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Abstract

In the era of large scientific data sets, there is an ur-
gent need for methods to automatically prioritize data
for review. At the same time, for any automated method
to be adopted by scientists, it must make decisions that
they can understand and trust. In this paper, we propose
Discovery through Eigenbasis Modeling of Uninterest-
ing Data (DEMUD), which uses principal components
modeling and reconstruction error to prioritize data.
DEMUD’s major advance is to offer domain-specific
explanations for its prioritizations. We evaluated DE-
MUD’s ability to quickly identify diverse items of in-
terest and the value of the explanations it provides. We
found that DEMUD performs as well or better than ex-
isting class discovery methods and provides, uniquely,
the first explanations for why those items are of inter-
est. Further, in collaborations with planetary scientists,
we found that DEMUD (1) quickly identifies very rare
items of scientific value, (2) maintains high diversity in
its selections, and (3) provides explanations that greatly
improve human classification accuracy.

Introduction
Scientists are increasingly acquiring data sets whose size
renders careful examination of each item impractical. Meth-
ods for automatically prioritizing data by novelty or scien-
tific interest are vital for making good use of limited analyst
time. Equally important, for adoption and for the field of AI,
is for such methods to be able to justify their selections with
comprehensible explanations.

Our goal is to facilitate scientific discovery, by which we
mean “the general process by which scientists discover a
new property or learn something new about a natural tar-
get or phenomenon,” as distinguished from the use of the
term in the machine learning field to refer to the induction
of scientific laws from data (Langley et al. 1987). Specifi-
cally, we focus on the discovery of unusual or unexpected
observations within the context of a larger data set.

We propose Discovery through Eigenbasis Modeling of
Uninteresting Data (DEMUD) as a strategy for quickly high-
lighting unusual or interesting items in large data sets. DE-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MUD uses principal components modeling and reconstruc-
tion error to prioritize the data. DEMUD differs from ex-
isting anomaly detection methods primarily in its ability to
offer accompanying domain-specific explanations for why
a given item is deemed potentially interesting. These expla-
nations visually depict deviation in the native feature space,
and are therefore directly related to physical attributes of the
process under study.

We present an illustrative result on a benchmark data set
commonly used to evaluate existing methods for “rare cate-
gory discovery,” which is one particular scientific discovery
problem. DEMUD performs as well or better than state-of-
the-art methods such as SEDER (He and Carbonell 2009)
and CLOVER (Huang et al. 2012). Uniquely, DEMUD also
offers explanations for its decisions, leading to new and in-
teresting insights even for benchmark data sets.

However, we are unsatisfied with simply conducting
benchmark tests. Our ultimate goal is to develop tools that
are deemed relevant and useful by the scientific community.
Therefore, we have forged collaborations with planetary sci-
entists who have evaluated DEMUD’s value and explana-
tory power in the context of their scientific goals. In exper-
iments with two hyperspectral data sets, we found that DE-
MUD (1) discovers extremely rare minerals very quickly, (2)
maintains a high novelty score, and (3) provides meaning-
ful explanations that greatly increase the accuracy of expert-
generated classifications. Scientists have indicated that they
particularly value these explanations and that this advance
renders the system likely to be adopted for operational use.

Related Work
Our problem formulation is strongly related to anomaly de-
tection, an area of extensive research (Chandola, Banerjee,
and Kumar 2009). Common strategies include supervised
classification (anomalous vs. normal), rule induction to de-
scribe normal items, density-based analysis, clustering, and
spectral techniques such as Principal Components Analysis.
Common applications include network intrusion, fraud, and
disease outbreak detection.

The most relevant work for our purposes is the use of PCA
for novelty detection (Hoffmann 2007). PCA-based model-
ing is generally applied to the entire data set for anomaly



detection (Shyu et al. 2003; Dutta et al. 2007). However,
simply ranking all items by an independently computed
anomaly score is unlikely to suffice for scientific discovery.
It is also important that the results exhibit diversity. That
is, subsequent items selected for manual review should take
into account those already presented to reduce redundancy
and increase the chance of discovering something new.

An emphasis on diversity relates to the problem of rare
category detection, in which the goal is to discover an ex-
ample from every class in the data set as quickly as pos-
sible (Pelleg and Moore 2004; He and Carbonell 2007;
2009). These systems iteratively analyze an unlabeled data
set to select items that are then labeled by an oracle. Data
sets with balanced class distributions can be explored ef-
fectively with random selection, but classes with only mi-
nority representation require a more complex solution. Such
methods include the use of mixture models (Pelleg and
Moore 2004) or nearest-neighbor strategies (He and Car-
bonell 2007), both of which require that the total number
of classes be specified in advance. This requirement ren-
ders those methods unsuitable for the scientific discovery
problem, in which we do not know how many classes are
present. SEDER (He and Carbonell 2009), which performs
a semiparametric density estimation to discover classes, and
CLOVER (Huang et al. 2012), which uses LVD (local vari-
ation degree) to improve the computational cost and rate of
class discovery, do not require knowledge about the number
of classes, but they retain the requirement for a labeling or-
acle. In contrast, for scientific discovery the user cannot al-
ways ascribe a label when presented with a new item. In fact,
items that represent a new and previously undiscovered class
may be unlabelable without further intensive study. There-
fore, we seek a solution that (1) quickly detects novel items
and (2) does not require the user to assign category labels.

The final important aspect of this work is its emphasis
on providing human-comprehensible explanations or jus-
tifications for machine-made decisions. Explanation-based
learning (Mitchell, Keller, and Kedar-Cabelli 1986) tackles
the complementary problem of generating explanations for
expert-labeled item classifications by employing a relevant
domain theory. Other techniques such as genetic program-
ming can induce simple explanatory rules for classification
decisions (Goodacre 2003). To our knowledge, no existing
anomaly detection or rare category detection methods have
attempted to do this. Strumbelj et al. (2010) proposed the use
of per-feature weights to explain per-item classification de-
cisions. Social and natural sciences have long histories of in-
terpreting discriminant models with per-feature loading fac-
tors (Betz 1987). These methods are closer in spirit to what
DEMUD can provide, but they still depend on the existence
of pre-defined classes and labels. DEMUD generates expla-
nations for why each item was selected without such labels.

DEMUD: Discovery via Eigenbasis Modeling
of Uninteresting Data

We propose a machine learning solution called Discovery
through Eigenbasis Modeling of Uninteresting Data (DE-
MUD). Here, the term “uninteresting” is a judgment with

Algorithm 1 DEMUD: Discovery through Eigenbasis Mod-
eling of Uninteresting Data

1: Let X ∈ R(n,d) be the input data set
2: Let XU = ∅ be the set of uninteresting items
3: Let k be the number of principal components used to

model XU

4: Let U, µ = SVD(X, k) be the initial model of XU and
the data mean µ

5: while patience remains and X 6= ∅ do
6: Compute reconstructions x̂ = UUT (x− µ) + µ

for all x ∈ X
7: Update scores Sx = R(x) with Eqn. 2 for x ∈ X
8: Select argmaxx′∈X Sx

9: Create per-feature explanations ej = x′
j − x̂′

j
for j = 1 . . . d

10: X = X \ {x′}
11: XU = XU

⋃
{x′}

12: if |XU| == 1 then
13: Let U, µ = SVD(XU, k)
14: else
15: Update U, µ = incremSVD(U,x′, k)
16: end if
17: end while

respect to what should be selected next. It encompasses
multiple meanings: data that have already been seen, data
that do not fall into a category of interest, or prior knowl-
edge about uninteresting artifacts or behaviors. DEMUD it-
eratively builds a model of these uninteresting items. This
model captures what the user has already seen and should
therefore be ignored to increase the chance of selecting a
new item of high interest or novelty.

There are several possible ways to model the uninteresting
items. For scalability to large data sets, we selected a linear
method that can be efficiently and incrementally updated.
We compute a low-dimensional eigenbasis representation of
the uninteresting items via Singular Value Decomposition
(SVD): XU

T = UΣVT . We retain the top k vectors in
U, ranked by the magnitude of the corresponding singular
values, then use this model to rank the remaining items by
their reconstruction error. Items with high error are those
that are poorly modeled by U and therefore have the highest
potential to be novel.

DEMUD is an iterative strategy (see Algorithm 1). At
each iteration, the items in X have not (yet) participated in
the construction of U, since X and XU are disjoint. There-
fore we reconstruct each x as x̂ by projecting x onto U and
then back into the original feature space. The score for x is
the reconstruction error between x and x̂ (lines 6–7):

R(x) = ||x− x̂||2 (1)

= ||x− (UUT (x− µ) + µ)||2, (2)

where µ is the mean of all previously seen x ∈ XU. The
first iteration, in which XU is empty, uses the full data set
mean for µ and U from the full data set decomposition (line
4). The top-scoring observation x is selected (line 8).

Next, DEMUD creates per-feature explanations that are



the residual values, i.e., the difference between the true value
and the reconstructed one, which is the information that the
model could not explain (line 9). These are discussed further
in the next section. Then x is removed from X (line 10) and
added to the set of uninteresting items (line 11).

DEMUD’s model U is initially computed from the whole
data set (line 4) to provide a default ranking of the data.
The first iteration performs an SVD on the single item in
XU (line 13), and subsequent iterations update this U with
the new x′ (line 15). DEMUD uses a fast, incremental SVD
technique (Lim et al. 2005) that improves over the popular
R-SVD algorithm (Golub and Van Loan 1996) by also track-
ing changes in the sample mean µ induced by the inclusion
of x′:

µ′ =
n

n+ 1
µ+

1

n+ 1
x′, (3)

where n is the number of items that contributed to the
existing U. It then passes U and an augmented matrix[
x′ − µ′|

√
n

n+1 (µ− µ
′)
]

to R-SVD to obtain the new U.

DEMUD with Explanations
The explanations generated by DEMUD (line 9 in Algo-
rithm 1) express the degree to which each feature value de-
viated from the model’s expectations. This is computed as
the difference between the observed value and the value pre-
dicted by the model via reconstruction. As we will see in
the Results section, these quantitative explanations can pro-
vide powerful interpretative insights when combined with
domain knowledge about the features.

DEMUD’s explanations differ from methods for feature
selection, which identify features that are relevant for all
items in the data set. DEMUD’s explanations are not only
item-specific, but also context-specific. Since the model U is
updated after each item is selected, the explanations indicate
why each feature value is anomalous with respect to what
has been seen before. Those judgments change with each it-
eration, tracking what the human reviewer has already seen
and (presumably) learned.

Experimental Results
We conducted experiments to evaluate (1) DEMUD’s ability
to discover novel items within a data set and (2) the utility
of the explanations generated by the system.

Benchmark class discovery
As previously discussed, class discovery is one kind of sci-
entific discovery that we aim to facilitate. Evaluating DE-
MUD on this task also allows us to compare directly with
existing techniques that depend on the definition of discrete
classes, even though DEMUD does not.

The glass data set can be found in the UCI reposi-
tory (Frank and Asuncion 2010). It consists of 214 glass
fragments that are described by 9 features: their refractive
index (RI) and 8 compositional features (Na, Mg, Al, Si, K,
Ca, Ba, and Fe content). There are six types of glass in the
data set: building windows that are float processed, building
windows that were not float processed, vehicle windows that
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Figure 1: Class discovery rate for the glass data set (n =
214, d = 9). Methods that learn iteratively (solid lines) tend
to perform better than static methods (dashed). CLOVER is
the best-performing previous method but requires a labeling
oracle. DEMUD discovers all 6 classes in only 8 selections
without an oracle or knowledge of the number of classes.

were float processed, containers, tableware, and headlamps.
This has been one of the data sets of choice for use by re-
searchers working on rare category detection methods.

Class discovery. Figure 1 shows the empirical class dis-
covery rate for the glass data set. Results for CLOVER and
random sampling were obtained from Huang et al. (2012);
results for SEDER, NNDM, and Interleave were obtained
from He and Carbonell (2009). The figure shows results for
DEMUD (k = 2) and for a static baseline strategy that ranks
all items by their reconstruction error using the full data set
SVD (k = 2). DEMUD differs in that it iteratively updates
its model to select items that are different from those al-
ready selected. CLOVER achieved the previous best result
in discovering all classes with 15 items selected; DEMUD
required only 8.

Although CLOVER and SEDER are “prior-free” in that
they do not require advance knowledge of how many classes
there are, they do require feedback for each selection be-
fore proceeding to the next. DEMUD (and the static SVD)
require no feedback to continue exploring the data set. Of
course, an oracle or reviewer is required to assess whether
a new class has been discovered, but this can be done after
DEMUD processes the whole data set, rather than requiring
that the oracle be available in the processing loop. Further,
the oracle’s time can be employed to assess only the top-
ranked items rather than required for the whole data set.

Glass explanations. In addition to discovering classes,
DEMUD provides an explanation for why each item was se-
lected. Table 1 shows the explanations associated with each
new class discovered, in terms of the item’s residuals (the
difference between the observed and reconstructed values).
We highlight residuals greater than 1.00 (percent composi-
tion) for emphasis (positive in green, negative in red). For
example, the first example of container glass is strongly en-



Table 1: DEMUD (using k = 2) explanations for each class discovered in the glass data set, expressed as residuals in original
units (percent composition). Positive (negative) values are higher (lower) than expected; residuals with absolute value greater
than 1.00 are highlighted. The first discovery of an example of each of the 6 classes is shown. All 6 classes were discovered
after 8 selections from the data set of 214 items, which is the best published result.

Selection Class (proportion) RI Na Mg Al Si K Ca Ba Fe
1 container (6%) −0.001 −1.60 −0.86 +0.79 −2.80 +5.40 −0.24 −0.88 −0.01
2 building window, non-float (36%) 0.000 −0.72 0.00 −2.00 −0.32 −6.10 +9.20 0.00 +0.24
3 tableware (4%) +0.005 +4.60 0.00 −2.10 +5.00 −4.50 −2.90 0.00 −0.07
5 headlamp (14%) −0.002 −2.80 −0.56 −0.41 +3.00 +1.30 −0.05 −0.46 −0.06
6 building window, float (33%) +0.003 −0.28 +4.00 −0.50 −0.80 −1.80 −0.32 −0.37 −0.05
8 vehicle window, float (8%) +0.002 +0.43 +2.90 −0.43 −1.20 −0.93 −0.02 −0.49 −0.07

riched in K but depleted in Na and Si, with respect to the
overall data set. The first example of building window glass
(non-float treated) is strongly enriched in Ca and much lower
in K and Al, with respect to the container glass already seen.
Item 3 (first example of tableware glass) is enriched in Na
and Si but depleted in Al, K, and Ca with respect to the first
two items. Each item’s annotations explain why it was cho-
sen and can aid in interpretation.

To our knowledge, this is the first attempt to explain the
contents of the glass data set. The 1987 paper that introduced
the data set motivated its study from the perspective of foren-
sic science: the ability to classify the type of a glass fragment
could help solve crimes (Evett and Spiehler 1987). We have
not seen any evidence of a machine learning system that has
actually been employed by forensic science to this purpose,
nor even any content-focused discussion of the data set. Pa-
pers that use the data set to evaluate class discovery methods
do not report the order in which the classes are discovered,
so we do not know whether the order in which DEMUD dis-
covered them is typical. We welcome further comparisons.

Scientific discovery
Although DEMUD can be useful for class discovery, it was
designed for the more challenging and less constrained prob-
lem of scientific discovery, in which no labels are available
to guide the exploration of the data set. We simulated the
discovery process by identifying a subset of items with high
scientific interest, then assessed how quickly DEMUD and
other strategies found those items. Finally, we evaluated the
utility of DEMUD’s explanations by measuring their influ-
ence on human classification performance.

Baseline: Outlier selection. In addition to random selec-
tion as a default baseline, we also compared DEMUD to a
simple outlier detection strategy. This method ranks all items
in descending order of their Euclidean distance from the data
set mean. Like the static SVD, it is done once rather than up-
dating iteratively like DEMUD. More sophisticated strate-
gies exist, but none provide explanations, as noted earlier.

(1) CRISM hyperspectral observations of Mars. Our
first application is the exploration of hyperspectral data
collected from planetary orbit. The Compact Reconnais-
sance Imaging Spectrometer (CRISM) onboard the Mars
Reconnaissance Orbiter spacecraft has collected hundreds

of very large hyperspectral images of the surface (Murchie
et al. 2007). These spectra reveal a wide range of physical
phenomena including atmospheric effects, surface thermal
emissive properties, and rich mineralogical insights. Work-
ing with a domain expert, we chose to study CRISM scene
frt00003e12 of Nili Fossae1 which contains small isolated
magnesite (MgCO3) deposits, a carbonate that forms in the
presence of water (Ehlmann et al. 2009). To reduce noise
and data set size, without losing important details, we first
performed a superpixel segmentation to split the image into
several thousand homogeneous segments, each represented
by its mean spectrum (Thompson et al. 2010), and then used
a median filter to remove shot noise. The resulting large data
set consists of 26,500 superpixels with 230 features covering
the range 1.1 to 2.6 µm (near infrared). The 18 magnesite
examples constitute only 0.06% of the data.

Magnesite discovery. We evaluated DEMUD and other
methods in terms of the number of items selected to achieve
the first discovery of magnesite (lower is better). Figure 2a
shows the magnesite discovery results for k values from 2
to 7 (with k = 1, all methods took more than 500 selec-
tions to find the magnesite). In general, DEMUD requires
just 5 selections to find the magnesite, while the static SVD
typically takes far more. An exception is at k = 2, where
the static SVD found the magnesite with only 2 selections.
As k increases, both methods are able to model more data
complexity. However, for the static SVD, this rendered the
magnesite more difficult to find. In contrast, DEMUD ro-
bustly and efficiently detected the magnesite for all k values
shown. DEMUD does show a gradual increase in the number
of selections needed with larger k, but it is far less sensitive
than the static SVD; we truncated the plot at k = 7 because
at k = 8 the static SVD required 209 selections (DEMUD
required only 9). Both methods are superior to random and
outlier-based selection, which do not vary with k; they re-
quired 1472 and 7227 selections respectively.

Magnesite explanations. It is easy to “discover” that a
spectrum is magnesite when it comes with a label. In a real
setting, however, the scientist must examine each spectrum
to determine what it might contain. Our goal is to accelerate

1Data available at http://imbue.jpl.nasa.gov/ .
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(b) DEMUD’s magnesite explanations.
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(c) Static SVD’s magnesite explanations.

Figure 2: Magnesite discovery in CRISM data (n = 26500, d = 230). Panel (a) plots the number of selections required to find
the first magnesite sample (lower is better). Explanations for the first discovered magnesite are shown for (b) DEMUD and
(c) static SVD (both using k = 3). Selected absorption bands are plotted with dashed lines for aid in interpretation. DEMUD
shows large residuals at 2.3 and 2.5 µm, which are diagnostic of magnesite, while the uninformative band at 1.9 µm has a small
residual. The static SVD shows small residuals at all bands and therefore provides no salient explanation for this item.

this process by providing explanations that point the scien-
tist to diagnostic features of interest.

Figure 2 shows the residual-based explanations provided
by (b) DEMUD and (c) the static SVD. Selected absorption
bands are indicated with dashed lines to aid in interpretation.
The band at 1.9 µm is present throughout the data set and
therefore not diagnostic for this sample. DEMUD, at item 5,
had already learned and incorporated this into its model after
only four previous selections, so it has a very small residual.
The bands at 2.3 and 2.5 µm, in contrast, have large residuals
and are diagnostic of magnesite specifically. These residuals
provide exactly the right domain-specific answer to, “Why
is this spectrum interesting?” Large residuals are also seen
between 1.5 and 1.8 µm, but these are due to overall bright-
ness rather than to absorption bands that convey composi-
tional information. In contrast, the static SVD, shows small
residuals at all bands and therefore provides no salient ex-
planation for this item (its 13th selection).

Naturally, if it were known in advance that magnesite was
going to appear in this data set, one could (and scientists do)
compute the similarity of each sample to a known magne-
site spectrum. But in practice, such analyses are limited to
a finite set of likely minerals, and they leave open the ques-
tion of what is not detected because it was not anticipated.
The magnesite example simulates the more general setting
in which the contents of a large data set are not known in
advance and finding unanticipated items can lead to new sci-
entific discoveries.

(2) ChemCam Martian point spectra. The ChemCam
instrument on the Mars Science Laboratory rover uses a
Laser-Induced Breakdown Spectrometer (LIBS) to obtain
spectroscopic observations, using 6144 bands from 224 to
932 nm, of targets up to 7 meters away (Wiens, Maurice,
and the ChemCam team 2011). In contrast to CRISM’s re-
flectance spectra, ChemCam acquires emission spectra from
targets stimulated by its laser. These spectra can indicate the
presence of individual elements. We applied DEMUD to a

data set collected using ChemCam calibration materials on
Earth (Lanza et al. 2010). It contains 110 spectra consisting
of eight sample types. This data set provides a complemen-
tary challenge to the CRISM data set because it combines
extremely high dimensionality with fewer distinct samples.

Selection novelty. Rather than searching for a sample of
interest, we used this data set to assess the diversity and nov-
elty of DEMUD’s selections. We collected the first 20 spec-
tra selected by DEMUD, the static SVD, the outlier baseline,
and random selection. We presented the selections to an ex-
pert from the ChemCam science team who was asked to rate
each item subjectively on a score from 1 to 3, where 1 means
“redundant” with an earlier selection, 2 means “some novel
features”, and 3 means “novel, possibly a new mineral type.”
The sets selected by the four methods were presented in an
arbitrary, unlabeled order so that the scientist was unaware
of which method was used to generate each set. To remove
any obvious indicators, the first selection in each list was
fixed to be the item with largest reconstruction error with
respect to the whole data set; scores are reported for items
2 through 20. We also encouraged the expert to take breaks
between sets to mentally “reset” to a blank slate.

Figure 3a shows the distribution of novelty scores
achieved by each method. DEMUD achieved the largest
number of “3” scores, closely followed by random selection.
The static SVD and outlier-based results were dominated by
low scores. Further, DEMUD achieved high novelty scores
while also providing explanations for its decisions, some-
thing the random selection method cannot do.

ChemCam explanations. The emission spectra observed
by ChemCam provide elemental abundance information
based on individual bands, so DEMUD’s explanations can
be further tailored to automatically interpret large residuals.
For example, Figure 3b shows item 9 chosen by DEMUD,
its first discovery of rhodochrosite (MnCO3). The top 5% of
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Figure 3: DEMUD results on ChemCam data (n = 110, d = 6143): (a) novelty scores according to a member of the ChemCam
science team (higher is better); (b) sample output with explanations; (c) improvements in human classification performance
obtained when using DEMUD’s explanations.

residuals (by magnitude) are indicated with arrows that point
from the reconstructed (expected) value to the actual ob-
served value; each is associated with an element, if known.
The explanations indicate that this spectrum has higher than
expected evidence for Mn and lower than expected Fe and
Mg. Earlier selections included siderite (FeCO3) and olivine
(high in Mg). Also note that DEMUD doesn’t simply anno-
tate all large peaks; in fact, many of the bands highlighted
have small values. Unannotated peaks are common features
that DEMUD has learned to ignore. While somewhat cryp-
tic to the non-geochemist, these annotations zero in on vital
diagnostic clues for the expert.

Finally, we measured the utility of DEMUD’s explana-
tions in terms of their impact on the expert’s ability to
classify the data (a challenging task without supplemental
information). We asked the ChemCam scientist to manu-
ally classify DEMUD’s first 20 selections into eight cate-
gories: andesite, basalt, calcite, dolomite, limestone, olivine,
rhodochrosite, and siderite. The classifications were done
first without, and then with, DEMUD’s explanations. We
found that overall accuracy doubled from 25% to 50% us-
ing DEMUD’s explanations; random performance was 13%.
Figure 3c shows that the benefits were strongest for the ear-
liest selections: cumulative accuracy increased from 40% to
90% for the first 10 selections. Further study is needed to
explain this effect as due to earlier samples being easier to
classify, earlier explanations highlighting larger differences
between samples, data classification fatigue, or some combi-
nation of these factors. Regardless, this experiment provides
concrete evidence that DEMUD’s explanations are meaning-
ful, appropriate, and useful.

Conclusions
DEMUD is a method for discovering novel observations in
large data sets that also provides an explanation for why
each item is selected. It does so using an efficient, incremen-
tal SVD method that progressively learns a model of what
has already been selected so that items with high novelty
(measured by reconstruction error) can be selected next. We

found that DEMUD performs well in (1) discovering new
classes, (2) finding extremely rare samples of interest (e.g.,
CRISM magnesite), (3) selecting items with high novelty,
and (4) providing salient, useful explanations for each one.
We demonstrated a concrete benefit to scientists in observ-
ing that DEMUD’s explanations led to a large improvement
in the accuracy of expert classification of ChemCam spectra.

DEMUD can make better use of limited human review
time by focusing attention on the most unusual items first.
It can provide a complement to other strategies for analyz-
ing the data, such as (supervised) searches for known targets
of interest. Further, the concept of “uninteresting” items is
broad enough that it can be used to express prior knowledge
in the form of observations that are already known, so that
DEMUD will seek very different ones. We will explore this
angle in future work, as well as the use of a robust incremen-
tal SVD to reduce sensitivity to noise (Li 2004).

The explanations provided by DEMUD are the primary
novel contribution of this work. Given the choice, we find
that scientists strongly prefer results accompanied by ex-
planations to those that come from a mute black box. DE-
MUD’s domain-specific explanations greatly increase data
interpretability and therefore the likelihood of the system’s
adoption by scientists and users outside the machine learn-
ing community.
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