16-Bit Timer/Counter 1 and 3

Counter/Timer 1,3 (TCNTI1, TCNT3) are identical in function.

Three separate comparison registers exist. Thus, three separate outputs are
available: OCxA, OCxB, OCxC

Count TOVE
Clear it R

Dirzction TCLE Chock Salect

A Edge |
'y T Detactor -t T®
TOF | BOTTOM]
N I\\'\

; %,
Yvy i it { From Prescaler j
Timerfzounter AT

OCFas

I".lnt.l:ueq..
L1
| wavetarm P

o eneration

OCFxB

I" {Int. i)
o | Waveform | OCxD

eneraton

OCFxC

I" (IR
Wawelarm OCE

©| Genemation

DATABLIS

{ From Anakg

]
]
]
[]
: Comparabar Quplt
" ICFx (Nt Reg.) _
[] -
r
u Edge _ Clse
= sctor [canceler [T
.l“"\._q_
i

ICPx

16-Bit Timer/Counter 1 and 3

An input capture register (ICRx) 1s available for capturing the counter value at the
occurrence of external (edge) events such as an external pin change or comparator
state change.

DATABLIS

[
n
[
“REC n
s Compa Pk)
- ICF (It Red.)
| /.-'z.
u Edige _ Modse
Il?fx |'+ Debector [Canceler [T |
u L. -
“d

16-Bit Timer/Counter 1 and 3

Five possible interrupt sources exist for each counter/timer:

-overflow (counter register over or under flows)

-output compare (counter register = a compare register

-input capture (something happened externally, capture the present count)
T E—

Dirmcion |~ R | Ciack Sekedt

| EHE = Tx

') [Drebactor
TOF | BOTTOM]

. v s N, K\\ I
Y vh £ kY { From Prescaler
TimeriCounter 4

TCNTx | |

= | [=0 |

OCFxA
{Int Reg)

_ | wavetarm _
| Generation | DCHA

OCFxB
{Int.R=g)

_,
o &

C
Wakles -
| wavetarm

| OB
ianeration

OCFxC
{Int.Rag)

DATABLIS

Waveform

GEnsfation * OCxC

{ From Analkog

Comparakor Ouput)
ICFX (INLReq.)
Ed Mo /3.
e - olse
Itfx | Detector [canceler [V |

'_\—-I— ICP®

.\
EEEEEEEENEEEEEEEEE EE NN

Lessnssnmnamal

TCCREA | | TCCRXE | | TCCRAC

16-Bit Timer/Counter 1 and 3

TCNT1/3 can be clocked internally, via a prescaler, or by an external clock.

DATABLIS

OCFE
"’ {Int.R=g)
Wiawelorm
- . | oCxC

16-Bit Timer/Counter 1 and 3

TCNT1/3 counter register and control registers:

Count TOME

_
Clear it R
Conind Logke
Dirzction Rl T Chk Sk

a| ¥ Tx

A Il Dretactor
TOF | BOTTOM]

I\\"'\. %

N, l

rTrF¥ /' it i Fram Prescaler §
TimeriZouter

TCNTx

16-bit counter

OCFxs

"’.lmﬂeq..
- Wiawelorm oA

Ganeration

Y

OCFxE
{IntRag)

Wiaweform
Seneration

CxB

OCFxC
{Ink. R)

DATABLIS

wiaweform
"| Genemation

| DeCuC

i From Anakg
Comparabar Oupdt

L

ICFx (It Redq.)
u Ed hic '
e olse
It“fx | : Detectar | il

Canceler
P, fib—o ICPX
Lessssnsmnnmal -

| TCCRAEC

control registers eoRa] [ocee]

16-Bit Timer/Counter 1 and 3

Each register 1s 16 bits wide. Access is taken care of by our library (1om128.h):

/* Timer Counter 1 */

#define TCNT1 SFR I016(0x2C)
#define TCNT1L SFR IO8(0x2C)

#define TCNT1H SFR I08(0x2D)

thus can say: TCNT1l = 0x0000; //this works!

16-Bit Timer/Counter 1 and 3

Timer/Counter Sources:
-control register B determines the clock source

-directly off of internal clock f (16Mhz)
-internal clock prescaled by £ / 8,t /64,1 /256, ort /1024

clk
-external clock sources (7' or T 3 pin)

-no prescaler available for external clocks

-they first get synchronized, then edge detected
-one pulse for either rising or falling edge
-external clocks incur 2.5-3.5 system clock delay

or Lselect

Tn o Q | D Q | }_ oD — Tr_syn:
——® (To Cleck
iy Select Logic)
— LE ~L —

-To sample an external clock it must be longer than 2 £ periods

TIWERCOUNTERI CLCCK BOURCGE

i

16-Bit Timer/Counter 1 and 3

Counter Unit:
DATA BUS je-tit)
TOVn

i}
e {Int.Raq.)
TEMP {&8-hit}
Clock Select

Count Edge

- — il -+—1— Tn
TCHTnH (8-bit) TCHTAL (a-bit) Clear _ clky, Datactor
S Control Logic t——
TCNTN (16-bit Counter) et —

i From Prescaler)

TTClF‘ T BOTTOM

The counter 1s incremented, decremented or cleared at each clan

Counter signals:

count: increment or decrement enable for counter
direction: count up or down

clear: clear counter

clan : the selected clock source

TOP: indicates counter has reached largest value allowed (not OxFFFF)
BOTTOM: indicates counter has reached lowest value allowed (not 0x0000)

16-Bit Timer/Counter 1 and 3
Input Capture Unit:

The input capture unit can detect events and give them a time stamp.
-can calculate frequency

-duty cycle — _/ _ _ _ _ v,
-duty cycle at selected voltages | |

tl t2

Trigger sources for the ICU:
External events come in via the ICP1 or ICP3 pins
-sampled like 77 pins (latch, synchronization, edge detection)
Internal events come from the analog comparator.
-sampled like Tn pins but with the option of a noise canceler
-noise canceler 1s probably a 4 stage shift register with
a 4-mput AND gate

16-Bit Timer/Counter 1 and 3
Input Capture Unit:

DATA BUS (a-bit)

TEMP |2-bit)

ICRRH {2-hit) ICRANL (8-bit) TCHTRH (3-bit) TCNTRL (&-bit)
|_. WRITE ICBn (16-bit Registar) TCHTR {16-bit Courtar)
o
= ACO* *
mf ACIC ICNC ICES
_ -~
finajng . J' l l
Comparator Moise Edge , .
™ conceler ™ Detector — = [CFn {Int.Raq.)
I=Pn -

When an event occurs, the value of TCNTn is captured in ICRn

Note: analog comparator can trigger TCNT1 but not TCNT3

16-Bit Timer/Counter 1 and 3

Output Compare Unit:

-

DATABUS (z-bity

A4 A ‘

— I v ¥
| OCRnxH Buf. (2-bit) | OCAnxL Buf. {8-bit) TCHTnH (2-bit) TCMTRL (28-bit)
OCRnx Buffer (16-bit Register) TENTm (1 6-bit & ounter)
| i
QCRnxH (a-bit) [OCRnxL (8-kit)
QCRNx (16-bit Registar)
| ={16-bit Comparator)
= OCFnx (Int.Red.)
Y
TOP — . .
BOTTOM Waveform Generator = OCnx
WGMR3:0 COMmx1:0

16-bit comparator continuously compares TCNTn and OCRnx.

If equal, the output compare flag 1s set (OCFnx) and an interrupt can be

1ssued.

The waveform generator uses this signal to generate an output to a pin.

16-Bit Timer/Counter 1 and 3

Modes of Operation:
Mode is determined by:
-Waveform Generation Mode (WGMn3:0)
-Compare Output Mode (COMnx1:0)

Normal Mode
-simplest mode
-count up to OxFFFF and wrap around to 0x0000
-no clear 1s ever performed
-TOV flag 1s set when the wrap around occurs (overflow)
-to reset TOV, must execute ISR or clear flag manually
-no output pins are used

16-Bit Timer/Counter 1 and 3

Modes of Operation:
Clear Timer on Compare Match (CTC) Mode

-resolution of counter i1s manipulated by output compare register A (OCRnA)
or input capture register (ICRn)

-counter 1is cleared to zero when its value equals either ICRn or OCRnA

-TOP is defined by ICRn or OCRnA

-interrupt can be generated at compare point

-output pins (OCnx) can be utilized

-toggle, set, or clear on match

OCnA Intsrmupt Flag Set
—————— T——1 or ICFn Intarmupt Flag Sst
¢ (Irtsrmupt on TOF)

"""" OCRO=0xF000

1
I
I
|
|
) A A I & OCRO=0x7F00
N B E B A A OCRO=0x00FF
N A Y OCRO=0x003F
TCNTn / 11

I::'Cr-l_ll:'l, 3 r L i
(Toggle)

(COMRATD = 1)
note: fixed duty cycle, variable frequency

Period I 1 »l 2 sl _nle 4

16-Bit Timer/Counter 1 and 3

Modes of Operation:
Fast PWM Mode

-used to create high resolution PWM waveforms
-same frequency, different duty cycle
-count from bottom to top, then reset to bottom

-output compare behavior:
-set on compare match
-reset at TOP*

*Top defined as:

0x00FF, 0x01FF, 0x03FF, ICRn or OCRnA

e

|
value of compare sets duty cycle *

TCNTR

= T—

OCnx

COC R TOP Update
and TCWn Intarrupt Flag
Sat and OCnA Intarrupt

OCnx

P !
}

i “
PTYTY r ¥
L T

Penod | 1 i 2 " 3

Flag Set or ICFn
Intarrupt Flag Seat
{Imterrupt on TOP)

value of TOP sets frequency

(Mot 0 = 2)

(COMred 0 = 3)

16-Bit Timer/Counter 1 and 3

Code examples

// tcntl normal.c
// setup TCNT1l in normal mode and blink PBO LED

// blink frequency = (16,000,000)/(2"16 * 64 * 2) = 1.91 cycles/sec
//
#include <avr/io.h>
int main()
{
DDRB = 0x01; //set port B bit zero to output
TCCR1A = 0x00; //normal mode
TCCR1B = (1<<CS11) | (1<<CS10); //use clk/64
TCCR1C = 0x00; //no forced compare
while(1l) {
if (TIFR & (1<<TOV1)) { //if overflow bit TOV1 is set
TIFR |= (1<<TOV1); //clear it by writing a one to TOV1
PORTB "= (1<<PBO0); //toggle PBO0 each time this happens
y //if
} //while

} // main

16-Bit Timer/Counter 1 and 3

Code examples

// tentl ctc.c
// setup TCNT1 in ctc mode
// set OClA (PB5) to toggle on compare

// blink frequency ~= (16,000,000)/(2"°15 * 64 * 2) = 3.8 cycles/sec
//
#include <avr/io.h>
int main()
{
DDRB = 0x20; //set port B bit five to output

//ctc mode, toggle on compare match
TCCR1A |= (1<<COM1A0);

//use OCR1A as source for TOP, use clk/64
TCCR1B = (1<< WGM12) | (1<<CSs11l) | (1<<Cs10);

TCCR1C = 0x00; //no forced compare

OCR1A = 0x7FFF; //compare at half of 2716

while(1l) {
if (TIFR & (1<<OCF1lA)) //if output compare flag is set
TIFR |= (1<<OCF1A); //clear it by writing a one to OCF1A
} //while

} // main

//
//

16-Bit Timer/Counter 1 and 3

Code examples

tentl pwm.c
setup TCNT1 in pwm mode

// set OClA (PB5) as pwm output
// pwm frequency: (16,000,000)/(1 * (61440 + 1)) = 260hz
//
#include <avr/io.h>
int main()
{
DDRB = 0x20; //set port B bit five to output

}

//fast pwm, set on match, clear at top, ICR1 holds TOP
TCCR1A |= (1<<COM1Al) | (1<<COM1AO0) | (1<<WGM11l);

//use ICR1 as source for TOP, use clk/1
TCCR1B |= (1<<WGM13) | (1<< WGM12) | (1<<CS10);

//no forced compare
TCCR1C = 0x00;

//20% duty cycle, LED is a bit dimmer
OCR1A = 0xC000; //set at 0xC000
ICR1 = 0xF000; //clear at O0xFO000

// main

16-Bit Timer/Counter 1 and 3

Code examples

Counter/Timers are one of the most valuable resources at your disposal.

Creation of multiple timed events from one timer:

ISR (xxx _vect) {
static uint8 t timer tick;

timer tick++; //increment the clock tick

if(timer tick % 8 == 0){do this();} //do every 8 ticks

if(timer tick % 16 == 0){do that();} //do every 16 ticks
}

When timer tick reaches 0XFF, it will advance to 0x00. As long as the MOD

operation 1s by a power of two, we are OK. However, if the MOD operation is not a
power of two, the function calls will not occur at regular intervals once every roll-over of
timer tick.

This technique 1s convenient for multiple, repetitive events that occur at regular times.

16-Bit Timer/Counter 1 and 3

Code examples

From the previous example:

Each call 1s separated by either 8 do_this();

8 or 16 timer ticks.

do_this();

40 do this();

248 do this();

0 do this(); do_that();

16-Bit Timer/Counter 1 and 3

Code examples

What if the timer ticks were on different intervals?

ISR(xxx vect){
static uint8 t timer tick;
timer tick++; //increment the clock tick
if(timer tick == 39){timer tick = 0);}
if(timer tick % 10 == 0){do _this();} //do every 10 ticks
if(timer tick % 20 == 0){do that();} //do every 20 ticks
}//ISR

As a general rule the maximum count for timer tick in this case would need to be
multiple of (2n-1) where n 1s the value of the biggest MOD operator divisor.

16-Bit Timer/Counter 1 and 3

Code examples

Now lets look at another way to generating multiple timed function calls off one timer.

ISR(xxx vect){
static uint8 t timer tick;

timer tick++; //increment the clock tick, rollover at 255
switch(timer tick){

Case O0: do this(); break;
Case 10: do_that(); break;
Case 17: do something(); break;
Case 21: do_anything(); break
Case 50: do _nothing(); do this(); break;
Case 150: do most(); break;
Case 250: do_last stuff(); break;
Default: break;
}//switch
}//ISR

Here we place functions at specific, non-reoccurring times. There may be many entries in
the case statement, making for many code lines in the ISR but the execution will be much
faster than a bunch of mod operations applied for many time checks. Case 1s usually
implemented as a relative jumps or a jump table in assembly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

