Projectional Editing of Variational Software

Eric Walkingshaw

Klaus Ostermann

University of Marburg, Germany

{walkiner,kos}@informatik.uni-marburg.de

Abstract

Editing the source code of variational software is complicated by
the presence of variation annotations, such as #ifdef statements,
and by code that is only included in some configurations. When
editing some configurations and not others, it would be easier to
edit a simplified version of the source code that includes only the
configurations we currently care about. In this paper, we present a
projectional editing model for variational software. Using our ap-
proach, a programmer can partially configure a variational program,
edit this simplified view of the code, and then automatically update
the original, fully variational source code. The model is based on an
isolation principle where edits affect only the variants that are visible
in the view. We show that this principle has several nice properties
that are suggested by related work on bidirectional transformations.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques—Program editors

General Terms Design, Languages, Theory

Keywords variation, projectional editing, software product lines,
bidirectional transformations, view—update problem

1. Introduction

Editing variational software is complicated by the presence of
variation annotations and code that is only conditionally included.
As an extreme example, consider the code in Figure[T] which is from
the BusyBox projectp_-] This code is variational: it represents several
different variants of a C program. Each variant can be obtained
by running the C preprocessor with different configuration options
enabled. For example, if the SWAPON_DISCARD option is enabled, but
SWAPON_PRI is disabled, then the generated variant is shown below
(note that adjacent string literals are concatenated in C).

ret = getopt32(argv, (applet_name[5] == ’'n’) ?
ngs
gt s mgn
, &discard

)3

l7http:// git.busybox.net/busybox/tree/util-linux/swaponoff.c?
1d=faa%9e94db619d1110061687278cde93a651e69de#n173

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

GPCE’14, September 15-16, 2014, Viisterds, Sweden.

Copyright © 2014 ACM 978-1-4503-3161-6/14/09. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

#if |ENABLE_FEATURE_SWAPON_DISCARD && \
ENABLE_FEATURE_SWAPON_PRI
ret = getopt32(argv, "a");
#else
#if ENABLE_FEATURE_SWAPON_PRI
if (applet_name[5] == ’'n’)
opt_complementary = "p+";
#endif
ret = getopt32(argv, (applet_name[5] == 'n’) ?
#if ENABLE_FEATURE_SWAPON_DISCARD
"do"
#endif
#if ENABLE_FEATURE_SWAPON_PRI
"ot
#endif
"a" o "a"
#if ENABLE_FEATURE_SWAPON_DISCARD
, &discard
#endif
#if ENABLE_FEATURE_SWAPON_PRI
, &prio
#endif
);
#endif

Figure 1. Complex variational code from BusyBox.

Suppose we are only interested in editing this variant. Clearly,
editing the variant directly is easier than editing the code in Figure[l}
In the variational code, the #if annotations and irrelevant alternatives
make the program more difficult to understand and make it difficult
to determine which variants an edit will impact and how.

In this paper, we describe principles and methods to support
projectional editing of variational programs. Projectional editing
supports the following workflow: (1) partially configure the varia-
tional program to obtain a simpler version that contains only the
variability that we currently care about; (2) edit the simpler varia-
tional program; (3) automatically apply the edit to the original fully
variational source code. This workflow supports a virtual separation
of concerns, as proposed by |[Kastner and Apel| (2009). That is, it
provides a way for programmers to work on some features of an
annotation-based variational program, without having to consider
many other irrelevant features.

The motivation for projectional editing and the challenges it
entails are closely related to research on lenses in the functional
programming community (Foster et al.|2007; Bohannon et al.[2008;
Voigtlander|2009), the classic view—update problem from databases
(Bancilhon and Spyratos||1981}; |Dayal and Bernstein||1982)), and
similar research in many other fields that can be collected under
the label of bidirectional transformations (Czarnecki et al.|2009).
Research in these areas strives to support the same basic workflow
described above. Starting with a large data structure or database
called the source: (1) obtain a simplified view of the source; (2) edit

http://git.busybox.net/busybox/tree/util-linux/swaponoff.c?id=faa9e94db619d1110061687278cde93a651e69de#n173
http://git.busybox.net/busybox/tree/util-linux/swaponoff.c?id=faa9e94db619d1110061687278cde93a651e69de#n173

#if ENABLE_FEATURE_SWAPON_DISCARD
"di"

#if |ENABLE_FEATURE_SWAPON_PRI
"d:"

#endif

#endif

#if ENABLE_FEATURE_SWAPON_PRI
"ot

#endif
"a" i "a"

#if ENABLE_FEATURE_SWAPON_DISCARD
, &discard

#if !|ENABLE_FEATURE_SWAPON_PRI
, &discard2

#endif

#endif

Figure 2. Relevant part of code from Figure[I]after a projectional
edit. Added or changed code is restricted to the selected variants.

the view; (3) use the edited view to automatically update the source.
Supporting this workflow requires the definition of two operations:
view or get for obtaining the view in step (1), and update or put for
propagating the edits in the view to the source in step (3).

The main challenge in all of this work is specifying and imple-
menting the update operation. Specifically, one must determine how
changes in the view should propagate back to changes in the source.
Many different techniques and heuristics have been developed to ad-
dress this problem, but one reason the problem is interesting is that
there is no single best solution. However, when working within a
specific domain, such as variational software, we can use knowledge
of the domain to inform the specification of update.

To see why the intended behavior of update is not obvious,
consider again our example from Figure[T} Suppose we generate
the same view as before by enabling SWAPON_DISCARD and disabling
SWAPON_PRI, then edit it to the following.

ret = getopt32(argv, "d::d::a", &discard, &discard2?);

Observe that the new second argument replaces code that was spread
across multiple #if blocks. How should this change be mapped
back to the original source code? Also, should the new argument
&discard?2 be added to the same #if block as &discard, or should it
be added to the non-variational code after the corresponding #endif?

One contribution of this paper is a simple principle, framed in
terms of variational software, for specifying the behavior of update:
when updating the source program with an edited view, only change
the variants in the source that can be generated from the view. In
the example above, since the view contained only the variant where
SWAPON_DISCARD is enabled and SWAPON_PRI is disabled, this is the
only variant that should be affected by the update. Therefore, when
pushed back into the source, code that was changed or added by edits
to the view should be qualified by corresponding #if blocks. The
relevant part of the updated source program is shown in Figure 2]

This principle leads to a kind of isolation of edits, not unlike a
transactional context in databases—variants that are not in the view
are never affected by edits. This isolation property is not desirable
in all situations, for instance, when the developer does some code
improvements within the view that should have an effect on a wider
range of variants. However, we believe that there are some attractive
scenarios that make our approach worthwhile:

e Consider a product line with customer-specific customizations.
The producer of the product line may want to give a customer’s
programmers access to the source code. The edits of these pro-
grammers should never affect the other customers’ variants. Fur-
thermore, the customers should never see code that is specific

to other customers. After careful consideration, the main devel-
opers of the product line may promote some of the customer-
specific edits to a broader set of configurations. It is not obvious
how to support this scenario with current technology, but it is
directly supported by the projectional editing model we propose.

Consider that a bug is known to occur in a particular set of
variants, for instance, because of a variability-aware testing tool
like Varex (Nguyen et al.[2014). In this case, all code that pertains
to other variants is irrelevant to fixing the bug, and all edits to
fix the bug should apply only to the selected variants in order to
prevent breaking working code. The isolation of edits provided
by our projectional editing model guarantees this.

Consider the introduction of a new, cross-cutting feature to a
product line, in which code must be added in many different
places. Manually maintaining the required configuration context
(for example, adding the same #if directive consistently in many
places) is elaborate and error-prone. Using our projectional edit-
ing model, the programmer can generate a view corresponding
to this configuration context, and all code specific to the feature
will be qualified accordingly.

The edit isolation principle and its corresponding update model also
have some formal advantages. For example, an update is never
ambiguous. A classic challenge in the view—update problem is
alignment: determining which parts of the edited view correspond
to which parts of the source (Barbosa et al.[2010). We sidestep
this challenge by simply introducing new variability everywhere
that alignment issues would traditionally appear. The edit isolation
principle also ensures the satisfaction of some desirable consistency
laws taken from related research on lenses (Foster et al.|2007).

The main contribution of this paper is a projectional editing
model for variational software. This model is introduced by way of
several examples in Section 2] and formalized in terms of the choice
calculus (Erwig and Walkingshaw|2011) in Section[3] Additionally,
this paper makes the following complementary contributions:

e The edit isolation principle, introduced in Section [2.3] and
formalized in Section [3.2] that describes how edits on a partially
configured view of a variational program should be translated
into edits on the source variational program.

Reference implementations of the view function, in Section[3.2}
and the update function, in Section[3.3] for choice calculus ex-
pressions that satisfy the edit isolation principle by construction.

Formal evidence that edit isolation has the desirable properties
described above. Namely, in Section[3.2] that it is unambiguous
up to semantic equivalence, and, in Section[d] that it ensures the
satisfaction of the lens consistency laws.

* An extension of the projectional editing model, in Section [5
to support formula choices, as used internally by the TypeChef
tool (Kenner et al.|2010; [Kistner et al.[2011)), which can parse
arbitrary #if variation in C. This illustrates how our approach
can be applied to real variational software.

In Section [f] we motivate projectional editing from the perspec-
tive of supporting a virtual separation of concerns and compare our
projectional editing model to related work on bidirectional transfor-
mations and task-focused editing. Finally, in Section [7] we conclude
and offer directions for future work.

2. Projectional Editing Model

In this section, we describe our projectional editing model for
variational software. We begin with an overview in Section [2.1]
which describes the editing workflow, its basic operations, and the
relationships between its various states. In Section [2.2] we present

§ derivededit . o
N update(p,s,v) /
view(p,s) ! .) (\ update(p,s,v')
/) view(p,s') ¥

/

actual edit

Figure 3. Summary of projectional editing relationships.

several tiny examples that illustrate some important aspects of the
model. This presentation is continued in Section 2.3} where we
describe the edit isolation principle that is the basis of our approach,
and present a few more examples that illustrate its implications.

2.1 Overview of the Projectional Editing Model

Recall the projectional editing workflow described in Section [I}
(1) the user partially configures a variational source program s to
obtain a simplified view program v, (2) the user edits v to produce
a new view program V', and (3) the original source program s is
updated with V' to produce a new source program s’. To support this
workflow, we need two functions: view, for implementing step (1),
and update, for implementing step (3).

The diagram in Figure 3| summarizes the relationships between
the programs s, v, v/, and s’, and how view and update move between
them. The three steps in the workflow are captured by the three solid
edges in the diagram. We use p to represent the partial configuration
used to generate the view; we also call p a projection on s. Starting
from s, the view function generates the view, view(p,s) = v; the user
edits v into v'; and the update function generates the updated source,
update(p,s,v') = s'. The update function effectively translates the
user’s actual edits from v to V' into derived edits from s to ',
represented by the dotted edge in the diagram.

The two dashed edges in the diagram describe basic consistency
principles that view and update should satisfy. These correspond to
the “lens laws” from research on lenses (Foster et al.|2007). Per the
dashed edge on the left, if we update s with the unedited view v,
then we get back the original source s, unchanged. Per the dashed
edge on the right, if we update s with v/ and immediately obtain a
new view using the same projection p, then we get back the same
view V' that was just used in the update. Together, these properties
ensure that view and update are mathematical inverses.

In most projectional editing scenarios, the correct behavior of
view is obvious. For example, in the case of #if annotations, a
projection p may consist of a set of explicitly enabled or disabled
configuration options; then view corresponds to running a modified
C preprocessor that resolves all #if blocks whose configuration
options are mentioned in p, but leaves other #if blocks in the code.
However, the correct behavior of update is not so obvious, and
indeed specifying and implementing update is the overarching chal-
lenge in the classic view—update problem. Although the consistency
properties described above constrain the specification of update,
there remains a lot of open design space. In the next subsection, we
motivate our own specification of update through several examples.

2.2 Projectional Editing, By Example

In this section, and throughout the rest of the paper, we use the
choice calculus (Erwig and Walkingshaw|2011)) as a concise no-
tation for variational programs. The choice calculus is formally
defined in Section 3.1} For now, it is sufficient to understand the
correspondence between a choice calculus expression and its more
verbose rendering with #if annotations, illustrated in Figure] A
choice D{ey,e;) consists of a dimension of variation D and two
alternatives e; and e;. This corresponds to an #if—#else—#endif

#if A
#if B
#if A 1
1 #else
#else 2
2 #endif
#endif #else
+ #if B
#if A #if A 3
1 3 #else
#else #else 4
2 4 #endif
#endif #endif #endif
A(1,2) A(1,2) +A(3,4) A(B(1,2),B(3,4))

Figure 4. Examples illustrating correspondence of choice calculus
expressions and potentially nested #if—#else—#endif blocks.

block with D as the configuration option in the condition. A partial
configuration of a choice calculus expression is given by a set of se-
lectors. The selector D./ means to replace each choice in dimension
D with its left alternative, while the selector D.r means to replace
each choice in D with its right alternative. The examples in Figure[4]
are used in the following discussion.

Let us begin by considering some straightforward projectional
editing scenarios, where the correct behavior of update seems
obvious. We present the scenarios by listing the values of s, p, v, and
V. The programs s, v, and V' are given as choice calculus expressions,
while p is given by a set of selectors. Note that v is determined by
the values of p and s since v = view(p,s). The intended value of
the updated source s’ = update(p,s,v') is the subject of discussion,
since it will be determined by the behavior of update.

First, consider the scenario where we project away a single
choice and edit the remaining alternative.

s=A(1,2) p={Al} v=1 V=3

That is, we use the first example in Figure [d] as the initial source
and focus on its left alternative, which we edit from 1 to 3. After
applying update, we expect the corresponding alternative to update
in the source, so that s’ = A(3,2).

If we have multiple choices in the same dimension, such as in the
second example in Figure] they will always be synchronized, as
would the corresponding #if—#else—#endif blocks. In the following
scenario, we again select A./ and edit the resulting view.

s=A(1,2) +A(3,4) p={Al} v=1+3 VvV =54+6

After editing the view 1+ 3 to 5+ 6, we apply update and expect
both of the corresponding alternatives to update in the source, so
that s’ = A(5,2) + A(6,4).

Now consider a slightly more complicated case involving choices
in multiple dimensions. In the following scenario, we start with
the third example in Figure [d] which contains two dimensions of
variation. We project away just one of these dimensions, leaving the
other dimension still present in the view.

s=A(B(1,2),B(3,4)) p={BIl} v=A(1,3) V =A(5,6)

Here, we have focused on the left alternatives of the choices in
dimension B, leaving a simpler choice in A. After editing both of the
alternatives in this choice, we once again expect the corresponding
alternatives to update in the source, so that s’ = A(B(5,2), B(6,4)).

In all three of the previous scenarios, the intended result of
update is clear since the edits made in the view are confined
to subexpressions of the original source. Therefore, referring to
Figure[3] there is a one-to-one correspondence between the actual
edits from v to V' and the derived edits from s to s’. When this

subexpression relationship is not preserved, the intended result of
update is less obvious. For example, consider the following variant
of the previous scenario, where instead of editing each alternative,
we instead replace the whole choice in dimension A by 5.

s=A(B(1,2),B(3,4)) p={BIl} v=A(1,3) V=5

In this case, the edits are not confined to a subexpression of s since
the choice A(1,3), which was replaced in the view, does not appear
as a subexpression in s. So what should update do?

One idea is that we can transform s in a semantics-preserving
way to recover the subexpression relationship between edits. In our
previous work, we enumerated a set of equivalence laws such that if
two choice calculus expressions are equivalent, then they will always
produce the same variants if they are configured in the same way
(Erwig and Walkingshaw|2011) From these laws, we can derive
the following equivalence rule, which is useful for this example.

l)<l)/<el762>7l)/<e37e4>> EEl)/<l)<el7e3>7l)<627e4>>

It is easy to verify, by transforming the left- and right-hand sides into
the corresponding #if—#else—#endif notation, that applying this
rule in either direction does not affect the meaning of an expression.
Instantiating this rule with s yields the following.

A(B(1,2),B(3,4)) = B(A(1,3),A(2,4))

Now A(1,3) appears as a subexpression on the right-hand side and
the intended result of update is clear. We replace the choice with
the edited view 5 in order to obtain s’ = B(5,A(2,4)). If we want the
nesting of choices in s’ to match the original nesting in s, we can
apply another equivalence law e = D(e,e) to split 5 into a choice
A(5,5), then apply the law above to obtain s’ = A(B(5,2), B(5,4)).
Unfortunately, not all edit ambiguities can be resolved by apply-
ing equivalence laws until the edits correspond to a subexpression
of the source. Consider the following example, which illustrates the
problem of ambiguous edit alignment (Barbosa et al.[2010).

s=A(1,2) p={Al} v=1 VvV =1+3

Here, the edit extended the view by adding + 3, but it is unclear
whether this extension should be propagated back to the alternative
containing 1, in which case the updated source is s] = A(1+3,2), or
whether it should be shared between both alternatives, in which case
the updated source is s, = A(1,2) + 3. Determining edit alignment is
one of the main challenges of the view—update problem. Our strategy
is to avoid this ambiguity by a simple principle that completely
specifies the behavior of update. This principle, which is discussed
in the next subsection, leads us to choose s’1 for this example.

2.3 Edit Isolation Principle

Our projectional editing model is founded on a principle that states
that when applying an update, the only variants that change in the
source are those that can be reached from the view. That is, edits to
the view are isolated from variants in the source that were hidden
when the view was generated. Although edit isolation leads to just
one of many possible specifications of update, it has some nice
properties. First, it avoids the problem of alignment by specifying
an unambiguous behavior for update. Second, in Section[d] we show
that edit isolation ensures that several consistency properties on view
and update are satisfied, including those discussed in Section 2.1}
We defer the formal definition of the edit isolation principle to
Section 3.2} In this section we illustrate its implications by example.

A potentially surprising implication of edit isolation is that an
update may produce new choices in s’ that are present in neither the
original source s nor in the edited view V. For example, suppose the
user projects on the left alternative of dimension A in an expression
that does not contain a choice in A, then makes an edit.

2 See the denotational semantics of the choice calculus in Section|3.1

struct globals {
#if ENABLE_FEATURE_WGET_TIMEOUT
unsigned timeout_seconds;

+ bool connecting;

#endif

}
+ #if ENABLE_FEATURE_WGET_TIMEOUT
+ static void alarm_handler(int sig UNUSED_PARAM) {
+ /* This is theoretically unsafe (uses stdio
+ and malloc in signal handler) =/
+ if (G.connecting)
+ bb_error_msg_and_die("download_timed_out");
+ 3}
+ #endif

Figure 5. Part of a BusyBox edit illustrating consistency.

s=1+2 p={Al} v=1+2 V=1+3

By edit isolation, update should yield the new source s’ =1+ A(2,3).
It would be incorrect to simply replace 2 with 3 since then we would
have changed the variants for configurations containing A.r, even
though those variants are not reachable from the view.

Similarly, an update may eliminate an existing choice in s if an
edit makes its alternatives the same. Consider the following scenario.

s=B(1,2)+3 p={BIl} v=1+3 VvV =2+3

The edit changes the left alternative of the choice in B into 2, which
is the same as the right alternative that we projected away when
generating the view. So, update should yield a new source s’ =2 + 3,
in which the choice in B has been removed.

Note that although an update may introduce or eliminate choices,
it does not modify the set of dimensions that choices may refer to.
Therefore, an update will not fundamentally alter the variability in a
program, although it may distinguish variants that were previously
identical or merge variants that were previously different.

As a more realistic example, Figure[5|shows part of an actual edit
to the BusyBox project that satisfies the edit isolation principleE]In
the figure, lines that start with a + symbol indicate newly added code
and the ellipses indicate omitted unchanged code. Observe that the
edit contains changes both inside and outside existing #if blocks,
but all of the newly added code is conditionally included only if
the WGET_TIMEOUT feature is enabled. The full edit contains several
more lines of conditional code, but also one small refactoring that
is not variational. This change does not affect the semantics of the
program when WGET_TIMEOUT is disabled, but such a change could
be risky since the programmer must reason about both alternatives
at once, even though he intended to change only the variants where
WGET_TIMEOUT is enabled. Using our projectional editing model, the
programmer could have partially configured the program with the
WGET_TIMEOUT feature enabled, made his edits to a program without
any variation annotations, and been guaranteed that his edits would
not affect variants where WGET_TIMEOUT is disabled.

The edit isolation principle ensures that edits are isolated to a
deterministic and easily identifiable set of variants—those variants
that the user can see while they are editing. In addition to the
example in Figure[5] we described several more general scenarios
in Section [Tl where we believe that this behavior is desirable. Of
course, other scenarios may require other specifications of update,
and this is a potential area for future work.

3 The complete edit is here: http://git.busybox.net/busybox/commit?
1d=d074b416£8d3cabbbae7b44d17¢204ea8d81e7a0

http://git.busybox.net/busybox/commit?id=d074b416f8d3ca6b6ae7b44d17e204ea8d81e7a0
http://git.busybox.net/busybox/commit?id=d074b416f8d3ca6b6ae7b44d17e204ea8d81e7a0

Plain programs:

t = a<t,...,t> Program AST

Choice calculus syntax:
e,s,v 1= a<e,...,e> Program AST
| Dle,e) Choice
Selection: e xx — e
la<ey,...,en>=|x =a<|eq]x,..., len]x>
ler]x ifx=D.l
[D{ej,er) |x =X lerlx ifx=D.r
D(|e;]x, ler]x) otherwise
Partial configuration: e x p — e
lelp=1..-le]x ---]x, where p={xi,...,x,}
(Complete) configuration: e X ¢ —¢
la=er,...,en>]c =a<|e]c,---,|en]c>

|_€ Jc lfC(D) =1
06redle = {51 qpurase ct2) =)

Denotational semantics: e — ¢ — ¢
[e] =Ac.le]c
Semantic equivalence:

e=d ¥ =[] & Vet le).=|].

Figure 6. Choice calculus language definition.

3. Formalization of Projectional Editing

In this section we formalize the projectional editing model in terms
of the choice calculus. As necessary background, in Section we
briefly define the syntax and semantics of the choice calculus. In
Section we give the types of the view and update operations,
identify an implementation of view, and formally define the edit
isolation principle, which specifies the behavior of update. An
implementation of update is presented in Section[3.3]

3.1 Background: Choice Calculus

The choice calculus is a minimalistic formal language for repre-
senting variational programs. Its syntax and semantics are given
in Figure[f] along with operations for partially configuring choice
calculus expressions. These definitions are based on our previous
work (Erwig and Walkingshaw|2011)).

From the perspective of the choice calculus, a program is
represented by a generic abstract syntax tree (AST), encoded as
arose tree. A node a<ty,...,t,> contains a label a and a potentially
empty list of children #q,...,#,. For example, the expression 3 + 4
would be encoded in the choice calculus as +<3~>-, 4<>->-. However,
we prefer concrete syntax wherever there is no ambiguity. A choice
calculus expression is simply an AST that may contain choices
embedded arbitrarily within it. We use the metavariable ¢ to range
over plain programs, containing no variation, and the metavariables
e, s, and v to range over choice calculus expressions.

Eliminating all choices in one dimension is called selection. We
write |e]p; to select within e the left alternative of every choice
in dimension D, and |e]p , to select the right alternative of every

choice in D. For example, let e = A(3,4) + A(5,6), then selecting
le] 4. yields 3 + 5, while selecting |e|4 , yields 4 + 6. Since the two
choices are synchronized, it is impossible to select 3 + 6 or 4 + 5. We
range over the selectors D.l and D.r with the metavariable x.

Observe from the definition of selection that outer choices
dominate inner choices in the same dimension. For example, given
a choice e = B(3,B(4,5)), it is not possible to select 4 from e;
selecting | e] g yields 3, while selecting | e] p., replaces both choices
by their right alternative, yielding 5. Dominated choices can always
be replaced by the relevant alternative without changing the meaning
of the expression. In this case, we can simplify e to B(3,5).

A partial configuration p is a set of selectors such that if D./ € p
then D.r ¢ p and vice versa. A partial configuration defines a
projection on choice calculus expressions by eliminating some
dimensions of variation, but not necessarily all. We write |e],, to
select | ey for every x € p. Since each selector in p eliminates a
different dimension of variation, and since selectors do not affect
choices in other dimensions, the order of selection does not matter.

A (complete) configuration ¢ : D — (I +r) is a total function that
maps each dimension name to either / or r. Conceptually, a configu-
ration describes how to select every dimension that may appear in e.
We write |e]. to configure expression e with configuration c. The
definition of configuration is similar to selection. Since configuring
will eliminate all choices from e, the result will consist only of AST
nodes and so will be a plain program ¢. We define % to be the set of
all possible configurations.

The denotational semantics of an expression, written [[e]], is
a function from a complete configuration ¢ to the plain variant
produced by configuring e with c. Finally, two expressions e and ¢’
are considered semantically equivalent, written e = ¢', if they have
the same denotational semantics.

3.2 Specification of the Projectional Editing Operations

In Section 2] we presented a projectional editing model that relies on
two functions, view and update. In this section, we formally specify
the behavior of these functions. In terms of the choice calculus, we
can assign view and update the following types.

view:p Xe —e
update : pxexe—e

The specification of view, as described in Section [2.2] is trivial in
terms of the partial configuration operation defined in Figure|[g]

Definition 3.1 (Projection). Given source program s and partial
configuration p. Let v = view(p,s). Then, v = |s] .

We can implement this specification directly as shown below.

view(p,s) = |51,

The specification and implementation of update are somewhat more
involved. As described in Section 2.3] the behavior of update is
specified by the edit isolation principle, which is defined below, and
one possible implementation is offered in the next subsection.

The edit isolation principle states that when applying an update,
the only variants that change in the source are those that can be
reached from the view. To define this principle in terms of the
semantics of the choice calculus, we need a way to relate the partial
configuration p used to generate the view, and a total configuration
¢ in the domain of the semantics. Recall that p is a finite set of
non-conflicting selectors and c is a total function from dimension
names to either / or r. Equivalently, we can view c¢ as an infinite
set of selectors, where for every dimension D, either D./ or D.ris a
member of ¢, but not both. Therefore, we can say that p is a subset
of ¢, thatis p C c, if ¢ contains all of the selectors in p.

In the following definition, we restrict v from containing vari-
ation in dimensions listed in p to prevent edits from reintroducing
variants that were explicitly projected away.

Definition 3.2 (Edit Isolation). Given source program s, partial
configuration p, and edited view v' = |V'] . Let s’ = update(p,s,V').

Then, I_VIJC ifp Ce
|s|]e otherwise

Vee®. LS’JC:{

Since the original view was generated by [s], it follows that if
p C ¢, then ¢ describes a variant that can be generated from the view,
otherwise ¢ describes a variant that cannot be generated from the
view. Since the edit should affect exactly those variants that can be
reached from the view, the semantics of the updated source s” should
draw from the semantics of the edited view v whenever p C ¢, and
it should draw from the semantics of the original source s otherwise.

By comparing this definition with the definition of [[-]] in Fig-
ure [6] it should be clear that edit isolation completely specifies
the denotational semantics of the updated source s’ in terms of the
semantics of the edited view V' and the original source s.

3.3 Implementation of Update

The edit isolation principle specifies the behavior of update in terms
of the denotational semantics of its output. In this subsection we
construct an implementation of this specification.

The implementation of update(p,s,v') consists of two steps:
First, we build up a choice calculus expression using a helper
function diff that ensures by construction that the edit isolation
principle is satisfied. Second, we minimize this expression by
applying a function minimize, that transforms the expression into a
semantically equivalent expression with minimal redundancy.

update(p,s,v') = minimize(diff (p,s,v'))

In the rest of this section we describe the implementation of the two
helper functions diff and minimize.

The diff function uses the selectors contained in p to build up a
tree of choices, where every leaf of the tree is s except for the leaf
identified by p, which is /.

D{diff (p',s,V'),s) if p={D.I}Up’
diff (p,s,v') = { Dis,diff (p',s,v")) if p={D.r}up’
v otherwise (p = @)

For example, given p = {A.r,B.r,C.l}, the diff function will con-
struct the following choice from p, s, and V'.

Als,B(s,C{V',s)))

The diff function ensures that the edit isolation principle is satisfied
by building up a tree of choices that implements the principle
directly. For technical reasons, we assume that diff draws selectors
from p according to a fixed dimension ordering (e.g. lexicographic).
Note that s may itself contain choices in dimensions A, B, and C.
These will be eliminated as part of the next step.

The minimize function reduces redundancy in the expression
produced by diff. It is implemented indirectly by the ~~ rewriting
relation, defined in Figure[7] These rules are derived from the equiv-
alence laws defined in our previous work (Erwig and Walkingshaw
2011). This means that applying a rule may change the syntactic
structure of an expression, but it will not change its semantics.

The AST-FACTORING rule supports factoring an AST node out
of a choice if the label of the AST node is shared amongst all
alternatives. For example, consider the choice A(2 + 3,2 +4). The
root of the AST in each alternative is the + symbol, so we can factor
this out to get A(2,2) + A(3,4). Or, to make the tree structure of the
addition expressions more explicit:

A(+=2,3>,+<2,4>) ~> +<A(2,2),A(3,4)>

AST-FACTORING
/ ! / /
D{a<ey,...,ep>,a<e],...,e>-) ~ a<D{ey,e}),...,D{en, €),)>

CHOICE-DO/NIINATION ,
leilpi = ¢ ler|p.r =€)
D<€],€r> ~ D<egvelr>

CHOICE-IDEMPOTENCY
D(e,e) ~e

AST-CONGRUENCE
ej ~> eg

a<ey,...,ep>= ~a<ey,...,e;,

CHOICE-R-CONGRUENCE
ey ~> elr

D<el>er> ~ D<el7e:‘>

CHOICE-L-CONGRUENCE
e; ~ e;

Dfey.er) ~ Diejer)

Figure 7. Choice calculus minimization rules.

Now the left alternative of the factored expression contains a choice
A(2,2), where it doesn’t matter which alternative we pick. We can
eliminate such choices by applying the CHOICE-IDEMPOTENCY rule,
for example, A(2,2) ~~ 2. So the minimized expression is 2 + A(3,4).
The CHoIicE-DOMINATION rule eliminates dominated choices, as
described in Section 311

The remaining three congruence rules allow the first three rules to
be applied to any subexpression of a choice calculus expression. For
example, the AST-CONGRUENCE rule is needed in order to apply the
CHOICE-IDEMPOTENCY rule to the expression A(2,2) in the example
above since this choice is a subexpression of an AST node.

Finally, we define ~~* to be the reflexive, transitive closure of the
rewriting relation ~+, and define that minimize(e) = €' if and only
if e ~* ¢'. That is, minimize effectively applies the minimization
rules repeatedly until the expression cannot be minimized anymore.
Assuming a fixed dimension ordering, the ~»* rewriting relation is
normalizing, meaning that every choice calculus expression can be
translated into a unique minimal form. This property can be proved
by induction over the minimization rules, showing that the rewriting
relation is terminating and confluent. In our previous work, we have
shown that a structurally equivalent rewriting system for variational
types is normalizing (Chen et al.|2014).

4. Properties of Edit Isolation

In this section, we prove that our projectional editing model has
some desirable properties identified in previous work on bidirec-
tional transformations. The first of these are the so-called “lens
laws”, which define some basic consistency principles that view and
update should satisfy (Foster et al.|2007).

(GETPUT)
(PUTGET)

update(p,s,view(p,s)) =s
view(p,update(p,s,v')) = v/

The GETPUT law states that updating s with an unedited view (that
is, v =), yields the original source s. The PUTGET law states
that updating s with a (potentially edited) view v/, then immediately
producing a new view with the same projection p, yields the same V'
Together, the lens laws describe the important property that view and
update should be mathematical inverses. Recall that these properties
correspond to the dashed lines in the diagram in Figure 3]

Any implementations of view and update that satisfy the specifi-
cations defined in Section[3.2]also satisfy the GETPUT and PUTGET
laws. Recall that view and update are specified by Definition
(projection) and Definition[3.2](edit isolation), respectively. To prove
this, we first introduce a couple of lemmas describing relationships
between partial and complete configurations.

LemmafT]states that if p C c, then ¢ completes the configuration
of p, so configuring with p followed by c is the same as just
configuring with c.

Lemma 4.1 (Completion). Given partial configuration p and
complete configuration c. Then, p Cc = ||e]p]c = |e]c.

This follows from the isomorphic definitions of |-], and |-|., and
the definition of the C relationship in Section[3.2}

Lemma.2]states that a partial configuration p has priority over
a complete configuration c if we apply p first. Therefore, we can
replace p and ¢ by a new complete configuration ¢’ that draws from
p if applicable, and otherwise defaults to c.

Lemma 4.2 (Priority). Given partial configuration p and complete
configuration c. There exists a complete configuration c', such that
pCd, |lelple = le]e, and c and ¢’ differ only in dimensions in p.

Proof. Construct ¢’ as follows.

I ifD.l€p
d=AD.{r ifD.rep
¢(D) otherwise 0

Using these lemmas, we can prove that the GETPUT and PUTGET
laws follow from the definitions in Section[3.2]

Theorem 4.3. GETPUT follows from projection and edit isolation.

Proof. Assume that view and update satisfy the projection and edit
isolation principles, respectively. By expanding the definitions of
view and equivalence, the GETPUT law can be expressed as follows.

Ve € €. \update(p,s, |s]p)]|c = s]¢

Now we can expand update using the definition of edit isolation.
There are two cases to consider.

1. If p C ¢, then [[s],|c = [s]¢, which follows from Lemmaf4.1}
2. Otherwise, |s]c = |s]c, which is trivially true. O

Theorem 4.4. PUTGET follows from projection and edit isolation.

Proof. Assume that view and update satisfy the projection and edit
isolation principles, respectively. By expanding the definitions of
view and equivalence, the PUTGET law can be expressed as follows.

Ve € 4. | lupdate(p,s,V')]plc = [V]c

By Lemmaf4.7] the inner configuration with p ensures that, regard-
less of ¢, update will expand to the first case given in Definition[3.2]
yielding the following.

Vee?t. LV/J = L‘/JC

Also by Lemma c and ¢’ may differ only in the dimensions
contained in p, and by edit isolation, v/ may not contain choices in
those dimensions. Therefore, |V |~ and |V |, are equivalent. O

It is assumed that all “well-behaved” bidirectional transformations
should satisfy the basic GETPUT and PUTGET laws. Therefore, our
projectional editing model is well-behaved.

A bidirectional transformation is considered “very well-behaved”,
if it satisfies two additional properties: (1) view and update are total
functions and (2) update satisfies the following PUTPUT law (Foster
et al.|2007; Johnson and Rosebrugh|2008).

update(p,update(p,s,v'),v) = update(p,s,v) (PUTPUT)

Totality ensures that view and update will never fail. The PUTPUT
law states that if we update a source program s with V' under
projection p, then update it again with v under the same projection
P, the result should be the same as if we had just updated s with v.
In other words, the second update with v completely overwrites the
first update with /. This is desirable since it means that the effects
of an update are always reversible (Johnson and Rosebrugh/2008)).

Theorem 4.5. PUTPUT follows from projection and edit isolation.

Proof. Assume that update satisfies the edit isolation principle. By
the definition of equivalence, the PUTPUT law can be expressed as
follows.

Ve € 6. |update(p,update(p,s,v'),v)|. = |update(p,s,v)].

Now we can expand the two outermost uses of update using the
definition of edit isolation. There are two cases to consider.

1. If p Cc, then |v], = [v],.
2. Otherwise, |update(p,s,V')]. = |5]., and expanding the remain-
ing use of update yields |s|. = |s]c. O

Therefore any implementations of view and update that are total
functions and satisfy the projection and edit isolation principles yield
a bidirectional transformation on choice calculus expressions that is
very well-behaved. Observe that our reference implementations of
view and update are both total functions, so the projectional editing
model described here has this property.

5. Extension to Formula Choices

So far, we have presented our projectional editing model in terms
of the choice calculus. In Section [2.2] we showed how the choice
calculus is equivalent to a restricted use of #if—#else—#endif blocks
where the condition of each #if is a single configuration option. A
drawback of this representation is that expressing some variational
programs requires redundancy. For example, suppose a program is 2
if either configuration options A or B are enabled, but 3 otherwise. In
the choice calculus, we must represent this as A(2, B(2,3)), where 2
is repeated. If 2 were instead a large chunk of code, this redundancy
would be very bad from a maintenance perspective.

As a solution, we can replace atomic dimension names by
boolean formulas of configuration options, as described in our
previous work (Walkingshaw et al.[2014). We call the resulting
language the formula choice calculus. We can represent the example
above by the formula choice (A V B)(2,3), which contains no
redundancy. If the formula is satisfied by the chosen configuration,
the first alternative 2 is chosen, otherwise the second alternative
3 is chosen. Using the formula choice calculus, we can encode
#if—#else—#endif blocks with arbitrary boolean conditions.

The syntax and semantics of the formula choice calculus are
defined in Figure [8] The syntax just replaces the dimensions D
by boolean formulas F'. The metavariable O ranges over atomic
configuration options, such as A and B in the above example.

The denotational semantics [[-] is defined as a function from a
complete configuration c to the plain program produced by |e]..
A complete configuration is a total function from configuration
options to boolean values, indicating whether each option is enabled
or disabled. The helper function eval evaluates the truth value of a
formula given a configuration, and |e]. configures an expression by
evaluating the formula of each choice and replacing it by its left or
right alternative, depending on whether the formula is true or false.

To support projectional editing of formula choice calculus ex-
pressions, we need some way to partially configure them. We could
adapt the approach used for the choice calculus by representing
partial configurations as a set of pairs of type O X B, indicating
configuration options that are enabled or disabled. However, a more
flexible approach is to represent partial configurations by formulas,
as defined in Figure that is, |e|F yields an expression that con-
tains all of the variants of e that are consistent with F. For example,
given an expression e = A(1,B(2,3)) and a formula F = AV B, then
le]F = A(1,2). The variant 3 is inconsistent with F and eliminated
since selecting it would require both A and B to be false. Consistency
can be efficiently checked using a SAT solver.

Formula choice calculus syntax:

B = true | false
F = B|O|~-F | FVF | FAF
e,s,v 1= a<e,...,ex Program AST
| Flee) Choice

(Complete) configuration: e x ¢ — ¢

c:0—B eval:cxF — B

la=ey,...,en>]c =a<|er]cy- -, len] >
~(lele ifeval(c,F) = true
[Flerer)]e = { ler|c otherwise (false)

Denotational semantics: e — ¢ — ¢
el = Ac.le]c
Partial configuration: e x F — e
la<eq,...,en>|F =a<|et]F,...,|en] F>

[e;j F if ﬁSAT(Fr)
|F'{er,er)|F =< lerlF, if ~SAT(F})
min(F;)(|e/|F, ler|F) otherwise

where F; = FAF'
F, = FA—F'

Figure 8. Formula choice calculus language definition.

The implementation of |e]r is best understood as eliminating
alternatives that are inconsistent with F. Given a formula choice
F'{e;,e,), the alternative ¢; is selected when F’ is true, while e, is
selected when F” is false. During partial configuration, we assume
that the projection formula F is true. So, we replace the choice by
e, if it is not possible that, given F, F’ is true, that is, if F A F' is
not satisfiable. We replace the choice by e, if it is not possible that,
given F, F' is false, that is, if F A —F’ is not satisfiable. In the case
where both alternatives are consistent with F, we replace F’ by the
conjunction F A F’. The function min indicates that this expression
should be minimized, if possible, for usability.

Using the definitions of |e|r and |e]., it is straightforward to
adapt the projection and edit isolation principles from Section[3.2]
to specify the behavior of view and update for the formula choice
calculus. These principles lead to the following implementations
of view and update, which are quite similar to the implementations
developed in Sections[3.2]and[3.3]

view(F,s) = |s|F
update(F,s,v') = minimize(F{V',s))
We can also reuse much of the definition of minimize from Sec-
tion [3.3] By substituting F for D, we can immediately reuse the

AST-FACTORING, CHOICE-IDEMPOTENCY, and all three congruence
rules. The CHOICE-DOMINATION rule can be adapted as follows.

CHOICE—D/OMINATION ,
leilr=¢ ler]-r =e,
Flej,er) ~ Flej,e))

However, there are more opportunities for minimizing formula
choices than are captured by these rewriting rules. In particular,
it is often possible to “join” redundant alternatives in nested for-

JOIN-OR
Flep,F'{e;,e,)) ~ (FVF'){e;,e;)

JOIN-AND
F<F/<€1,€r>,€r> ~ (F/\F/)<€[,€r>

JOIN-OR-NOT
Fle, F'{er,e))) ~ (FV=F"){ey,e;)

JOIN-AND-NOT
F(F'(er,er),er) ~ (F A=F') er,er)

Figure 9. Additional minimization rules for formula choices.

mula choices, as shown by the additional minimization rules in
Figure 0] For example, consider again the expression A(2, B(2,3)).
By applying the JOIN-OR rewriting rule, we can rewrite this expres-
sion without redundancy as (A V B)(2,3). Apel et al.|(2013) argue
that identifying and exploiting such join opportunities early is a
key to scaling variational analyses. We believe it is also important
for projectional editing of variational software since it minimizes
redundancy in the code base, easing maintenance.

Unfortunately, the rules in Figure[§]do not represent all opportu-
nities for joining redundant alternatives. For example, the following
two expressions are semantically equivalent, but there is no way to
transform the left expression into the right using the rewriting rules.

A(2,B(C(2,3),C(2,4))) = (AV C)(2,B(3,4))

One possibility is to introduce additional rewriting rules to swap the
nesting of choices (Erwig and Walkingshaw|[2011), which can be
used to setup the join rules in Figure[9] However, this complicates
the implementation of minimize since we must search for an optimal
sequence of swaps. It also unclear whether ~»* is still normalizing.
For now, we assume that redundancy in non-immediate siblings is
not automatically eliminated.

Although there are still some open challenges, this section illus-
trates how our projectional editing model can be extended to support
arbitrary boolean conditions on variational code. The representa-
tion presented in this section is similar to the representation used
by TypeChef to represent variability in #if-annotated C programs
(Kenner et al.|[2010; [Késtner et al.|2011).

6. Related Work
6.1 Virtual Separation of Concerns

This paper has focused on variability embedded directly into soft-
ware through the use of variation annotations (for example, #if
statements or choices). An alternative approach is to separate a
program into several composable modules that can be included or
not in a particular program variant (Batory et al.|2004; |[Mezini and
Ostermann|2004)). There are many tradeoffs between annotative
variation and composition-based variation (Apel and Kistner[2009;
Walkingshaw and Erwig|2012). The primary benefit and motivation
for composition-based variation is that it supports a separation of
concerns (Tarr et al.|1999)—that is, it is possible to work on one
feature without having to consider many other irrelevant features.
Kistner and Apel| (2009) have proposed the idea of a virtual sep-
aration of concerns as a way to bring similar benefits to annotation-
based product lines via tool support (see also |Kim et al.|[2008};
Kastner et al.|2009). This idea is a major motivation for our work.
The CIDE tool (Kistner et al.|2008)) supports a virtual separation
of concerns by allowing the user to select which features they are
currently interested in, then filtering out of the editor view the
annotated code blocks related to uninteresting features. CIDE’s

representation of variation is more restricted than either the choice
calculus or #if annotations since it supports only additive variability.
That is, a feature is associated with some code that is added to
the program if the feature is included and excluded otherwise. But
including a feature cannot remove or replace existing code.

Projectional editing of variational programs is also motivated by
previous work that has demonstrated that less obtrusive variation
annotations (e.g. background colors) and the filtering of irrelevant
code can help programmers understand variational programs (Le
et al.| 2011} |[Feigenspan et al.|2011}; |Stengel et al.|2011)).

6.2 View-Update and Bidirectional Transformations

A huge amount of research in many different disciplines of computer
science can be classified under the umbrella category of bidirectional
transformations. The common thread in all of this work is to be able
to translate changes in one artifact to changes in a related artifact.
Czarnecki et al.|(2009) provide a good overview. In this section
we focus on foundational research in databases and recent work in
functional programming, which most influenced our editing model.

The view—update problem is a classic problem in relational
databases (Bancilhon and Spyratos||1981; [Dayal and Bernstein
1982). The main challenge is that it is not always possible to
translate view changes unambiguously into source changes. The
technique used to avoid or resolve these ambiguities is called an
update policy. One policy is to identify the properties of views
that yield unambiguous updates, then only allow views that satisfy
these properties to be updated (Dayal and Bernstein|1982} |Gottlob
et al.|1988). Another policy is to restrict the query language to yield
only unambiguously updatable views (Dayal and Bernstein|[1982),
or to otherwise build the update policy into the projection itself
(Medeiros and Tompal/1986). Most relevant to us is the work of
Bancilhon and Spyratos| (1981)), who define update policies relative
to a constant complement of the view that should not change when
the update is performed. This is similar to our edit isolation principle,
where hidden variants can be considered the constant complement
of the visible variants in the view. Cosmadakis and Papadimitriou
(1984) show that identifying the minimum constant complement of
a relational view is a hard problem. However, this is not the case in
our projectional editing model, where the edit isolation principle is
easy to enforce, as demonstrated in Section@

In the functional programming community, work on bidirectional
transformations has focused on libraries and languages for building
reversible projections called “lenses” (Foster et al.|2007; |Bohannon
et al.|2008; |Voigtlander|2009). A lens defines both a projection and
an update policy. Section[{l]presented several consistency laws from
work on lenses, and showed that our editing model satisfies these
laws. The GETPUT and PUTGET are also similar to invertibility
laws described in the database literature (Fagin/|2007).

6.3 Projectional and Task-Focused Editing

The idea of presenting a task-specific view of source code is not new.
A ubiquitous example is the debugging view offered by most IDEs.
Another example is the Mylar plugin (Kersten and Murphy|2005)
for the Eclipse IDE. Mylar monitors a programmer’s activity and
automatically filters out files and code that it guesses to be irrelevant.
The focus on filtering is similar to our approach; however, we require
the programmer to intentionally project on a subset of variants,
rather than the system inferring this. Mylar was shown to improve
productivity in a field study (Kersten and Murphy|2006), suggesting
that hiding irrelevant information is useful for programmers.
Janzen and De Volder|(2004) describe a programming language
and projectional editing model for editing the same program under
different modularity schemes. In their system, a projection restruc-
tures the source code, that is, it presents the same information or-
ganized in a different way to support a particular kind of task. In

contrast, our projections filter the source code, temporarily hiding
variability that the user doesn’t want to (or shouldn’t be able to) see.

Most similar to our work is the Version Editor (VE), a pro-
jectional editing tool that supports within-file version control via
#if-like #version annotations (Atkins|1998). The editing model is
similar to ours: the user obtains a view of a source file correspond-
ing to a particular version, then any edited lines are automatically
wrapped in corresponding #version annotations. Variation in VE is
more limited than #if annotations or the choice calculus. A #version
annotation refers to a single configuration (version) of the software,
whereas a choice refers to a dimension or formula that represents
a set of related configurations, for example, all configurations con-
taining a particular feature. Similarly, an edit in VE always affects
exactly one version—a more extreme form of edit isolation. An anal-
ysis of over ten years of use at Bell Labs revealed that developers
were 40% more productive using VE than editing #version anno-
tations manually (Atkins et al.[2002), suggesting that projectional
editing and the edit isolation principle are useful in practice.

The Leviathan file system (Hofer et al.|2010) supports projec-
tional editing of annotation-based variation at the file-system level,
rather than via an editor. The user specifies a (partial) configuration
of a variational code base, then mounts a file system containing
the projected code base. Any file edits on the projected code are
translated into file edits on the original source. The main advantage
of this approach is that users can use their usual editors and tool
chains. Leviathan does not enforce edit isolation, and instead relies
on heuristics to resolve alignment issues. This may be better for
some use cases, but when updates are performed transparently by
the file system, a more predictable editing model may be desirable.
Since our editing model is not tied to any specific editor, it could
easily be used as a drop-in replacement.

7. Conclusion and Future Work

In this paper we presented a projectional editing model for varia-
tional software that supports the following workflow: (1) partially
configure a complex variational program, (2) edit the simplified
view, (3) use the edited view to automatically update the original
source program. The distinguishing feature of our approach is that it
maintains an edit isolation principle that ensures that only variants
that are visible in the view are updated in the source. We have for-
malized the specifications of the view and update functions needed
to support the projectional editing workflow, and provided reference
implementations of these functions. We have also proved that our
specifications ensure the satisfaction of desirable theoretical proper-
ties from related work. Our projectional editing model is formulated
in terms of the choice calculus, however, we have also shown that
the model can be extended to choices with arbitrary boolean condi-
tions, demonstrating that it can be applied to the kinds of variation
that occur in real software.

As future work, we plan to implement the update operation in
terms of an off-the-shelf tree-dift algorithm (Bille[2005)). A tree-diff
algorithm takes two trees as input and efficiently produces an edit
script capturing the differences between the two. A simple patch
function can then apply the script to the first tree in order to obtain
the second. Our idea is to implement a variational patch function
that takes an edit script describing the differences between v and
Vv, and, taking into account the projection p, applies the script to s
to produce s’. The strategy is similar to the work of [Boneva et al.
(2011)) on efficiently computing updates across schema translations
in XML. We expect this approach to be more efficient than the
reference implementation of update described in Section[3.3] and
so make our projectional editing model more practically useful.

Finally, two kinds of empirical evaluation would help to validate
our approach: (1) Determine what percentage of existing edits are
consistent (or nearly consistent) with the edit isolation principle, for

example, by analyzing the revision history of a variational software
project, such as BusyBox. (2) Determine whether programmers can
create, modify, and debug variational code more effectively using
our projectional editing model, for example, by performing a user
study. Together, these would validate that our projectional editing
model is useful and applicable to real variational software.

Acknowledgments

Thank you to Christian Késtner for pointers to related work. This
work is supported by the European Research Council, grant 203099.

References

S. Apel and C. Kistner. An Overview of Feature-Oriented Software
Development. Journal of Object Technology, 8(5):49-84, 2009.

S. Apel, A. von Rhein, P. Wendler, A. GroBlinger, and D. Beyer. Strategies
for Product-Line Verification: Case Studies and Experiments. In /EEE
Int. Conf. on Software Engineering, pages 482491, 2013.

D. L. Atkins. Version Sensitive Editing: Change History as a Programming
Tool. In European Conf. on Object-Oriented Programming, volume 1439
of LNCS, pages 146-157. Springer, 1998.

D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus. Using Version Control
Data to Evaluate the Impact of Software Tools: A Case Study of the
Version Editor. IEEE Trans. on Software Engineering, 28(7):625-637,
2002.

F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM
Trans. on Database Systems, 6(4):557-575, 1981.

D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and B. C. Pierce.
Matching Lenses: Alignment and View Update. In ACM SIGPLAN
Int. Conf. on Functional Programming, pages 193-204, 2010.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Trans. on Software Engineering, 30(6):355-371, 2004.

P. Bille. A Survey on Tree Edit Distance and Related Problems. Theoretical
Computer Science, 337(1-3):217-239, 2005.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: Resourceful Lenses for String Data. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
407-419, 2008.

1. Boneva, A.-C. Caron, B. Groz, Y. Roos, S. Tison, and S. Staworko. View
Update Translation for XML. In Int. Conf. on Database Theory, pages
42-53,2011.

S. Chen, M. Erwig, and E. Walkingshaw. Extending Type Inference to
Variational Programs. ACM Trans. on Programming Languages and
Systems, 36(1):1:1-1:54, 2014.

S. S. Cosmadakis and C. H. Papadimitriou. Updates of Relational Views.
Journal of the ACM, 31(4):742-760, 1984.

K. Czarnecki, J. Foster, Z. Hu, R. Lammel, A. Schiirr, and J. Terwilliger.
Bidirectional Transformations: A Cross-Discipline Perspective. In R. F.
Paige, editor, Theory and Practice of Model Transformations, volume
5563 of LNCS, pages 260-283. Springer, 2009.

U. Dayal and P. A. Bernstein. On the Correct Translation of Update
Operations on Relational Views. ACM Trans. on Database Systems,
7(3):381-416, 1982.

M. Erwig and E. Walkingshaw. The Choice Calculus: A Representation
for Software Variation. ACM Trans. on Software Engineering and
Methodology, 21(1):6:1-6:27, 2011.

R. Fagin. Inverting Schema Mappings. ACM Trans. on Database Systems,
32(4):25:1-25:53, 2007.

J. Feigenspan, M. Schulze, M. Papendieck, C. Kistner, R. Dachselt, V. Kop-
pen, and M. Frisch. Using Background Colors to Support Program
Comprehension in Software Product Lines. In Int. Conf. on Evaluation
and Assessment in Software Engineering, pages 66-75, 2011.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for Bidirectional Tree Transformations: A Linguistic Ap-
proach to the View-update Problem. ACM Trans. on Programming Lan-
guages and Systems, 29(3), 2007.

G. Gottlob, P. Paolini, and R. Zicari. Properties and Update Semantics of
Consistent Views. ACM Trans. on Database Systems, 13(4):486-524,
1988.

W. Hofer, C. Elsner, F. Blendinger, W. Schroder-Preikschat, and D. Lohmann.
Toolchain-Independent Variant Management with the Leviathan Filesys-
tem. In Int. Workshop on Feature-Oriented Software Development, pages
18-24, 2010.

D. Janzen and K. De Volder. Programming with Crosscutting Effective Views.
In M. Odersky, editor, European Conf. on Object-Oriented Programming,
volume 3086 of LNCS, pages 197-220. Springer, 2004.

M. Johnson and R. Rosebrugh. Constant Complements, Reversibility and
Universal View Updates. In J. Meseguer and G. Rosu, editors, Algebraic
Methodology and Software Technology, volume 5140 of LNCS, pages
238-252. Springer, 2008.

C. Kistner and S. Apel. Virtual Separation of Concerns—A Second Chance
for Preprocessors. Journal of Object Technology, 8(6):59-78, 2009.

C. Kistner, S. Apel, and M. Kuhlemann. Granularity in Software Product
Lines. In IEEE Int. Conf. on Software Engineering, pages 311-320, 2008.

C. Kistner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Guarantee-
ing Syntactic Correctness for All Product Line Variants: A Language-
Independent Approach. In Int. Conf. on Objects, Components, Models
and Patterns, volume 33 of LNBIP, pages 175-194. Springer, 2009.

C. Kistner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation. In ACM SIGPLAN Int. Conf. on Object-
Oriented Programming, Systems, Languages, and Applications, pages
805-824, 2011.

A. Kenner, C. Kistner, S. Haase, and T. Leich. TypeChef: Toward Type
Checking #ifdef Variability in C. In Int. Workshop on Feature-Oriented
Software Development, pages 25-32, 2010.

M. Kersten and G. C. Murphy. Mylar: A Degree-of-Interest Model for IDEs.
In Int. Conf. on Aspect-Oriented Software Development, pages 159-168,
2005.

M. Kersten and G. C. Murphy. Using Task Context to Improve Programmer
Productivity. In ACM SIGSOFT Int. Symp. on the Foundations of Software
Engineering, pages 1-11, 2006.

C. H. P. Kim, C. Kistner, and D. Batory. On the Modularity of Feature
Interactions. In ACM SIGPLAN Int. Conf. on Generative Programming
and Component Engineering, pages 19-23, 2008.

D. Le, E. Walkingshaw, and M. Erwig. #ifdef Confirmed Harmful: Promoting
Understandable Software Variation. In [EEE Int. Symp. on Visual
Languages and Human-Centric Computing, pages 143-150, 2011.

C. B. Medeiros and F. W. Tompa. Understanding the Implications of View
Update Policies. Algorithmica, 1(1-4):337-360, 1986.

M. Mezini and K. Ostermann. Variability Management with Feature-
Oriented Programming and Aspects. ACM SIGSOFT Software Engi-
neering Notes, 29(6):127-136, 2004.

H. V. Nguyen, C. Kistner, and T. N. Nguyen. Exploring Variability-aware
Execution for Testing Plugin-based Web Applications. In IEEE Int. Conf.
on Software Engineering, pages 907-918, 2014.

M. Stengel, M. Frisch, S. Apel, J. Feigenspan, C. Késtner, and R. Dachselt.
View Infinity: A Zoomable Interface for Feature-Oriented Software
Development. In IEEE Int. Conf. on Software Engineering, pages 1031—
1033, 2011.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In IEEE Int. Conf. on
Software Engineering, pages 107-119, 1999.

J. Voigtldnder. Bidirectionalization for Free! (Pearl). In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
165-176, 20009.

E. Walkingshaw and M. Erwig. A Calculus for Modeling and Implementing
Variation. In ACM SIGPLAN Int. Conf. on Generative Programming and
Component Engineering, pages 132—140, 2012.

E. Walkingshaw, C. Késtner, M. Erwig, S. Apel, and E. Bodden. Variational
Data Structures: Exploring Trade-Offs in Computing with Variability. In
ACM SIGPLAN Symp. on New Ideas in Programming and Reflections on
Software (Onward!), 2014. To appear.

	Introduction
	Projectional Editing Model
	Overview of the Projectional Editing Model
	Projectional Editing, By Example
	Edit Isolation Principle

	Formalization of Projectional Editing
	Background: Choice Calculus
	Specification of the Projectional Editing Operations
	Implementation of Update

	Properties of Edit Isolation
	Extension to Formula Choices
	Related Work
	Virtual Separation of Concerns
	View–Update and Bidirectional Transformations
	Projectional and Task-Focused Editing

	Conclusion and Future Work

