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Sustainable Management of the 

Earth’s Ecosystems 

 The Earth’s Ecosystems are complex 

 

 We have failed to manage them in a sustainable 

way 

 Example: 

 Species extinction rate of mammals ≈ 10-100 times 

historical rates 

 Mammalian populations are dropping rapidly worldwide 
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Why? 

1. We did not think about ecosystems 

as a management or control problem 

 

 

2. Our knowledge of function and 

structure is inadequate 

 

 

3. Optimal management requires 

spatial planning over horizons of 

100+ years 

 

NIPS 2012 
3 



Computer Science can help! 
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1. We did not think about ecosystems 

as a management or control problem 

 

 

2. Our knowledge of function and 

structure is inadequate 

 

 

3. Optimal management requires 

spatial planning over horizons of 

100+ years 

 



Computational Sustainability 

NIPS 2012 

The study of computational 

methods that can contribute 

to the sustainable 

management of the earth’s 

ecosystems 
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Outline 

Illustrative Research 

Challenges for each stage 

Drill down on three projects 

at Oregon State University 

Discussion: What are the 

distinctive aspects of 

computational sustainability 

problems? 
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Example Research Challenges 

Data Acquisition 
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Data 

Acquisition 
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Africa is very poorly sensed 

 Only a few dozen weather stations reliably 

report data to WMO (blue points in map) 

Project TAHMO (tahmo.org) 

 TU-DELFT & Oregon State University 

 Design a complete meteorology sensor 

station at a cost of EUR 200 

 Deploy 20,000 such stations across Africa 

 Where should sensors be placed? 

 Accuracy of reconstructed fields for precipitation, 

temperature, relative humidity, wind, etc. 

 Robustness to sensor failure, station loss 



Data Interpretation 
 Insect identification for population counting 

 Raw data: image 

 Interpreted data: Count by species 

 Challenge: Fine-Grained Image Classification 
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Species Count 

Limne 3 

Taenm 15 

Asiop 4 

Epeor 25 

Camel 19 

Cla 12 

Cerat 21 



Data Integration 
 Virtually all ecosystem prediction problems 

require integrating heterogeneous data sources 

 Landsat (30m; monthly) 

 land cover type 

 MODIS (500m; daily/weekly) 

 land cover type 

 Census (every 10 years) 

 human population density 

 Interpolated weather data (15 mins) 

 rain, snow, solar radiation, wind speed & direction, 
humidity 

 

 Challenge: 

 Learn from heterogeneous data  

 without losing fine-grained information 

 without losing uncertainty in the data 
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 http://ivm.cr.usgs.gov/viewer/  
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Model Fitting 
 Species Distribution Models 

 create a map of the distribution of a species 

 Meta-Population Models 

 model a set of patches with local extinction and 

colonization 

 Migration and Dispersal Models 

 model the trajectory and timing of movement 

 

 Challenges 

 The variables of interest are all latent 

 Latent distribution of species 

 Latent dynamics 

 The data are very messy 
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State of the Art: STEM Model of 

Bird Species Distribution 

slide courtesy of Daniel Fink 

Indigo Bunting 
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Policy Optimization 

Challenges 

 Long time horizons (100+ years) 

 The system model is uncertain, so the 

optimization needs to be robust to this 

uncertainty 

 The state of the system covers large spatial 

regions (scales exponentially in region size) 

 System dynamics only available via simulation 

or sampling 
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State of the Art: Reserve Design from a 

Species Distribution Model 

Leathwick et al, 2008 

Observations 
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State of the Art: Reserve Design from a 

Species Distribution Model 

Leathwick et al, 2008 

Observations Fitted Model 
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Leathwick et al, 2008 

Disregarding costs  

to fishing industry 

Full consideration of costs  

to fishing industry 
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Policy Execution 

 Repeat 

 Observe Current State 

 Choose and Execute Action 

 

 Need to continually improve our models 

and update our policies 

 

 Challenge: We must start taking actions 

while our models are still very poor.  

 How can we make our models robust to both 

the “known unknowns” (our known 

uncertainty) and the “unknown unknowns” 

(things we will discover in the future) 
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Drill Down:  

Three Projects at Oregon State 

NIPS 2012 

 Species Distribution Modeling with 

Imperfect Observations 

 Explicit Observation Models 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Controlling Invasive Species 

 Algorithms for Large Spatial MDPs 
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Project eBird 

www.ebird.org 

 Volunteer Bird Watchers 

 Stationary Count 

 Travelling Count 

 Time, place, duration, distance travelled 

 Species seen 

 Number of birds for each species or ‘X’ which means ≥ 1 

 Checkbox: This is everything that I saw 

 

 8,000-12,000 checklists per day uploaded 

 

NIPS 2012 
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Species Distribution Modeling from 

Citizen Science Data: 

NIPS 2012 

 eBird data issues 

 imperfect detection 

variable expertise 

sampling bias 

 ... 
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Tom Auer http://geocommons.com/maps/137230 



Partial Solution: Multiple visits: Different birds hide on different visits Problem: Some birds are hidden 

Imperfect Detection 
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Multiple Visits to the Same Sites 

Detection History 

 

Site 

True 

occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 

6am) 

Visit 3 

(clear day, 

9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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Occupancy-Detection Model 

 𝑌𝑖𝑡  𝑍𝑖 

𝑖 = 1,… ,𝑀 

𝑡 = 1,… , 𝑇 

 𝑋𝑖 𝑊𝑖𝑡 
𝑜𝑖 𝑑𝑖𝑡 

𝑍𝑖~𝑃(𝑍𝑖|𝑋𝑖): Species Distribution Model 

 𝑃 𝑍𝑖 = 1 𝑋𝑖 = 𝑜𝑖 = 𝐹(𝑋𝑖)  “occupancy probability” 

 

𝑌𝑖𝑡~𝑃(𝑌𝑖𝑡|𝑍𝑖 ,𝑊𝑖𝑡): Observation model 

 𝑃 𝑌𝑖𝑡 = 1 𝑍𝑖 ,𝑊𝑖𝑡 = 𝑍𝑖𝑑𝑖𝑡 
 𝑑𝑖𝑡 = 𝐺(𝑊𝑖𝑡)  “detection probability” 
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MacKenzie, et al, 2002 
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Standard Approach: Log Linear 

(logistic regression) models 

NIPS 2012 

 log
𝐹 𝑋𝑖

1−𝐹 𝑋𝑖
= 𝛽0 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝐽𝑋𝑖𝐽 

 log
𝐺 𝑊𝑖𝑡

1−𝐺 𝑊𝑖𝑡
= 𝛼0 + 𝛼1𝑊𝑖𝑡1 +⋯+ 𝛼𝐾𝑊𝑖𝑡𝐾 

Fit via maximum likelihood 
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Results on Synthetic Species with 

Nonlinear Dependencies 

NIPS 2012 

Predictions exhibit high 

variance because model 

cannot fit the nonlinearities 

well 
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A Flexible Predictive (non-Latent) 

Model 

NIPS 2012 

Predict the observation 𝑦𝑖𝑡 from the combination of 

occupancy covariates 𝑥𝑖 and detection covariates 𝑤𝑖𝑡 

Boosted Regression trees 

 log
𝑃 𝑌𝑖𝑡=1 𝑋𝑖,𝑊𝑖𝑡

𝑃 𝑌𝑖𝑡=0 𝑋𝑖,𝑊𝑖𝑡
= 𝛽1𝑡𝑟𝑒𝑒1 𝑋𝑖 ,𝑊𝑖𝑡 +⋯+ 𝛽𝐿𝑡𝑟𝑒𝑒𝐿(𝑋𝑖 ,𝑊𝑖𝑡) 

 Fitted via functional gradient descent (Friedman, 2001, 2010) 

Model complexity is tuned to the complexity of the data 

 Number of trees 

 Depth of each tree 
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Predictive Model Results 

NIPS 2012 

Systematically biased 

because it does not capture 

the latent occupancy 

 Underestimates occupancy at 

occupied sites to fit detection 

failures 

Much lower variance than the 

Occupancy-Detection model, 

because it can handle the 

non-linearities 

P
(Z

) 
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Two Approaches: Summary 

NIPS 2012 

 Advantages 

 Supports latent variables 

 

 

 Disadvantages 

 Hard to use 

 Model must be carefully designed 

 Data must be transformed to 
match model assumptions 

 Model has fixed complexity so 
either under-fits or over-fits 

 Advantages 

 Model complexity adapts to data 

complexity 

 Easy to use “off-the-shelf” 

 

 Disadvantages 

 Do not support latent variables 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 
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The Dream 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 

12/5/2012 
NIPS 2012 
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A Simple Idea: 

Parameterize 𝐹 and 𝐺 as boosted trees 

NIPS 2012 

log
𝐹 𝑋

1−𝐹 𝑋
= 𝑓0(𝑋) + 𝜌1𝑓

1(𝑋)  + ⋯+ 𝜌𝐿𝑓
𝐿(𝑋) 

log
𝐺 𝑊

1−𝐺 𝑊
= 𝑔0 𝑊 + 𝜂1𝑔

1 𝑊 +⋯+ 𝜂𝐿𝑔
𝐿(𝑊) 

Perform functional gradient descent in 𝐹 and 𝐺 

 
 See also... 

 Kernel logistic regression 

 Non-parametric Bayes 

 RKHS embeddings of probability distributions 
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Occupancy probabilities are 

predicted very well 

Results: OD-BRT 
(Hutchinson, Liu & Dietterich, AAAI 2010) 
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Handling Variable Expertise 
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𝑌𝑖𝑡  𝑍𝑖 

𝑖 = 1,… ,𝑀 

𝑋𝑖 𝑊𝑖𝑡 

𝑜𝑖 𝑑𝑖𝑡, 𝑓𝑖𝑡 

𝑡 = 1, … , 𝑇 

𝑗 = 1,… ,𝑁 

𝑣𝑗 Observer 

covariates 

Expert/novice observer Expertise probability (function of 𝑈) 

Observers 

𝑑’𝑖𝑡, 𝑓’𝑖𝑡 

 𝐹𝑗 𝑈𝑗 



-0.05

0.00

0.05

0.10

0.15

0.20

Average Difference in True Detection Probability 

Expert vs. Novice Differences 
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Hard-to-detect 

birds 

Common birds 

Yu, et al, 2010 



Drill Down:  

Three Projects at Oregon State 
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 Species Distribution Modeling with 

Imperfect Observations 

 Explicit Observation Models 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Controlling Invasive Species 

 Algorithms for Large Spatial MDPs 
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Integration 

Data 
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Policy 
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Execution 
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BirdCast: Understanding and 

Forecasting Bird Migration 

 Available data: 

 eBird observations 

 NEXRAD weather radar 

 acoustic monitoring stations 

 weather data 

 weather forecast 

 Goals: 

 predict spatial distribution of each 
species 24- and 48-hours in advance 

 understand what factors drive bird 
migration 

 wind speed and direction? 

 temperature? 

 relative humidity? 

 absolute or relative timing? 

 food availability? 

NIPS 2012 
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Modeling Goal:  

Spatial Hidden Markov Model 

 Define a grid over the US 

 Let 𝑛𝑖
𝑡 be the number of birds in cell 𝑖 at 

time 𝑡 

 Learn a probability transition matrix that 

depends on the features 

 wind, temperature, time, etc. 
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Problem:  

We have only aggregate data 

The data we wish we had: 

 tracks of individual birds 

 

The data we have: 

 ebird: aggregate counts of 

anonymous birds 

 radar: birds per km3 summed 

over all species 

 ... 
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Solution:  

Collective Graphical Models 
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  𝑋1   𝑋2   𝑋𝑇 … Individual model: 

Markov chain on grid 

cells 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1,… ,𝑀 

Population model:  

iid copies of individual 

model 

Derive aggregate 

observations 

…   𝐧1   𝐧2   𝐧𝑇 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1,… ,𝑀 



Solution:  

Collective Graphical Models (2) 

NIPS 2012 
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  𝐧1,2   𝐧2,3   𝐧𝑇−1,𝑇 … 
Marginalize out individuals: 

chain-structured model on 

sufficient statistics  

Transition 

counts 

…   𝐧1   𝐧2   𝐧3   𝐧𝑇 

Derive aggregate 

observations 

…   𝐧1   𝐧2   𝐧𝑇 

  𝑋1
𝑚   𝑋2

𝑚   𝑋𝑇
𝑚 … 

𝑚 = 1,… ,𝑀 

Note: MAP estimates of 𝐧𝒊𝒋 are sufficient statistics of the 

individual model 

We don’t need to reconstruct individual tracks to fit the 

individual model 



Inference in Collective Graphical 

Models (Sheldon & Dietterich, NIPS 2011) 

Model Fitting via EM 

 Requires sampling from 

𝑃(𝒏𝑡,𝑡+1|𝒏1, … , 𝒏𝑇) 

 posterior distribution of “flows” 

through the HMM trellis 

 

 Fast Gibbs Sampler that 

respects Kirchoff’s laws 

 running time is independent of 

population size 

NIPS 2012 
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(cubic in M) 

Our method   

(to 2% relative error) 



The Migration Model 
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𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  

𝑥𝑡
𝑠(𝑖, 𝑜) 

𝑠 = 1,… , 𝑆 

𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1,… , 𝑂(𝑖, 𝑡) 
𝑠 = 1,… , 𝑆 

𝑖 = 1,… , 𝐿 

𝑠 = 1,… , 𝑆 

𝑘 = 1,… , 𝐾 𝑣 = 1,… , 𝑉 

eBird acoustic radar 

b
ir
d

s
 

 Species 𝑠 

 Observers 𝑜 

 Sites 𝑖 

 Acoustic stations 𝑘 

 Radar sites 𝑣 

41 



With Added Covariates 

 

NIPS 2012 
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𝒏𝑡
𝑠 𝒏𝑡,𝑡+1

𝑠  

𝑥𝑡
𝑠(𝑖, 𝑜) 

𝑠 = 1,… , 𝑆 

𝑎𝑡,𝑡+1
𝑠 (𝑘) 

𝑦𝑡,𝑡+1
𝑠 (𝑘) 

𝑟𝑡,𝑡+1
 (𝑣) 

𝑧𝑡,𝑡+1
 (𝑣) 

… … 

𝑜 = 1,… , 𝑂(𝑖, 𝑡) 
𝑠 = 1,… , 𝑆 

𝑖 = 1, … , 𝐿 

𝑠 = 1,… , 𝑆 

𝑘 = 1,… , 𝐾 𝑣 = 1,… , 𝑉 

eBird acoustic radar 

b
ir
d

s
 

𝒘𝑡,𝑡+1 𝒘𝑡 



Drill Down:  

Three Projects at Oregon State 
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 Species Distribution Modeling with 

Imperfect Observations 

 Explicit Observation Models 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Controlling Invasive Species 

 Algorithms for simulator-defined 

MDPs 

 

Data 

Integration 

Data 

Interpretation 

Model Fitting 

Policy 

Optimization 

Data 

Acquisition 

Policy 

Execution 
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Invasive Species Management in 

River Networks 

Tamarisk: invasive tree from the 

Middle East 

 Out-competes native vegetation for 

water 

 Reduces biodiversity 

 

What is the best way to manage 

a spatially-spreading organism? 

NIPS 2012 
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Markov Decision Process 

Tree-structured river network 

Each edge 𝑒 ∈ 𝐸 has 𝐻 “sites” where a 

tree can grow. 

Each site can be 

 {empty, occupied by native, occupied by 

invasive} 

 # of states is 3𝐸𝐻 

Management actions 

Each edge: {do nothing, eradicate, restore, 

eradicate+restore} 

 # of actions is 4𝐸 

𝑒1 𝑒2 

𝑒3 
𝑒4 

𝑒5 

NIPS 2012 
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Dynamics and Objective 

Dynamics: 

 In each time period 
 Natural death 

 Seed production 

 Seed dispersal (preferentially downstream) 

 Seed competition to become established 

 Couples all edges because of spatial spread 

 Inference is intractable 

 

Objective: 

Minimize expected discounted costs 
(sum of cost of invasion plus cost of 
management) 

Subject to annual budget constraint  
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𝑒1 𝑒2 

𝑒3 
𝑒4 

𝑒5 

n
 

n
 

t 
n

 n
 



Algorithm DDV 

Goal: Compute PAC-optimal policy 

while minimizing simulator calls 

Explicit representation of the MDP 

(Transition matrix and Q table) 

 Confidence intervals 𝑄𝑙𝑜𝑤𝑒𝑟(𝑠, 𝑎) and 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠, 𝑎) 

 Confidence interval on 𝑉(𝑠0) 

 Upper bound on discounted state 

occupancy probability 𝜇𝑢𝑝𝑝𝑒𝑟(𝑠) 

 𝜇𝜋 𝑠 =  𝛾𝑡𝑃(𝑠𝑡 = 𝑠|𝑠0 = 𝑠0, 𝜋)𝑡  

 Measure of uncertainty: 

 Δ𝑉 𝑠0 = 𝑉𝑢𝑝𝑝𝑒𝑟 𝑠0 − 𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 
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 𝑠0 

 𝑎1  𝑎2 

 𝑠1  𝑠2 

 𝑠 

 𝑎1  𝑎2 

 𝑠′ 

... 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠0, 𝑎1) 

𝑄𝑙𝑜𝑤𝑒𝑟(𝑠0, 𝑎1) 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠0, 𝑎2) 

𝑄𝑙𝑜𝑤𝑒𝑟(𝑠0, 𝑎2) 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

𝑄𝑢𝑝𝑝𝑒𝑟(𝑠, 𝑎2) 

𝑄𝑙𝑜𝑤𝑒𝑟(𝑠, 𝑎2) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠1) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠) 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

Δ𝑉(𝑠0) 



Algorithm DDV 

 Exploration heuristic: 

 Exploring (𝑠, 𝑎2) will cause a local 

reduction in  
Δ𝑄 𝑠, 𝑎2 = 𝑄𝑢𝑝𝑝𝑒𝑟 𝑠, 𝑎2 − 𝑄𝑙𝑜𝑤𝑒𝑟 𝑠, 𝑎2  

 

 The impact of this on Δ𝑉(𝑠0) can be 

approximated by 
𝜇𝑢𝑝𝑝𝑒𝑟 𝑠 [Δ𝑄 𝑠, 𝑎1 − Δ𝑄′ 𝑠, 𝑎1 ] 

 

 Explore the (𝑠, 𝑎) that maximizes  

   𝜇𝑢𝑝𝑝𝑒𝑟 𝑠 [Δ𝑄 𝑠, 𝑎 − Δ𝑄′ 𝑠, 𝑎 ] 
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 𝑠0 

 𝑎1  𝑎2 

 𝑠1  𝑠2 

 𝑠 

 𝑎1  𝑎2 

 𝑠′ 

... 

𝑉𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝑉𝑙𝑜𝑤𝑒𝑟(𝑠0) 

Δ𝑄(𝑠, 𝑎2) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠0) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠1) 

𝜇𝑢𝑝𝑝𝑒𝑟(𝑠) 

Δ𝑄′(𝑠, 𝑎2) 



Results on “RiverSwim” benchmark 
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 Comparison with Strehl 

& Littman (2008) 

Model-Based Interval 

Estimation (MBIE) 

 DDV reduces the 

uncertainty in 𝑉(𝑠0) 
much faster than MBIE 

 note log scale 

 Both algorithms have 

PAC guarantees 



Published Rule of Thumb Policies  

for Invasive Species Management 

Triage Policy 

 Treat most-invaded edge first 

 Break ties by treating upstream first 

Leading edge 

 Eradicate along the leading edge of invasion 

Chades, et al.  

 Treat most-upstream invaded edge first 

 Break ties by amount of invasion 

DDV 

 Our PAC solution 
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Cost Comparisons:  

Rule of Thumb Policies vs. DDV 

0

50

100

150

200

250

300

350

400

450

Large pop, up
to down

Chades Leading Edge Optimal

Total Costs 

Triage 
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      DDV     

   

Chades          

 

Leading 

Edge 



Summary 

 Data  Models  Policies 

 

 Three projects at Oregon State: 

 Species Distribution Modeling with 

Imperfect Observations 

 Flexible Latent Variable Models 

 

 Models of Bird Migration 

 Collective Graphical Models 

 

 Policy Optimization 

 Algorithms for simulator-defined MDPs 
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Distinctive Characteristics of 

Sustainability Problems 

 Goal is typically to encourage or prevent spatial spread 
 Encourage spread of endangered species 

 Manage spread of fire 

 Prevent spread of diseases and invasive species 

 Over long time horizons 

 Resulting MDPs are immense 

 Dynamics are typically available only via a simulator 

 

 Data are extremely noisy, heterogeneous, and incomplete 
 Need to learn latent process dynamical models from this data 

 

 Optimization is based on learned models 
 Need to be robust to incorrect models 

 Need to be robust to the unknown unknowns 

 Risk sensitive: 
 avoid species extinctions 

 avoid catastrophic fires 
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Computational Sustainability 

There are many opportunities for computing to contribute 

to sustainable ecosystem management 

 

There are many challenging machine learning research 

problems to be solved 

 

 Institute for Computational Sustainability: 

http://www.computational-sustainability.org/  

NIPS 2012 
54 

http://www.computational-sustainability.org/
http://www.computational-sustainability.org/
http://www.computational-sustainability.org/
http://www.computational-sustainability.org/


Thank-you 

 Rebecca Hutchinson, Liping Liu: Boosted Regression Trees in OD 

models 

 Dan Sheldon: Collective Graphical Models 

 Steve Kelling, Andrew Farnsworth, Wes Hochachka, Daniel Fink: 

BirdCast 

 H. Jo Albers, Kim Hall, Majid Taleghan, Mark Crowley: Tamarisk 

 Carla Gomes for spearheading the Institute for Computational 

Sustainability 
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Questions? 


