convex.

MAP Inference for EM. We now describe how
MAP inference for CGMs can be used to significantly
accelerate the E-step of the EM algorithm for learning
the parameters of the individual model. Let θ denote
the unknown parameter to be optimized, let y be the
observed variables, and let x = (x(1), . . . ,x(M)) be the
hidden variables for all individuals in the population.
The EM algorithm iteratively finds parameters θ? that
maximize the following expected log-likelihood:

Q(θ?, θ) =
∑
x

p(x | y; θ) log p(x,y; θ?)

where θ? denotes the parameters to optimize and θ de-
notes the previous iteration’s parameters. When the
joint distribution p(·) is from an exponential family, as
in our case, then the problem simplifies to maximiz-
ing log p(n̄,y; θ?), where n̄ = Eθ[n |y] is the expected
value of the sufficient statistics n = n(x,y) used to de-
fine the model; these are exactly the hidden variables
in the CGM. In general, this expectation is difficult
to compute and requires the specialized sampling ap-
proach of Sheldon & Dietterich (2011).

Instead, we will show that the approximate mode
n? ≈ argmaxn p(n |y; θ) of the distribution p(n |y; θ)
is an excellent approximation for its mean Eθ[n |y].
While this may seem surprising at first, recall that the
random variables in question take values that are rel-
atively large non-negative integers. A good analogy is
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the Binomial distribution (a CGM with only one vari-
able), for which the mode is very close to the mean,
and the mode of the continuous extension of the Bino-
mial pmf is even closer to the mean. Our experiments
show that by using the convex optimization approach
of Section 5, the approximate mode can be computed
extremely quickly and is an excellent substitute for the
mean. It is typically a much better approximation of
the mean than the one found by Gibbs sampling for
reasonable time budgets, and this makes the overall
EM procedure many times faster.

6. Evaluation

We evaluated our approximate MAP inference algo-
rithm by measuring its accuracy against exact solu-
tions for small problem instances and by comparing it
with Gibbs sampling for marginal inference within the
E step of the EM algorithm. For all experiments, we
generated data from a chain-structured CGM to sim-
ulate wind-dependent migration of a population of M
birds from the bottom-left to the top-right corner of an
`× ` grid to mimic the seasonal migration of a migra-
tory songbird from a known winter range to a known
breeding range. Thus, the variables Xt of the individ-
ual model are the grid locations of the individual birds
at times t = 1, . . . , T , and have cardinality L = `2.
The transition probabilities between grid cells were de-
termined by a log-linear model with four parameters
that controlled the effect of features such as direction,
distance, and wind on the transition probability. The
parameters θtrue were selected manually to generate
realistic migration trajectories. After generating data
for a population of M birds, we computed node con-
tingency tables and generated observations from the
Poisson model (α = 1) for every node. Unless speci-
fied otherwise, the marginal probabilities µij(·, ·) and
µi(·) used to define the CGM are those determined by
θtrue—that is, we perform inference in the same model
used to generate the data.

We solved the approximate MAP convex optimization
problem using MATLAB’s interior point solver. For
the comparisons with Gibbs sampling, we developed
an optimized C implementation of the algorithm of
(Sheldon & Dietterich, 2011) and developed an adap-
tive rejection sampler for discrete distributions to per-
form the log-concave sampling required by that algo-
rithm, based on the ideas of Gilks & Wild (1992).

Accuracy of Approximate MAP Solutions. To
evaluate the impact of the two approximations in our
approximate MAP algorithm, we first compare its so-
lutions to exact solutions obtained by message pass-
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Figure 3. The effect of population size M on accuracy and
running time of approximate MAP (L = 4, T = 6). Left:
relative error vs. M . Right: running time vs. M .

ing for small models (L = 4, T = 6). We ex-
pect the fractional relaxation and Stirling’s approx-
imation to be more accurate as M increases. Be-
cause the running time of message passing in this
model is O(M15), we are limited to tiny populations.
Nevertheless, Figure 3 shows that the relative error
‖n∗MAP − n∗exact‖1/‖n∗exact‖1 is already less than 1%
for M = 7. For all M , approximate MAP take less
than 0.2 seconds, while the running time of exact MAP
scales very poorly.

Marginal Inference. We next evaluated the ap-
proximate MAP inference algorithm to show that it
can solve the EM marginal inference problem more
quickly and accurately than Gibbs sampling. For these
experiments, we fixed T = 20 and varied L by increas-
ing the map size. The largest models (L = 49) result
in a hidden vector with (T − 1)L2 ≈ 46K entries. The
goal is to approximate Eθ[n | y]. Since we cannot com-
pute the exact answer for non-trivial problems, we run
ten very long runs of Gibbs sampling (10 million iter-
ations), and then compare each Gibbs run, as well as
approximate MAP, to the reference solution obtained
by averaging the nine remaining Gibbs runs; this yields
ten evaluations for each method.

Figure 4 shows that the solver quickly finds an opti-
mal solution to the approximate MAP problem, and it
takes Gibbs sampling nearly 100 times longer to reach
a solution that is as close to the reference as the one
found by approximate MAP. Table 1 shows that the
same pattern holds as the problem size increases: for
increasing values of L, Gibbs consistently takes 50 to
100 times longer to find a solution as close to the ref-
erence solution as the one found by MAP.

We conjecture that the approximate MAP solution
may be extremely close to the ground truth. In Fig-
ure 4, each Gibbs solution has a relative difference of
about 0.09 from the reference solution computed using
the other nine Gibbs runs, which suggests that there
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Table 1. Comparison of Gibbs vs. MAP: seconds to achieve
the same relative error compared with reference solution.

L 9 16 25 36 49

MAP time 0.9 1.9 3.4 9.7 17.2
Gibbs time 161.8 251.6 354.0 768.1 1115.5
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Figure 4. Relative difference from reference solution versus
time (log scale) for MAP and Gibbs (M = 1000, L = 49).
Gibbs and MAP: average over 10 trials; 95% confidence
intervals are negligible.

is still substantial error in the Gibbs runs after 10 mil-
lion iterations. Furthermore, each time we increased
the number of Gibbs iterations used to compute a ref-
erence solution, the MAP relative difference decreased,
meaning that the reference solution was getting closer
to the MAP solution.

Learning. Finally, we evaluated approximate MAP
as a substitute for Gibbs within the full EM learn-
ing procedure. We initialized the parameter vector
θ randomly and then ran three variants of the EM
algorithm: MAP-EM uses approximate MAP within
the E step; Monte Carlo EM (MCEM) uses a fixed
number of 100K Gibbs iterations per E step; and
stochastic approximation EM (SAEM) uses a smaller
number of 10K Gibbs iterations per E step, but it
combines those with samples from previous iterations.
SAEM usually has better convergence properties than
MCEM (Delyon et al., 1999). We employed step sizes
of γt = 1/t0.75 within SAEM. In the M step, we ap-
plied a gradient-based solver to update the parameters
θ of the log-linear model for transition probabilities.
For each algorithm we measured the relative error of
the final parameter vector from θtrue.

Figure 5 shows that MAP-EM dramatically outper-
forms the other two algorithms, especially as the prob-
lem size increases. SAEM has better long-term con-
vergence behavior than MCEM, but MAP-EM finds
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Figure 5. Relative error of learned parameters versus run-
ning time for different EM algorithms (MAP: 100 EM iter-
ations, MCEM and SAEM: 400 EM iterations, M = 1000).

parameters that are within 1% relative error of θtrue,
while SAEM still has relative error greater than 40%
after a much longer running time for the larger prob-
lems. We conclude that approximate MAP is an ex-
cellent substitute for marginal inference with the EM
algorithm, both in terms of accuracy and running time.

7. Conclusion

We presented hardness results for the problem of
marginal inference and an approximate algorithm for
the problem of MAP inference in collective graphical
models. We showed that exact marginal inference by
message passing runs in time that is polynomial ei-
ther in the population size or the cardinality of the
variables, but there is no algorithm that is polyno-
mial in both of these parameters unless P=NP. We
then showed that the MAP problem can be formu-
lated approximately as a non-linear convex optimiza-
tion problem. We demonstrated empirically that this
approximation is very accurate even for modest sized
populations and that approximate MAP inference is an
excellent substitute for marginal inference for comput-
ing the E step of the EM algorithm. Our approximate
MAP inference algorithm leads to a learning procedure
that is much more accurate and runs in a fraction of
the time of the only known alternatives.
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