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Abstract

We consider the problem of learning rules from natural language text sources. These sources,
such as news articles and web texts, are created by a writer to communicate information to a
reader, where the writer and reader share substantial domain knowledge. Consequently, the
texts tend to be concise and mention the minimum information necessary for the reader to
draw the correct conclusions. We study the problem of learning domain knowledge from such
concise texts, which is an instance of the general problem of learning in the presence of missing
data. However, unlike standard approaches to missing data, in this setting we know that facts
are more likely to be missing from the text in cases where the reader can infer them from
the facts that are mentioned combined with the domain knowledge. Hence, we can explicitly
model this “missingness” process and invert it via probabilistic inference to learn the underlying
domain knowledge. This paper introduces a mention model that models the probability of facts
being mentioned in the text based on what other facts have already been mentioned and domain
knowledge in the form of Horn clause rules. Learning must simultaneously search the space of
rules and learn the parameters of the mention model. We accomplish this via an application of
Expectation Maximization within a Markov Logic framework. An experimental evaluation on
synthetic and natural text data shows that the method can learn accurate rules and apply them
to new texts to make correct inferences. Experiments also show that the method out-performs
the standard EM approach that assumes mentions are missing at random.

1 Introduction

The immense volume of textual information available on the web provides an important opportunity
and challenge for AI: Can we develop methods that can learn domain knowledge by reading natural
texts such as news articles and web pages. We would like to acquire at least two kinds of domain
knowledge: concrete facts and general rules. Concrete facts can be extracted as logical relations or
as tuples to populate a data base. Systems such as Whirl [3], TextRunner [5], and NELL [1] learn
extraction patterns that can be applied to text to extract instances of relations.

General rules can be acquired in two ways. First, they may be stated explicitly in the text—
particularly in tutorial texts. Second, they can be acquired by generalizing from the extracted con-
crete facts. In this paper, we focus on the latter setting: Given a data base of literals extracted from
natural language texts (e.g., newspaper articles), we seek to learn a set of probabilistic Horn clauses
that capture general rules.

Unfortunately for rule learning algorithms, natural language texts are incomplete. The writer tends
to mention only enough information to allow the reader to easily infer the remaining facts from
shared background knowledge. This aspect of economy in language was first pointed out by Grice
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[7] in his maxims of cooperative conversation (see Table 1). For example, consider the following
sentence that discusses a National Football League (NFL) game:

Table 1: Grice’s Conversational Maxims

1 Be truthful—do not say falsehoods.
2 Be concise—say as much as

necessary, but no more.
3 Be relevant.
4 Be clear.

“Given the commanding lead of Kansas city on the
road, Denver Broncos’ 14-10 victory surprised many”

This mentions that Kansas City is the away team and
that the Denver Broncos won the game, but does not
mention that Kansas City lost the game or that the
Denver Broncos was the home team. Of course these
facts can be inferred from domain knowledge rules such as the rule that “if one team is the winner,
the other is the loser (and vice versa)” and the rule “if one team is the home team, the other is the
away team (and vice versa)”. This is an instance of the second maxim.

Another interesting case arises when shared knowledge could lead the reader to an incorrect infer-
ence:

“Ahmed Said Khadr, an Egyptian-born Canadian, was killed last October in Pakistan.”

This explicitly mentions that Khadr is Canadian, because otherwise the reader would infer that he
was Egyptian based on the domain knowledge rule “if a person is born in a country, then the person
is a citizen of that country”. Grice did not discuss this case, but we can state this as a corollary of
the first maxim: Do not by omission mislead the reader into believing falsehoods.

This paper formalizes the first two maxims, including this corollary, and then shows how to apply
them to learn probabilistic Horn clause rules from propositions extracted from news stories. We
show that rules learned this way are able to correctly infer more information from incomplete texts
than a baseline approach that treats propositions in news stories as missing at random.

The problem of learning rules from extracted texts has been studied previously [11, 2, 17]. These
systems rely on finding documents in which all of the facts participating in a rule are mentioned.
If enough such documents can be found, then standard rule learning algorithms can be applied. A
drawback of this approach is that it is difficult to learn rules unless there are many documents that
provide such complete training examples. The central hypothesis of our work is that by explicitly
modeling the process by which facts are mentioned, we can learn rules from sets of documents that
are smaller and less complete.

The line of work most similar to this paper is that of Michael and Valiant [10, 9] and Doppa, et al.
[4]. They study learning hard (non-probabilistic) rules from incomplete extractions. In contrast with
our approach of learning explicit probabilistic models, they take the simpler approach of implicitly
inverting the conversational maxims when counting evidence for a proposed rule. Specifically, they
count an example as consistent with a proposed rule unless it explicitly contradicts the rule. Al-
though this approach is much less expensive than the probabilistic approach described in this paper,
it has difficulty with soft (probabilistic) rules. To handle these, these authors sort the rules by their
scores and keep high scoring rules even if they have some contraditions. Such an approach can learn
“almost hard” rules, but will have difficulty with rules that are highly probabilistic (e.g., that the
home team is somewhat more likely to win a game than the away team).

Our method has additional advantages. First, it provides a more general framework that can support
alternative sets of conversational maxims, such as mentions based on saliency, recency (prefer to
mention a more recent event rather than an older event), and surprise (prefer to mention a less likely
event rather than a more likely event). Second, when applied to new articles, it assigns probabilities
to alternative interpretations, which is important for subsequent processing. Third, it provides an
elegant, first-principles account of the process, which can then be compiled to yield more efficient
learning and reasoning procedures.

2 Technical Approach

We begin with a logical formalization of the Gricean maxims. Then we present our implementation
of these maxims in Markov Logic [15]. Finally, we describe a method for probabilistically inverting
the maxims to learn rules from textual mentions.
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Formalizing the Gricean maxims. Consider a writer and a reader who share domain knowledge
K. Suppose that when told a fact F , the reader will infer an additional fact G. We will write this
as (K,MENTION(F ) `reader G), where `reader represents the inference procedure of the reader
and MENTION is a modal operator that captures the action of mentioning a fact in the text. Note
that the reader’s inference procedure is not standard first-order deduction, but instead is likely to be
incomplete and non-monotonic or probabilistic.

With this notation, we can formalize the first two Gricean maxims as follows:

• Mention true facts/don’t lie:

F ⇒ MENTION(F ) (1)
MENTION(F ) ⇒ F (2)

The first formula is overly strong, because it requires the writer to mention all true facts. Below,
we will show how to use Markov Logic weights to weaken this. The second formula captures a
positive version of “don’t lie”—if something is mentioned, then it is true. For news articles, it
does not need to be weakened probabilistically.

• Don’t mention facts that can be inferred by the reader:

MENTION(F ) ∧ G ∧ (K,MENTION(F ) `reader G ⇒ ¬MENTION(G)

• Mention facts needed to prevent incorrect reader inferences:

MENTION(F ) ∧ ¬G ∧ (K,MENTION(F ) `reader G) ∧
H ∧ (K,MENTION(F ∧ H) 6`reader G) ⇒ MENTION(H)

In this formula H is a true fact that, when combined with F , is sufficient to prevent the reader
from inferring G.

Implementation in Markov Logic. Although this formalization is very general, it is difficult to
apply directly because of the embedded invocation of the reader’s inference procedure and the use
of the MENTION modality. Consequently, we sidestep this problem by manually “compiling” the
maxims into ordinary first-order Markov Logic as follows. The notation w : indicates that a rule has
a weight w in Markov Logic.

The first maxim is encoded in terms of fact-to-mention and mention-to-fact rules. For each predicate
P in the domain of discourse, we write

w1 : FACT P ⇒ MENTION P
w2 : MENTION P ⇒ FACT P.

Suppose that the shared knowledge K contains the Horn clause rule P ⇒ Q, then we encode the
positive form of second maxim in terms of the mention-to-mention rule:

w3 : MENTION P ∧ FACT Q ⇒ ¬MENTION Q

One might expect that we could encode the faulty-inference-by-omission corollary as

w4 : MENTION P ∧ ¬FACT Q ⇒ MENTION NOTQ,

where we have chosen MENTION NOTQ to play the role of H in axiom 2. However, in news
stories, there is a strong preference for H to be a positive assertion, rather than a negative as-
sertion. For example, in the citizenship case, it would be unnatural to say “Ahmed Said Khadr,
an Egyptian-born non-Egyptian. . . ”. In particular, because CITIZENOF(p, c) is generally a func-
tion from p to c (i.e., a person is typically a citizen of only one country), it suffices to men-
tion CITIZENOF(Khadr,Canada) to prevent the faulty inference CITIZENOF(Khadr,Egypt).
Hence, for rules of the form P (x, y) ⇒ Q(x, y), where Q is a function from its first to its second
argument, we can implement the inference-by-omission maxim as

w5 : MENTION P(x, y) ∧ FACT Q(x, z) ∧ (y 6= z) ⇒ MENTION Q(x, z).

Finally, the shared knowledge P ⇒ Q is represented by the fact-to-fact rule:

w6 : FACT P ⇒ FACT Q
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In Markov Logic, each of these rules is assigned a (learned) weight which can be viewed as a cost
of violating the rule. The probability of a world ω is proportional to

exp

∑
j

wjI[Rule j is satisfied by ω]

 ,

where j iterates over all groundings of the Markov logic rules in world ω and I[φ] is 1 if φ is true
and 0 otherwise.

An advantage of Markov Logic is that it allows us to define a probabilistic model even when there
are contradictions and cycles in the logical rules. Hence, we can include both a rule that says “if the
home team is mentioned, then the away team is not mentioned” and rules that say “the home team is
always mentioned” and “the away team is always mentioned”. Obviously a possible world ω cannot
satisfy all of these rules. The relative weights on the rules determine the probability that particular
literals are actually mentioned.

Learning. We seek to learn both the rules and their weights. We proceed by first proposing can-
didate fact-to-fact rules and then automatically generating the other rules (especially the mention-
to-mention rules) from the general rule schemata described above. Then we apply EM to learn the
weights on all of the rules. This has the effect of removing unnecessary rules by driving their weights
to zero.

Proposing Candidate Fact-to-Fact Rules. For each predicate symbol and its specified arity, we
generate a set of candidate Horn clauses with that predicate as the head (consequent). For the rule
body (antecedent), we consider all conjunctions of literals involving other predicates (i.e., we do not
allow recursive rules) up to a fixed maximum length. Each candidate rule is scored on the mentions
in the training documents for support (number of training examples that mention all facts in the
body) and confidence (the conditional probability that the head is mentioned given that the body is
satisfied). We discard all rules that do not achieve minimum support σ and then keep the top τ most
confident rules. The values of σ and τ are determined via cross-validation within the training set.
The selected rules are then entered into the knowledge base. From each fact-to-fact rule, we derive
mention-to-mention rules as described above. For each predicate, we also generate fact-to-mention
and mention-to-fact rules.

Table 2: Learn Gricean Mention Model

Input: DI =Incomplete training examples
τ = number of rules per head
σ = minimum support per rule
Output:M = Explicit mention model

1: LEARN GRICEAN MENTION MODEL:
2: exhaustively learn rules for each head
3: discard rules with less than σ support
4: select the τ most confident rulesR for each head
5: R′ :=R
6: for each rule (factP => factQ) ∈ R do
7: add mentionP ⇒ ¬mentionQ toR′

8: end for
9: for every factP ∈ R do

10: add factP ⇒ mentionP toR′

11: add mentionP ⇒ factP toR′

12: end for
13: repeat
14: E-Step: apply inference to predict weighted facts F
15: define complete weighted data DC := DI ∪ F
16: M-Step: learn weights for rules inR′ using dataDC

17: until convergence
18: return the set of weighted rulesR′

Learning the Weights. The goal of
weight learning is to maximize the
likelihood of the observed mentions
(in the training set) by adjusting the
weights of the rules. Because our
training data only consists of men-
tions and no facts, the facts are la-
tent (hidden variables), and we must
apply the EM algorithm to learn the
weights.

We employ the Markov Logic system
Alchemy [8] for learning and infer-
ence. To implement EM, we applied
the MC-SAT algorithm in the E-step
and maximum pseudo-log likelihood
(“generative training”) for the M step.
EM is iterated to convergence, which
only requires a few iterations. Table 2
summarizes the pseudo-code of the
algorithm. MAP inference for pre-
diction is achieved using Alchemy’s
extension of MaxWalkSat.

Treating Missing Mentions as
Missing At Random: An alterna-
tive to the Gricean mention model
described above is to assume that the writer chooses which facts to mention (or omit) at random
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Table 3: Synthetic Data Properties

q

0.17 0.33 0.50 0.67 0.83 0.97

Mentioned literals (%) 91.38 80.74 68.72 63.51 51.70 42.13
Complete records (%) 61.70 30.64 8.51 5.53 0.43 0.00

according to some unknown probability distribution that does not depend on the values of the
missing variables—a setting known as Missing-At-Random (MAR). When data are MAR, it is
possible to obtain unbiased estimates of the true distribution via imputation using EM [16]. We
implemented this approach as follows. We apply the same method of learning rules (requiring
minimum support σ and then taking the τ most confident rules). Each learned rule has the general
form MENTION A ⇒ MENTION B. The collection of rules is treated as a model of the joint
distribution over the mentions. Generative weight learning combined with Alchemy’s builtin EM
implementation is then applied to learn the weights on these rules.

3 Experimental Evaluation

We evaluated our mention model approach using data generated from a known mention model to
understand its behavior. Then we compared its performance to the MAR approach on actual extrac-
tions from news stories about NFL football games, citizenship, and Somali ship hijackings.

Synthetic Mention Experiment. The goal of this experiment was to evaluate the ability of our
method to learn accurate rules from data that match the assumptions of the algorithm. We also
sought to understand how performance varies as a function of the amount of information omitted
from the text.

The data were generated using a database of NFL games (from 1998 and 2000-2005)
downloaded from www.databasefootball.com. These games were then en-
coded using the predicates TEAMINGAME(Game, Team), GAMEWINNER(Game, Team),
GAMELOSER(Game, Team), HOMETEAM(Game, Team), AWAYTEAM(Game, Team),
and TEAMGAMESCORE(Game, Team, Score) and treated as the ground truth.
Note that these predicates can be divided into two correlated sets: WL =
{GAMEWINNER, GAMELOSER, TEAMGAMESCORE} and HA = {HOMETEAM, AWAYTEAM}.
From this ground truth, we generate a set of mentions for each game as follows. One literal is
chosen uniformly at random from each of WL and HA and mentioned. Then each of the remaining
literals is mentioned with probability 1−q, where q is a parameter that we varied in the experiments.
Table 3 shows the average percentage of literals mentioned in each generated “news story” and the
percentage of generated “news stories” that mentioned all literals.

Table 4: Gricean Mention Model Performance on Synthetic
Data. Each cell indicates % of complete records inferred.

Training q Test q

0.17 0.33 0.50 0.67 0.83 0.97
(%) (%) (%) (%) (%) (%)

0.17 100 100 100 100 100 100
0.33 100 99 97 96 90 85
0.50 100 99 98 97 93 87
0.67 100 98 92 92 81 66
0.83 99 98 72 71 61 54
0.97 91 81 72 68 56 41

For each q, we generated 5 differ-
ent datasets, each containing 235
games. For each value of q, we
ran the algorithm five times. In
each iteration, one dataset was used
for training, another for validation,
and the remaining 3 for testing.
The training and validation datasets
shared the same value of q. The re-
sulting learned rules were evaluated
on the test sets for all of the differ-
ent values of q. The validation set is
employed to determine the thresh-
olds τ and σ during rule learning and to decide when to terminate EM. The chosen values were
τ = 10, σ = 0.5 (50% of the total training instances), and between 3 and 8 EM iterations.

Table 4 reports the proportion of complete game records (i.e., all four literals) that were correctly
inferred, averaged over the five runs. Note that any facts mentioned in the generated articles are
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automatically correctly inferred, so if no inference was performed at all, the results would match the
second row of Table 3. Notice that when trained on data with low missingness (e.g. q = 0.17), the
algorithm was able to learn rules that predict well for articles with much higher levels of missing
values. This is because q = 0.17 means that only 8.62% of the literals are missing in the training
dataset, which results in 61.70% complete records. These are sufficient to allow learning highly-
accurate rules. However, as the proportion of missing literals in the training data increases, the
algorithm starts learning incorrect rules, so performance drops. In particular, when q = 0.97, the
training documents contain no complete records (Table 3). Nonetheless, the learned rules are still
able to completely and correctly reconstruct 41% of the games!

The rules learned under such high levels of missingness are not totally correct. Here is an example
of one learned rule (for q = 0.97):

FACT HOMETEAM(g, t1) ∧ FACT TEAMINGAME(g, t1) ⇒ FACT GAMEWINNER(g, t1).

This rule says that the home team always wins. When appropriately weighted in Markov Logic, this
is a reasonable rule even though it is not perfectly correct (nor was it a rule that we applied during
the synthetic data generation process).

Table 5: Percentage of Literals Correctly Predicted

Training q Test q

0.17 0.33 0.50 0.67 0.83 0.97
(%) (%) (%) (%) (%) (%)

0.97 98 95 93 92 89 85

In addition to measuring the fraction of
entire games correctly inferred, we can
obtain a more fine-grained assessment by
measuring the fraction of individual liter-
als correctly inferred. Table 5 shows this
for the q = 0.97 training scenario. We
can see that even when the test articles
have q = 0.97 (which means only 42.13% of literals are mentioned), the learned rules are able to
correctly infer 85% of the literals. By comparison, if the literals had been predicted independently
at random, only 6.25% would be correctly predicted.

Experiments with Real Data: We performed experiments on three datasets extracted from news
stories: NFL games, citizenship, and Somali ship hijackings.

Table 6: Statistics on mentions for extracted NFL games
(after repairing violations of integrity constraints). Under
“Home/Away”, “men none” gives the percentage of articles
in which neither the Home nor the Away team was men-
tioned, “men one”, the percentage in which exactly one of
Home or Away was mentioned, and “men both”, the per-
centage where both were mentioned.

Home/Away Winner/Loser

men men men men men men
none one both none one both
(%) (%) (%) (%) (%) (%)

NFL Train 17.9 58.9 23.2 17.9 57.1 25.0
NFL Test 83.6 19.6 0.0 1.8 98.2 0.0

NFL Games. A state-of-the-art infor-
mation extraction system from BBN
Technologies [6, 14] was applied to a
corpus of 1000 documents taken from
the Gigaword corpus V4 [13] to ex-
tract the same five propositions em-
ployed in the synthetic data experi-
ments. The BBN coreference sys-
tem attempted to detect and combine
multiple mentions of the same game
within a single article. The result-
ing data set contained 5,850 games.
However, the data still contained many
coreference errors, which produced
games apparently involving more than
two teams or where one team achieved multiple scores.

To address these problems, we took each extracted game and applied a set of integrity constraints.
The integrity constraints were learned automatically from 5 complete game records. Examples of
the learned constraints include “Every game has exactly two teams” and “Every game has exactly
one winner.” Each extracted game was then converted into multiple games by deleting literals in
all possible ways until all of the integrity constraints were satisfied. The team names were replaced
(arbitrarily) with constants A and B. The games were then processed to remove duplicates. The
result was a set of 56 distinct extracted games, which we call NFL Train. To develop a test set,
NFL Test, we manually extracted 55 games from news stories about the 2010 NFL season (which
has no overlap with Gigaword V4). Table 6 summarizes these game records.

Here is an excerpt from one of the stories that was analyzed during learning: “William Floyd rushed
for three touchdowns and Steve Young scored two more, moving the San Francisco 49ers one victory
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from the Super Bowl with a 44-15 American football rout of Chicago.” The initial set of literals
extracted by the BBN system was the following:

MENTION TEAMINGAME(NFLGame9209, SanFrancisco49ers) ∧
MENTION TEAMINGAME(NFLGame9209, ChicagoBears) ∧
MENTION GAMEWINNER(NFLGame9209, SanFrancisco49ers) ∧
MENTION GAMEWINNER(NFLGame9209, ChicagoBears) ∧
MENTION GAMELOSER(NFLGame9209, ChicagoBears).

After processing with the learned integrity constraints, the extracted interpretation was the following:

MENTION TEAMINGAME(NFLGame9209, SanFrancisco49ers) ∧
MENTION TEAMINGAME(NFLGame9209, ChicagoBears) ∧
MENTION GAMEWINNER(NFLGame9209, SanFrancisco49ers) ∧
MENTION GAMELOSER(NFLGame9209, ChicagoBears).

Table 7: Observed percentage of cases where ex-
actly one literal is mentioned and the percentage
predicted if the literals were missing at random

Home/Away Winner/Loser

obs. pred. obs. pred.
men men men men
one one one one
(%) (%) (%) (%)

NFL Train 58.9 49.9 57.1 49.8
NFL Test 19.6 34.5 98.2 47.9

It is interesting to ask whether these data are
consistent with the explicit mention model ver-
sus the missing-at-random model. Let us sup-
pose that under MAR, the probability that a fact
will be mentioned is p. Then the probability
that both literals in a rule (e.g., home/away or
winner/loser) will be mentioned is p2, the prob-
ability that both will be missing is (1−p)2, and
the probability that exactly one will be men-
tioned is 2p(1 − p). We can fit the best value
for p to the observed missingness rates to min-
imize the KL divergence between the predicted
and observed distributions. If the explicit mention model is correct, then the MAR fit will be a poor
estimate of the fraction of cases where exactly one literal is missing. Table 7 shows the results. On
NFL Train, it is clear that the MAR model seriously underestimates the probability that exactly one
literal will be mentioned. The NFL Test data is inconsistent with the MAR assumption, because
there are no cases where both predicates are mentioned. If we estimate p based only on the cases
where both are missing or one is missing, the MAR model seriously underestimates the one-missing
probability. Hence, we can see that train and test, though drawn from different corpora and extracted
by different methods, both are inconsistent with the MAR assumption.

Table 8: NFL test set
performance.

Gricean MAR
Model Model

(%) (%)

100.0 50.0

We applied both our explicit mention model and the MAR model to the
NFL dataset. The cross-validated parameter values for the explicit mention
model were ε = 0.5 and τ = 50, and the number of EM iterations varied
between 2 and 3. We measured performance relative to the performance
that could be attained by a system that uses the correct rules. The results are
summarized in Table 8. Our method achieves perfect performance, whereas
the MAR method only reconstructs half of the reconstructable games. This
reflects the extreme difficulty of the test set, where none of the articles men-
tions all literals involved in any rule.

Here are a few examples of the rules that are learned:

0.00436 : FACT TEAMINGAME(g, t1) ∧ FACT GAMELOSER(g, t2) ∧ (t1 6= t2) ⇒
FACT GAMEWINNER(g, t1)

0.17445 : MENTION TEAMINGAME(g, t1) ∧ MENTION GAMELOSER(g, t2) ∧ (t1 6= t2) ⇒
¬MENTION GAMEWINNER(g, t1)

The first rule is a weak form of the “fact” rule that if one team is the loser, the other is the winner.
The second rule is the corresponding “mention” rule that if the loser is mentioned then the winner is
not. The small weights on these rules are difficult to interpret in isolation, because in Markov logic,
all of the weights are coupled and there are other learned rules that involve the same literals.

Birthplace and Citizenship. We repeated this same experiment on a different set of 182 articles
selected from the ACE08 Evaluation corpus [12] and extracted by the same methods. In these
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articles, the citizenship of a person is mentioned 583 times and birthplace only 25 times. Both are
mentioned in the same article only 6 times (and of these, birthplace and citizenship are the same in
only 4). Clearly, this is another case where the MAR assumption does not hold. Integrity constraints
were applied to force each person to have at most one birthplace and one country of citizenship,
and then both methods were applied. The cross-validated parameter values for the explicit mention
model were ε = 0.5 and τ = 50 and the number of EM iterations varied between 2 and 3. Table 9
shows the two cases of interest and the probability assigned to the missing fact by the two methods.
The inverse Gricean approach gives much better results.

Table 9: Birthplace and Citizenship: Predicted
probability assigned to the correct interpretation by
the Gricean mention model and the MAR model.

Configuration Gricean Model MAR
Pred. prob. Pred. prob.

Citizenship missing 1.000 0.969
Birthplace missing 1.000 0.565

Somali Ship Hijacking. We collected a set
of 41 news stories concerning ship hijack-
ings based on ship names taken from the web
site coordination-maree-noire.eu.
From these documents, we manually ex-
tracted all mentions of the ownership coun-
try and flag country of the hijacked ships.
Twenty-five stories mentioned only one fact
(ownership or flag), while 16 mentioned both.
Of the 16, 14 reported the flag country as different from the ownership country. The Gricean maxims
predict that if the two countries are the same, then only one of them will be mentioned. The results
(Table 10) show that the Gricean model is again much more accurate than the MAR model.

4 Conclusion

Table 10: Flag and Ownership: Predicted probabil-
ity assigned to the missing fact by the Gricean men-
tion model and the MAR model. Cross-validated
parameter values ε = 0.5 and τ = 50; 2-3 EM iter-
ations.

Configuration Gricean Model MAR
Pred. prob. Pred. prob.

Ownership missing 1.000 0.459
Flag missing 1.000 0.519

This paper has shown how to formalize
the Gricean conversational maxims, compile
them into Markov Logic, and invert them via
probabilistic reasoning to learn Horn clause
rules from facts extracted from documents.
Experiments on synthetic mentions showed
that our method is able to correctly recon-
struct complete records even when neither the
training data nor the test data contain com-
plete records. Our three studies provide ev-
idence that news articles obey the maxims
across three domains. In all three domains, our method achieves excellent performance that far
exceeds the performance of standard EM imputation. This shows conclusively that rule learning
benefits from employing an explicit model of the process that generates the data. Indeed, it allows
rules to be learned correctly from only a handful of complete training examples.

An interesting direction for future work is to learn forms of knowledge more complex than Horn
clauses. For example, the state of a hijacked ship can change over time from states such as “attacked”
and “captured” to states such as “ransom demanded” and “released”. The Gricean mention model
predicts that if a news story mentions that a ship was released, then it does not need to mention that
the ship was “attacked” or “captured”. Handling such cases will require extending the methods in
this paper to reason about time and what the author and reader know at each point in time. It will also
require better methods for joint inference, because there are more than 10 predicates in this domain,
and our current EM implementation scales exponentially in the number of interrelated predicates.
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