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Chapter 1: Introduction

Variational programming [10, 7] is an emerging paradigm for representing and computing

with explicit variation in code and data. It is a generalization of the ideas underlying faceted

execution [2, 24, 4, 20, 3, 19] for enforcing dynamic information-flow security and variability-aware

execution [16, 17, 14] for testing software product lines, and has a range of other applications across

computer science such as model checking [8]. However, integrating side effects (e.g. state updates,

exceptions, file I/O, standard input/output, and database queries) in variational programs is

challenging because the execution environment of these programs is not variational. Therefore,

we cannot separate the effect of one variant from the other which causes effects to be performed

in wrong contexts (the words effect and side effect are interchangeably used in this thesis).

In this thesis, we argue that algebraic effects can be used to resolve the problem of combining

variation and effects by enabling programmers to extend variational programming environments

to handle new kinds of effects or handle existing effects in different ways. We present a proof-

of-concept prototype in the Eff programming language that demonstrates how the variational

programming environment can be extended to support file input/output.

In this chapter, we discuss the insight, formalization, and execution of variational programming.

We show the challenge of integrating variational programming with side effects. We explore

various approaches in overcoming these challenges and discuss their limitations. We discuss our

solution and its advantages and drawbacks. Finally, we outline the contributions of this work.

A core insight of variational programming is that the execution of sets of related programs,

and/or execution over sets of related data, can be made faster by computing over a single

variational artifact that shares common parts while capturing differences through localized,

explicit variation points. To illustrate this insight, consider the three related programs which

calculate the flight cost for different types of tickets in a booking system and the corresponding
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variational flight cost program in Figure 1.1. We assume tickets come in three categories:

Economy, Business or First. Also, there are $55 flight fees and a $45 booking fee added to the

cost. In each case, the price is calculated by summing up the price per ticket with the total fees.

Economy
let ecoPr = 649;;
let cost =

55 + 45 + ecoPr;;

Business
let busPr = 3955;;
let cost =

55 + 45 + busPr;;

First
let fstPr = 5812;;
let cost =

55 + 45 + fstPr;;

Variational flight cost
let vTicketPr =

Economy〈649, Business〈3955, 5812〉〉
let vCost =

55 + 45 + vTicketPr;;

Figure 1.1: Variational flight cost.

The value Business〈3955, 5812〉 represents a choice between the alternatives 3955 and 5812

(this choice is nested in another choice). The condition of the choice is an option Business,

which may be either enabled (true), disabled (false), or open. A choice is similar to a conditional

expression (if-then-else), except that if its condition is open, it represents both alternatives at the

same time. Multiple choices with the same condition will always be synchronized while choices

with conditions based on different options may vary independently.

Enabling or disabling a choice is what we call selection. To select the left alternative of

the choice vTicketPr, we say (selectV Economy vTicketPr). This returns 649, which is a

plain value (no variation). To select the right alternative of it, we say (selectV (!Economy)

vTicketPr). This returns Business〈3955, 5812〉. An open selection (selectV true vTicketPr)

selects both alternatives, so this returns vTicketPr. The notation and semantics of choices is a

previous work on the choice calculus [9, 22, 11].

We can extend the evaluation semantics of our programming language to include choices by

simply mapping over their alternatives. This allows us to evaluate vCost to the following choice
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with the following sequence of reduction steps.

55+45+Economy〈649, Business〈3955, 5812〉〉

7→ 55+45 + Economy〈649, Business〈3955, 5812〉〉

7→ 100 + Economy〈649, Business〈3955, 5812〉〉

7→ Economy〈649+100, Business〈3955+100, 5812+100〉〉

7→ Economy〈749, Business〈3955+100, 5812+100〉〉

7→ Economy〈749, Business〈3955+100, 5812+100〉〉

7→ Economy〈749, Business〈4055, 5812+100〉〉

7→ Economy〈749, Business〈4055, 5912〉〉

This reduction process represents variational execution which dynamically evaluates all variants

of a program, but observe that we only visited the expression 55 + 45 once rather than three

times if we had evaluated the three programs separately. Although the saving here is small, it

adds up as the size of shared programs and the number of independent options increases. In

fact, many applications of variational programming involve efficiently computing or exploring

an exponential number of variants by exploiting the ideas of capturing variation locally (e.g. in

choices) and sharing common parts of data and computations.

e r

ev rv

f

fv

J·Kc J·Kc

When mapping analyses or computations over variational terms,

the crucial property that is maintained is variation preservation [7].

This is illustrated by the commuting diagram at right, where f is a

plain function that transforms a plain expression e into a plain result

r, and fv is the corresponding variational function that transforms

the variational expression ev into a variational result rv. The operation [[.]]c refers to the select

operation mentioned above; for example, [[ev]]c is equivalent to select c ev = e The variation-

preservation property states that fv is exactly equivalent to running f on every plain variant of

ev. That is, we obtain the same plain result r by either f([[ev]]c) or [[fv(ev)]]c, for any option c.
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Now, consider adding side effects to a variational program. For example, someone might like

to write the variational flight cost calculated in Figure 1.1 into a file as shown below.

#WriteFile "flight.txt" ("The total flight cost:");;
#WriteFile "flight.txt" ("$" + Economy〈"749", Business〈"4055", "5912"〉〉);;

With the current implementation of variational execution, every choice alternative would be

visited. Hence, side effects that occur in choices would be performed during the process even in

the alternative context. To see how this is an issue, look at the following output of the program

above.

Flight.txt

The total flight cost:
$749
4055
5912

This program writes the text of each variant while the desired behavior is to only write the text of

the corresponding variant. Variational programming uses variational data-structures to manage

different variants and separate their results, but the current environments of the effects we work

with are not variational, so we can not separate their variants which causes this problem.

There are several solutions to allow working with side effects in variation. One possible

solution is to make a variation-aware interface for every effect type we work with, that is a

variational file system, database [1] and so on. Thus, if the file system was variational, there would

be conceptually a different file instance for every new option introduced by a choice as shown below.

Economy.txt

The total flight cost:
$749

NotEconomyBusiness.txt

The total flight cost:
$4055

NotEconomyNotBusiness.txt

The total flight cost:
$5912

As we introduce more options, more instances should be created. However, making a spe-

cial variational infrastructure for every effect type is very complex, infeasible or incompatible in

some domains. Another solution is to avoid variational execution from running side effects when

they occur in variation, but this would cut their useful applications.
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In this thesis, we argue that algebraic effects can be used to resolve the problem of combining

variation and effects by enabling programmers to flexibly and incrementally extend variational

programming environments to handle new kinds of effects or handle existing effect differently. We

present a proof-of-concept prototype in the Eff programming language. We implement variation

as an algebraic effect and then demonstrate how the variational programming environment can

be extended to support file input/output. Given that there is not a comprehensive solution for all

effects, this approach is the best given the constraints. It allows programmers to work with effects

on a case-by-case basis by building new libraries to handle them. Unfortunately, implementing

variation as an effect is not efficient as the number of options increases. Therefore, we argue that

having built-in features in the programming language itself for working with variation would be

more effective.

This work includes the following contributions.

• We implement variation as an effect and show examples of how it works (Chapter 3).

We show the limitations of this implementation when we start to integrate side effects in

variational programs (Chapter 4). Our approach in addressing these limitations is by writing

new handlers for the variation effect to work with interaction of variation and effects on

a case-by-case basis using algebraic effects. As a proof-of-concept, we write new handlers

to support file writing (Chapter 5) and reading (Chapter 7) which are hard to work with

otherwise. As part of this, we also extend text files with a variation encoding (Chapter 5.1).

• We introduce an abstract variational queue that can be used in different variational pro-

gramming applications (Chapter 6). We use the variational queue to represent variational

files as part of our proof-of-concept.

• We discuss the limitations of implementing variation as an effect (Chapter 8).

Our prototype implementation is publicly available at the GitHub repository VEffect1.

1https://github.com/lambda-land/VEffect
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Chapter 2: Background: Algebraic Effects

effect Get: unit −> int;;
effect Set: int −> unit;;

let state = handler
| val y −> (fun _ −> y)
| #Get () k −> (fun s −> k s s)
| #Set s’ k −> (fun _ −> k () s’)
| finally g −> g 0

;;

Figure 2.1: The integer state effect and handler.

As background, we introduce algebraic effects - what they mean and how to use them - by

showing a code example. The programming language used in this work is called Eff 1 which is

based on the programming language OCaml and has similar syntax and features [19]. Eff has a

flexible extensible effect system that does not exist in OCaml called algebraic effects which is the

main tool used in our work (the words effects and algebraic effects are interchangeably used in

this thesis). We use Eff syntax throughout this thesis in our coding examples.

Eff is based on algebraic effects and handlers. An effect is defined by a set of primitive

operations (e.g. set and get for a state effect) and implemented by one or more handlers. The fact

that multiple handlers can be written for the same effect increases the power and flexibility of this

system. Algebraic effects expand on the traditional exception handling mechanism by allowing

computational effects to be thrown and caught by a handler that performs certain computation.

Thrown effects have a continuation parameter that could be invoked with an argument of the

thrown effect’s return type. The continuation resumes the execution from the point where the

effect operation was thrown.

To get a sense of how algebraic effects are used and defined, refer to the integer state effect
1https://www.eff-lang.org/
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[19] in Figure 2.1. This state effect has two primitive operations #Set and #Get declared with the

keyword effect. #Get takes a unit value and returns the corresponding state value. #Set takes

a new state value and returns a unit value.

The handler has a separate case for each effect operation plus the return and action cases.

The continuation parameter k in #Set and #Get is invoked with values of the return type; in

#Get the return type is int and in #Set the return type is unit. The result of each continuation

invocation (k () or k s) is a function that takes a parameter of type int corresponding to the

current state value, which in the case of finally gets its initial value 0. In the case of #Get, the

handler returns a function that will invoke the continuation with the current state value and pass

it unchanged to the result of the continuation. In the case of #Set, the handler returns a function

that will invoke the continuation with a unit value and pass the new state value (the parameter

of #Set) to the result of the continuation. The finally case starts the computation with the

initial value 0. The val case is the return case.

Note that we establish the handler scope for a given expression using the following syntax.

with handler_name handle expression

Any effect operation that occurs within that code block will be within the bound of the state

handler instance.

with state handle
#Set 5; #Set (#Get () + 1); #Get ()

;;

This code sets the state to 5, then increments it by 1. Then, evaluates the state again with the

effect operation #Get, which gives the result of 6.
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Chapter 3: Variation as an Algebraic Effect

effect Choice : ctx −> bool;;

let v_handler = handler
| #Choice s k −>

let l = select s (k true) in
let r = select (Not s) (k false) in

prepend s l @ prepend (Not s) r
| val x −> [(Lit true,x)]

;;

let chc d l r = if #Choice d then l else r;;

Figure 3.1: The variation effect and handler.

We use the algebraic effects system introduced in Chapter 2 to implement variation as an

effect. We use it as part of our proof-of-concept for the integration of variation and side effects.

However, implementing variation as an effect is not efficient when the number of options increases.

We discuss the limitation of this implementation in Chapter 8.

In this chapter, we show the algebraic effect definition of variation and its handler. Then, we

show how variational values of lists and arithmetic expressions are encoded with the variation

effect.

To implement variation as an effect, we use the choice as its primitive operation. We handle

choices by performing variational execution which dynamically evaluates the alternatives of the

choices. The choice effect operation #Choice shown in Figure 3.1 is declared to take a variation

context (or context for short) ctx and return a boolean value. The variation context is represented

by a boolean formula over options. We show syntactic sugar of boolean formulas in our examples

in this thesis.

The handler v_handler catches the choice and handles it by invoking the continuation with

either true or false. The result of invoking the continuation is of type (ctx * ’a) list which
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is a list of tuples: each with a context and a corresponding return value of any type. The results

from both invocations are concatenated in one list representing the variational value to be returned

from the handler. When invoking the continuation with true, the corresponding return value is

the left alternative of the choice. Otherwise, it is the right alternative of the choice, as shown in

the definition of chc. In the return case val, we take the underlying return value as parameter

and return a list of one tuple that contains the context true and the underlying return value.

To build the context corresponded with each choice’s return value, we use the functions select

and prepend. The function prepend updates the context of every element in the list produced by

the continuation (each element is a tuple of a context and value) to be the conjunction of two

contexts: the element’s context and underlying choice context. The function select removes

elements that would be unsatisfiable after the conjunction of the underlying choice context from

the list. We apply prepend twice: once with the underlying choice context on the list from the

left alternative and once with the negation of the underlying choice context on the list from the

right alternative. Hence, we are able to simulate all possible variants by running the program

once (there are 2k possible results with k distinct options).

After we define the variation effect, we can encode variational values in multiple forms using

the choice operation. In this example, we write an arithmetic expression which varies around the

two options Economy and Business assuming fees also vary around the ticket type. Therefore,

we sum up two expressions: the first represents fees and the second represents ticket costs.

with v_handler handle
let fee = Economy〈50, Business〈100, 150〉〉 in
let ticket = Economy〈600, Business〈4000, 6000〉〉 in
fee + ticket

;;

Note that the notation used here is syntactic sugar to make the choice operation look cleaner and

will be used throughout this thesis. Below is the version of the expression with no syntactic sugar.

with v_handler handle
let fee = chc "Economy" 50 (chc "Business" 100 150) in
let ticket = chc "Economy" 600 (chc "Business" 4000 6000) in
fee + ticket

;;
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In the above computation, there are 3 possible results based on the two options Economy and

Business. The program above should output the choice below as a result.

Economy〈650, Business〈4100, 6150〉〉

The truth table below illustrates the result for each possible selection of Economy and Business.

And
Economy

T F

Business
T

650
4100

F 6150

Another useful application is constructing a variational list as a fundamental data structure

form used to incorporate variational values [21]. It allows mapping options to different lists

which can then be used in further purposes such as searching over different lists corresponding to

different contexts at once. For example, we can collect information about different flights in a list

of tuples: each has a corresponding flight id and price.

with v_handler handle
[(1,4890);
(2,Economy〈790, Business〈_, 4500〉〉);
(3,2876);
(4,Economy〈580, Business〈3200, _〉〉);
(5,Economy〈_, Business〈3780, 5939〉〉)]

;;

The basic list notation is extended by the choice notation to allow capturing variational lists. The

notation _ represents Nothing or an empty element. For example, for flight id 2, the element is

empty or does not exist when the option Economy is false and the option Business is true. Note,

the notation used above is syntactic sugar for a list of variational Maybe values. Below is the list

version with no syntactic sugar.

with v_handler handle
[(1,Just 4890);
(2,Economy〈Just 790, Business〈Nothing, Just 4500〉〉);
(3,Just 2876);
(4,Economy〈Just 580, Business〈Just 3200, Nothing〉〉);



11

(5,Economy〈Nothing, Business〈Just 3780, Just 5939〉〉)]
;;

The result should capture all possible list variants. The truth table below illustrates the list

corresponded with each possible selection of Economy and Business. Note that the Nothing

cases are omitted.

And
Economy

T F

Business
T

[(1,4890);(2,790);(3,2876);(4,580)]
[(1,4890);(3,2876);(4,3200);(5,3780)]

F [(1,4890);(2,4500);(3,2876);(5,5939)]
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Chapter 4: Variational Programming and Effects

Integrating side effects with variation is challenging because the execution environment of

variational programs is not variational, so we can not separate the effect of one variant from the

other. The variation effect introduced in the previous chapter composes well with some types of

effects, but still fails with others. We discuss an example in faceted execution illustrating this

point. Then, we discuss our solution in resolving this problem.

The work done in [3] shows the use of faceted execution to enforce dynamic information-flow

security. The inspiration behind this work is preventing untrusted sources from running sensitive

programs with full privileges. The authors argue that their faceted execution techniques can

protect against malicious attacks and enforce integrity and confidentiality. The term they use to

indicate a variational value or choice is faceted value. They use faceted values to simulate the

public and private versions of the same program under a privacy policy.

with state handle
with v_handler handle

#Set 5;
let ok = check secret in
if ok then

#Set (#Get () ∗ 2)
else

()
;
#Get ()

;;

The example above has a privacy-protected variable secret represented as a choice. It can

only be enabled to access the sensitive information when the privacy policy indicates it. Using

this feature, we declare the state to be 5 and update it based on the value of secret, which we

check. If the private facet has the correct password, we update the state by doubling its value in

the private facet and keep it as it is in the public facet as follows.

secret = P〈"mypassword",⊥〉 state = P〈10, 5〉
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If the private facet has the wrong password, the state is unchanged and has the same value for

public and private facets as follows.

secret = P〈"wrong",⊥〉 state = 5

Therefore, this choice mechanism allowed two facets of the information presented. Both private

and public information (for authorized and unauthorized users respectively) are supported, which

is useful in making secure applications and it works well with the variation effect so far.

Sometimes however, variation and effects do not compose well. Consider adding other side

effects to the program above such as a print statement.

with state handle
with v_handler handle

#Set 5;
let ok = check secret in
if ok then

#Set (#Get () ∗ 2)
else

#Print("wrong password")
;
#Get ()

;;

The error message would be printed with wrong and correct password values in secret, while

we hoped it would only be printed with wrong password values. This explains how we fail to

separate the effects of one variant form the other in the current implementation.

Someone might consider building a variational environment for every effect type to solve the

problem above, but this is tedious and infeasible in some domains. Moreover, some dimensions of

variation correspond to differences in platforms which cannot be simulated together. Therefore,

we want to give the programmer the tools to deal with the interaction of variation and effects in

an expressive and systematic way using algebraic effects. This is done on a case-by-case basis

because every effect type might need a special treatment. The use of algebraic effects enable us

to flexibly and incrementally extend the execution environment to handle new kinds of effects or

handling existing effects in multiple ways.
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Chapter 5: Variational File I/O: Writing

To illustrate how algebraic effects enable programmers to deal with the interaction of variation

and effects, we extend the execution environment of variational programs to support file I/O,

which is a major contribution of this work. Specifically, we write new handlers for the variation

effect to support file reading and writing. In this chapter, we focus on writing, and in Chapter 7

we focus on reading. In addition, we extend text files with a variation encoding.

5.1 Variational File Encoding

We extend plain text files with a variation encoding known as C-Preprocessor1 (CPP). CPP

is a text substitution tool that must be executed before compile time. We choose CPP because

it is a real-world widely used convention, which makes our work useful for existing applications.

CPP has many directives, but the ones relevant to our work are #if, #else and #endif.

The file shown in Figure 5.1 is an example of a variational file that uses the encoding mentioned

above. It is inspired by a real dataset from Massart College for Art and Design showing their

housing prices of 2018-20192. This file represents an explanation of costs in different scenarios for

their students. Note that text files are extended by this encoding and not required to have it; we

can still work with plain files flexibly and the special syntax is needed only when variation exists.

To understand the concept of variational lines, we look at the first 3 lines of the file. The

file starts with a plain line (not variational). The next is a nested variational line. When the

option meal is enabled, it yields the variational line partial〈"$1902", "$3372"〉, which when the

option partial is enabled, it yields the plain line "$1902". Otherwise, it yields the plain line

"$3372". Note that it is not necessary to have an #else when there is an #if, but there must be
1https://www.tutorialspoint.com/cprogramming/c_preprocessors.html
2https://massart.edu/cost-housing
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Below is a breakdown of the preliminary housing costs for 2018−2019.
#if meal

#if partial
$1902

#else
$3372

#endif
#endif
#if artists’ residence

Partial (default) or optional regular meal plan.
Total Including Activity/Technology Fee:
#if single | efficiency

$13360
#else

$12216
#endif

#endif
#if smith

Regular meal plan required, except for students living in kitchen suites.
Kitchen suite students receive the partial (default)
or optional regular meal plan.
Total Including Activity/Technology Fee:
#if kitchen

#if single
$11234

#else
$10530

#endif
#else

#if single
$13360

#else
$11002

#endif
#endif

#endif

Figure 5.1: Variational text file showing housing prices.

an #endif whenever there is an #if to ensure balance and correct parsing. Also, note that the

third variational line has in its nested variational line an OR expression single | efficiency

because the context of the choice is a boolean formula over options.
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let v_write_handler file = handler
| #Choice s k −>

wr_if s file;
(k true);
wr_else file;
(k false);
wr_end file

| #Write_file _ k −> k ()
| val x −>

if (is_empty x) then () else #Write_file(file, x ^ "\n")
;;

let writeFile t = let _ = #Write_file(dfile, t) in t;;

let write_h file v =
with v_write_handler file handle

v ()
;;

let opt d t = chc d t "";;

Figure 5.2: File writing library.

5.2 Variational Writing

In this section, we write a new handler for the variation effect to support writing and show an

example of its use. Our goal is to be able to use a program like the example below to write a

variational line. The following variational line has two alternatives "749" and "4055" based on

the option Economy.

WriteFile "flight.txt" Economy〈"749", "4055"〉

Equivalently, we could write the program below for the same result.

Economy〈#WriteFile "flight.txt" "749", #WriteFile "flight.txt" "4055"〉

The handler write_v_handler in Figure 5.2 catches and handles the variation effect for the

purpose of writing. It has a similar behavior to the handler in Figure 3.1 for handling the choice

operation. However, for handling the choice effect operation here, we do not construct a variational

value, we just run the alternatives of the choice and write the corresponding keywords #if, #else,

or #endif into the text file via the functions wr_if, wr_else, and wr_end respectively.
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For handling the built-in effect operation #Write_file, we simply run the continuation with

a unit value. The helper function writeFile enforces the text parameter of #Write_file to be

the return value. Note that we can neglect passing the file channel in every call to writeFile

and use a default file channel instead because the corresponding channel is already passed to the

handler. In the return case val, we write the underlying return value into the text file.

For more convenience, we use two other helper functions. We use the helper function opt for

cases where we only care about one alternative of the choice and not the other, so we ignore the

else case. The function opt is a choice with an empty string in the right alternative. We use the

helper function write_h to wrap the handler syntax.

Using this mechanism, we could write variational lines and/or plain text to files.

let w_file = #Open_out "file.eff" ;;

let line1 () = writefile "Below is a breakdown ....";;
let line2 () = meal〈partial〈writefile "$1,902", writefile "$3372"〉〉;;

write_h w_file line1 ; write_h w_file line2;;

#Close_out w_file;;

The example above shows the program used to write the first two lines of the example file in Figure

5.1. Note that this implementation does not prevent us from writing plain (with no variation)

text to files. We only use choices when intending to write variational lines. Also note that we

use syntactic sugar for the opt notation (as shown in line2 in the example above) similar to the

syntactic sugar for the choice notation. The code below shows the version without the syntactic

sugar of opt.

opt "meal" (partial〈writefile "$1,902", writefile "$3372"〉);;
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Chapter 6: Variational Queue

Similar to other kinds of variational values described in this thesis, a variational queue

conceptually represents many different plain queues. Variational queues, and other variational

data structures [23], are useful in a variety of variational programming applications. Our variational

queue implementation is inspired by the variational stack implementation in [15]. The work in

[15] also explores different implementations of variational stacks and their trade-offs in terms of

efficiency and space complexity. We particularly use variational queues in this work to represent

variational files. Variational queues allow us to simulate multiple plain files in one data structure

and would be useful for supporting file reading (Chapter 7).

In this chapter, we explain the details of the variational queue implementation we use. We

discuss the two main operations: enqueue and dequeue. Because the implementation of dequeue

is particularly complicated, we provide detailed examples illustrating the behavior we expect.

6.1 Variational Queue Implementation

type ’a v = Hole
| One of ’a
| Chc of ctx ∗ ’a v ∗ ’a v

;;
type ’a opt = ’a ∗ ctx;;

type ’a queue = (’a opt) list;;
val dequeue: ctx −> ’a queue −> ’a v ∗ ’a queue;;
val enqueue: ctx −> ’a queue −> ’a v −> ’a queue;;

Figure 6.1: Variational queue signature.

In this section, we show the implementation of the variational queue and its abstract signature.

In the next sections we show the details of its operations.
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let toOpts =
let rec go c v =

(match v with
Hole −> []
| (One a) −> [(a,c)]
| (Chc (c’, l,r) ) −> go (And (c, c’)) l ++ go (And (c, (Not c’))) r)

in go (Lit true)
;;

let enqueue c v q = (q ++ toOpts (Chc (c, v, Hole)));;

Figure 6.2: Variational enqueue implementation.

We represent variational queues as lists of optional values. An optional value is represented by

the opt type, which is a tuple of a value and context as shown in Figure 6.1.

With this implementation, we could keep track of the variation context corresponding to every

value in the queue. Because the queue is simulating different contexts, dequeue and enqueue each

takes a variation contexts as parameter, which differentiates them from plain queue operations.

Moreover, the return value of dequeue is of type v because the return value is either a plain value

(One), a variational value (Chc), or nothing (Hole) as shown in Figure 6.1. Similarly, enqueue

appends values of type v into the queue.

6.2 Variational Enqueue

The operation enqueue simply takes a value of type v and appends it into the queue with

the corresponding context passed as parameter (shown in Figure 6.2). The operation enqueue

invokes toOpts on the v value to convert it into an opt value. The operation toOpts also recurs

on each choice alternative to convert it into an opt value with the conjunction of the context

parameter and underlying context of the choice.

Flight cost:
#if Business

4055
#else

749
#end
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Consider the example above of a file with two tickets’ costs. This file could be inserted into the

variational queue by the following sequence of enqueue operations.

$ enqueue true (One "Flight cost:") q
$ enqueue Business (One "4055") q
$ enqueue !Business (One "749") q

Or by following sequence of enqueue operations (we use the same choice notation here as syntactic

sugar).

$ enqueue true (One "Flight cost:") q
$ enqueue true Business〈"4055", "749"〉 q

As a result, we end-up with the following variational queue representing the file above.

[("Flight cost:",true);("4055", Business);("749",!Business)]

6.3 Variational Dequeue in Action

To understand the behavior expected when dequeuing values form the variational queue,

consider the following example operations performed on the queue above. These examples

correspond to scenarios that are more likely to occur in dequeue.

Example 1: Suppose we perform dequeue with context Business on the queue above as follows (we use

B as a shortcut for Business).

dequeue B [("Flight cost:",true);("4055", B);("749",!B)] =
("Flight cost:", [("Flight cost:",!B);("4055", B);("749",!B)])

The context of the first value on the queue is true, meaning that it’s present in all variants.

If we dequeue it only in context Business then that means it has not yet been dequeued

in context !Business. Therefore, we return the value "Flight cost:", but still keep it in

the queue with context !Business.

Example 2: Suppose we perform dequeue with context Business again on the queue that resulted from

Example 1 as follows.
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dequeue B [("Flight cost:",!B);("4055", B);("749",!B)] =
("4055", [("Flight cost:",!B);("749",!B)])

The context of the first value on the queue is !Business (we already dequeued it in context

Business), so we should skip it because it conflicts with the context we dequeue with. The

context of the second value on the queue is Business which is the same context we are

dequeuing with, so we return the value and remove it completely from the queue.

Example 3: Suppose we perform dequeue with context !Business on the queue that resulted from

Example 1 as follows.

dequeue !B [("Flight cost:",!B);("4055", B);("749",!B)] =
("Flight cost:", [("4055", B);("749",!B)])

The context of the first value on the queue is !Business which is the same context we are

dequeuing with, so we return the value and remove it completely from the queue. This

value has been dequeued in both variants after this (in Example 1 and in this Example).

Example 4: Suppose we perform dequeue with context true on the queue that resulted from Example

3 as follows.

dequeue true [("4055", B);("749",!B)] =
(B〈"4055", "749"〉, [])

Dequeuing with true means to perform dequeue on all variants of the queue. Therefore,

the result of this operation would be the value of every variant in the queue. The first value

in the queue has context Business and the second value has context !Business, so both are

returned constructing the choice Business〈"4055", "749"〉. In addition, they are removed

entirely from the queue.
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let rec dequeue_ cIn q v =
if unsatCtx cIn then

(v, q)
else

match q with
[] −> (v, [])
| ((a,cElem)::oq) −>

let cDeq = And (cIn, cElem) in
let cRem = And (Not cIn, cElem) in
let cToDo = And (cIn, Not cElem) in
let (v’, q’) = dequeue_ cToDo oq (Chc (cDeq,(One a),v)) in
(v’,(a,cRem)::q’)

;;

let dequeue c q = dequeue_ c q Hole;;

Figure 6.3: Variational dequeue implementation.

6.4 Variational Dequeue Implementation

In this section we show the details of the dequeue operation shown in Figure 6.3. When we

dequeue an element, we have to think of three different contexts: the context of the element we

dequeue cDeq, the context of the element that remains in the queue cRem and the context of the

hole we need to fill cToDo. We could also think of the hole as the element we still need to find

and dequeue. These three contexts are built from two contexts we start with: the context we

perform dequeue with cIn and the context of the first element on the queue cElem.

Intuitively and with the examples we showed in the last section, consider the following cases:

1. The element is dequeued if the context we dequeue with is satisfiable with its context.

Therefore, cDeq is (cIn & cElem). If cDeq is satisfiable, the element is returned. Otherwise,

it is skipped.

2. After we dequeue an element, there is a chance we need to dequeue it in other contexts, so

we keep it in the queue and avoid dequeuing it again in the same context. Therefore, cRem

is (!cIn & cElem). If cRem is unsatisfiable, the element is removed from the queue (we do

not need to dequeue it again).

3. After we dequeue or skip an element in one context, we might still need to dequeue or find
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Ex Inv Queue in Contexts in Contexts out (value * Queue out)
1 1 [("Flight cost:", true); cIn B cEnq B&true

("4055", B); cElem true cRem !B&true
("749",!B)] cToDo B&false

2 [("4055", B); cIn false cPop ("Flight cost:",
("749",!B)] cElem cRem [("Flight cost:", !B);

cToDo ("4055", B);("749",!B)]

2 1 [("Flight cost:", !B); cIn B cDeq B&!B
("4055", B); cElem !B cRem !B&!B
("749",!B)] cToDo B&B

2 [("4055", B); cIn B cDeq B&B
("749",!B)] cElem B cRem !B&B

cToDo B&!B
3 [("749",!B)] cIn false cDeq ("4055",

cElem cRem [("Flight cost:", !B);
cToDo ("749",!B)])

4 1 [("4055", B); cIn true cDeq true&B
("749",!B)] cElem B cRem false&B

cToDo true&!B
2 [("749",!B)] cIn !B cDeq !B&!B

cElem !B cRem B&!B
cToDo !B&B

3 [] cIn false cDeq (B〈"4055", "749"〉,
cElem cRem [])

cToDo

Figure 6.4: A step-by-step illustration of contexts in dequeue.

other elements of other contexts as in Example 4. Therefore, cToDo is (cIn & !cElem).

When cToDo is unsatisfiable, we stop the search and return.

The helper function dequeue_ is recursively invoked on the queue with two base cases: reaching

the end of the queue or if cIn is unsatisfiable. We mentioned above that we stop the search when

cToDo is unsatisfiable. This is because we recursively invoke dequeue_ with cToDo so cToDo of

one invocation is cIn of the next. In every invocation of dequeue_ we update the context of the

corresponding first element to be cRem, construct a choice of the return value with context cDeq,

and simplify all contexts.

The table in Figure 6.4 shows the value of each context and the content of the queue in each

invocations. The last column has the resulting value and updated queue after the process is done.
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The sections of the table represent Examples 1, 2, and 4, respectively.

Example 1: In invocation 1, cEnq is satisfiable, so the value is returned. cRem is satisfiable, so the value

remains in the queue. cToDo is unsatisfiable, so the next invocation terminates.

Example 2: In invocation 1, cEnq is unsatisfiable, so the value is skipped. cRem is satisfiable, so the

value remains in the queue. cToDo is satisfiable, so we keep looking for the next value to

dequeue.

In invocation 2, cEnq is satisfiable, so the value is returned. cRem is unsatisfiable, so the

value is removed from the queue. cToDo is unsatisfiable, so the next invocation terminates.

Example 4: In invocation 1, cEnq is satisfiable, so the value is returned. cRem is unsatisfiable, so the

value is removed from the queue. cToDo is satisfiable, so we keep looking for the next value

to dequeue.

In invocation 2, cEnq is satisfiable, so the value is returned. cRem is unsatisfiable, so the

value is removed from the queue. cToDo is unsatisfiable, so the next invocation terminates.
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Chapter 7: Variational File I/O: Reading

Continuing in our goal of illustrating how algebraic effects enable programmers to deal with

the interaction of variation and side effects, we show the rest of the file I/O library, specifically, we

show how we implement reading in variational programs. Reading is more complex than writing

because we need to manage different variation contexts of the same file (to simulate multiple

plain files at once). To illustrate how reading should work, follow the sequence of operations in

Figure 7.1.

Below is a breakdown..
#if meal
    #if partial
        $1902
    #else
        $3372
    #endif
#endif
...

true

(a) Read-line in context true.

Below is a breakdown..
#if meal
    #if partial
        $1902
    #else
        $3372
    #endif
#endif
...

meal&partial

(b) Read-line in meal&partial.

Below is a breakdown..
#if meal
    #if partial
        $1902
    #else
        $3372
    #endif
#endif
...

meal&partial

meal&!partial

(c) Read-line in meal&!partial.

Figure 7.1: File representation in a sequence of read-line operations.

Plain read-line calls have context true by default. When we start to read from the file, the

file pointer is at the first line of the file with context true as shown in Figure 7.1a. We perform a

read-line operation as shown below.

readLine file = "Below is a breakdown.."

Reading in context true corresponds to reading from all file variants. Since the first line is plain,

it is available in all variants, so we return it.

We then perform a second read-line operation in the context meal&partial as shown below.

(meal&partial)〈readLine file〉 = "$1902"

The file pointer now moves to the true alternative of the choice partial in line 2 as shown in

Figure 7.1b, and we return the line "$1902" corresponding to this context.
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We then perform a third read-line operation but in the context meal&!partial as shown

below.

(meal&!partial)〈readLine file〉 = "$3372"

We end up with two file pointers at two different locations. One with the context meal&!partial

pointing to the false alternative of the choice partial in line 2 and the other with context

meal&partial pointing to the third line as shown in Figure 7.1c. We return the line "$3372"

corresponding to the context meal&!partial.

In the rest of this section, we show how we could manage these variational read-line calls and

how we extend the environment of variational programs to support file reading using algebraic

effects.

7.1 Variational Queues for Representing Files

We need to use a special data structure that could simulate the different plain files corresponding

to different variation contexts in a variational file. Therefore, we use the variational queue

implementation in Chapter 6 to represent files. This way we could load variational lines from

the file into the queue using enqueue operations and read-lines from the file through dequeue

operations. However, we still need to parse lines from the variational text file to be able to

enqueue them.

In this section we show how to parse variational files into variational queues. The parser details

are shown in Figure 7.2. The parser takes a variational text file as input and returns a variational

queue as output. The queue is initialized to empty at the beginning. Parsing mainly occurs in

the helper function read. The function read takes a file channel, queue, text and context as

parameters. The text corresponds to the last line of text read from the file. The queue is updated

with enqueue operations after parsing each line (plain or variational). The context corresponds to

the context of the parent variational line if it exists; it is true by default.

In the function read, we check if the text corresponds to a variational line by checking if it
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let rec read file q text ctx =

if is_choice text then
let ctx’ = get_ctx text in
read_vline file q ctx ctx’

else
enqueue’ q text (Lit true)

and read_insert file q line ctx ctx’=

if is_choice line then
read file q line ctx’

else
enqueue’ q line (And (ctx’,ctx))

and read_vline file q ctx ctx’ =

let line = get_next_line file in

if is_endif line then
q

else if is_else line then
read_vline file q ctx (Not ctx’)

else
let q’ = read_insert file q line ctx ctx’ in
read_vline file q’ ctx ctx’

;;

Figure 7.2: Variational file parser.

starts with the keyword #if. If the text corresponds to a plain line, we directly enqueue it with

context true. Otherwise, we parse the variational line in the helper function read_vline. We

pass two contexts as parameters: the context of the underlying choice (ctx’) and the context of

the parent line (ctx).

In the helper function read_vline, we read a line from the file, then check in which variant of

the variational line we are. If the line has the keyword #end, we return the queue unchanged. If

the line has the keyword #else, we recursively invoke read_vline with the negation of the context

corresponding to the underlying choice (ctx’). Otherwise, we invoke the function read_insert,

which would insert the text of the underlying variant into the file. Then, we recursively invoke

read_vline again with the same context ctx’ to parse the rest of the line.

In the helper function read_insert, we check if the variant has a nested variational line
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(choice). If there is a nested variational line, we recursively invoke read on it. Otherwise, we

directly enqueue the line with its corresponding enqueue context. The corresponding enqueue

context is the conjunction of two contexts: the context of the parent variational line and the

context of the underlying variational line.

Besides parsing variational and plain lines, we also parse the contexts of variational lines. We

show this parser code in the Appendix (Section A).

7.2 Variational Read-line

In this section, we write a new handler for the variation effect to support file reading and show

an example of its use. We also show some useful applications of this work.

The handler read_v_handler in Figure 7.4 allows us to perform read-line operations in

variation. It also has a similar behavior to the variation handler in Figure 3.1 for handling the

choice operations. However, in this handler we run the alternatives of the choice and return their

corresponding results. In addition, we mange the variation context (or context for short), which

helps separate the effects of the choice alternatives. With this implementation, we are able to

determine in which alternative of the choice we are and thus figure out its corresponding context.

The context is by default true with plain read-line operations. Otherwise, we use the operations

if_, else_, and end_ to mange it.

The variation context is implemented as a mutable state (the algebraic effect and handler

definitions for state are discussed in Section 2) that holds a stack of contexts. To make things

easier, we also hold the current context in the state making a tuple of two arguments: the current

context and the stack of contexts. The entire implementation is shown in Figure 7.3. The first

operation if_ takes a boolean formula over options and pushes it into the stack of contexts. The

second operation else_ pops the top element (a context) of the stack and pushes the negation of

it into the stack. The third operation end_ pops the top element (a context) of the stack. In every

case after updating the stack of contexts, we update the current context to be the conjunction of
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let if_ d =
let (s,l) = #Get() in
let l’ = (d :: l) in
#Set((conjList l’,l’))

;;

let end_ () =
let (s,l) = #Get() in
match l with

[] −> #Set((conjList l, l))
| (x::l’) −> #Set((conjList l’, l’))

;;

let else_ () =
let (s,l) = #Get() in
match l with

[] −> #Set((conjList l,l))
| (s’:: l’) −>

let s’’ = (Not s’) in
let l’’ = (s’’::l’) in
#Set((conjList l’’, l’’))

;;

Figure 7.3: Operations for managing the variation context.

let read_line f ctx = dequeue ctx f;;

let read_v_handler = handler
| #Choice s k −>

if_ s;
let l = (k true) in
else_ ();
let r = (k false) in
end_ ();
(Chc (s,l,r))

| #Read_line _ k −> k "c"
| val x −>

if (is_empty x) then
Hole

else
let q = #GetQueue() in
let (c,_) = #Get() in
let (r,q’) = read_line q c in
#SetQueue(q’);
r

;;

let readLine () = #Read_line dfile;;

let read_line_h f =
with read_var_line_handler handle

f ()
;;

let opt d t = chc d t "";;

Figure 7.4: File reading library.
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all contexts in the stack.

Besides the variation context, we also manage another state in this handler that holds the

variational queue representing the file. We choose to hold it in the state to avoid passing it

between read-line operations.

For catching the built-in effect operation #Read_line, which has a return type of string, we

simply keep the continuation running with a default string. Note that we can neglect passing

the file in every call to #Read_line and use a default file instead because the corresponding file

representation is already stored in the state.

In the return case, we retrieve from the states both the variation context and the variational

queue (representing the file). Then, we perform read_line on the file with the given variation

context. The operation read_line is basically a dequeue operation on the variational queue,

which takes the variation context as parameter. The result of performing dequeue is a tuple

of two arguments: the resulting line and the updated variational queue. The state holding the

queue is set to the new queue q’ and the result r is returned. Note that the return value of

read_line has type v because the result is either a plain line of text (One), a variational line

(Chc), or nothing (Hole).

Using this mechanism, we could read lines from variational or plain files, as shown below.

let r_file = #Open_in "file.eff";;
let queue = read_v r_file;;
#Close_in r_file;;

let line1 () = readLine ();;
let line2 () = (meal&partial)〈readLine ()〉;;
let line3 () = (meal&!partial)〈readLine ()〉;;

let f () =
read_line_h line1 ; read_line_h line2 ; read_line_h line3

;;

read_lines_h queue f;;

We open the file and then load it in a variational queue using the operation read_v which is a

parser explained in Section 7.1. After that, the file could be closed because the queue would be

used instead to represent the file. The helper function read_line_h is used to wrap syntax of
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the variational read handler. The operation read_lines_h is used to wrap the syntax of states’

handlers (variational queue state and variation context state). The example above shows the

same sequence of read-line operations in Figure 7.1.

Since the results from read-line could be variational we combine our work in the variational

file reading handler and the variation handler to concatenate lines.

let line1 () = readLine ();;
let line2 () = meal〈readLine ()〉;;

let g () =
let res1 = read_line_h line1 in
let res1 = read_line_h line2 in
let r () =

let a1 = reflect_v res1 in
let a2 = reflect_v res1 in
a1 ^ " " ^ a2

in reify_v r
;;

read_lines queue g;;

We use the reify and reflect technique, which are the inverse of each other, to move from variational

values to choice operations and from choice operations to variational values. In reflect, we convert

the v type result into a choice effect operation and in reify, we calculate the corresponding

variational result using the variation handler in Figure 3.1. The example above concatenates the

results of two read-line operations. The first is a plain read-line operation and the second is a

variational read-line operation with the context meal. The result a1 is a plain line of text while

the result a2 is a choice as shown below.

a1 = "Below is a breakdown of the preliminary housing costs for 2018-2019."
a2 = partial〈"$1902", "$3372"〉

Therefore, the final result of concatenating the lines above is the following variational value.

partial〈"Below is a breakdown of .. $1902", "Below is a breakdown of .. $3372"〉

This implementation enables us to see the results corresponding to different variants in one run of

the program.

The next example is another useful application that shows how the integration of variation
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and side effects can prevent from repetitive work. Being able to read all alternatives of the file,

allows performing a filter operation on all alternatives at one run. The following program counts

the number of times the text "$13360" occurs in any alternative of the variational file.

let checkDocs w q =
let words = concatMap (fun str −> split str x) q in
let matches = filter (fun a −> a = w) words in
length matches

;;

let q’ () = map (fun v −> (reflect_v v)) q in
let f () = checkDocs "$13360" (q’ ()) in
reify_v f;;

In a similar manner, we run a map operation converting every line to a choice operation

(reflect). Then, we calculate the variational result using the variation handler (reify). In each

alternative, we run the filter operation checkDocs. Running this program on the example file

in Figure 5.1 will result in 2 when the two expressions (artists’ residence & (single |

efficiency)) and (smith & (!kitchen & single)) are true, in 1 when only one of them is

true, and in 0 when both are false. The following choice represents the result (we use artists

instead of artists’ residence for short).

(artists&(single|efficiency))〈(smith&!kitchen&single)〈2, 1〉, (smith&!kitchen&single)〈1, 0〉〉
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Chapter 8: Limitations of Variation as an Effect

Our choice effect is closely related to similar choice effects described in previous work on

algebraic effects [5, 19, 12, 18]. The main difference is that our choices also include a formula

that can be used to coordinate choices in different parts of the program. However, both our work

and previous work share a common limitation: choices implemented as effects are very inefficient

compared to built-in language support for variation.

One of the core ideas underlying variational execution is that parts of the program shared

among two or more variants are executed only once. However, this is unfortunately not the case

for variation implemented via choice effects.

Consider the program below executing a variational list of numbers.

with v_handler handle
[5;9;7;B〈5, 6〉;A〈11, 10〉]

;;

Ideally, we would like the raw elements to be visited once: elements 5, 9 and 7. Now consider

doing an operational computation on this list such as summing up the list. To figure out how

many times every element in the list gets executed in calculating the sum, we use a state counter.

This counter is incremented every time an element is visited as follows in sum.

let rec sum l =
match l with

[] −> 0
|(x::xs) −> #Set (#Get () + 1); x + sum xs

;;

We return the sum of the list along with the value of the state counter as follows.

with state handle
with v_handler handle

let l = [5;9;7;B〈5, 6〉;A〈11, 10〉] in
(sum l, #Get ())

;;
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Because this lists has 4 variants, every element in the list has been visited 4 times. The program

above produces the following result.

[(A & B, (37,5));
(¬A & B, (36,10));
(A & ¬B, (38,15));
(¬A & ¬B, (37,20))]

This means that the size of the computation increases exponentially with respect to the number

of options in the program, i.e., the complexity is O(2n). Unfortunately, we are not able to avoid

this with the current approach, while it could have been more efficient to visit the list once until

reaching the first variational element. The work in [15] deals with this issue by designing multiple

variational stack implementations that avoid repeating shared parts. However, doing this for

every kind of variation we deal with is overwhelming.

In this work, we chose to implement variational execution via choice effects for expediency.

Our goal is to demonstrate how algebraic effects can be used to solve the problem of managing

side effects during variational execution. However, a proper language for variational execution

with side effects should include both algebraic effects and built-in support for variation. That is,

built-in constructs for choices and optional values, and corresponding language run-time support

for variational execution.

The language Eff we use to implement this work is a language under development, which

makes this work more challenging. Its lack of features forces us to implement a basic incremental

SAT solver to solve boolean formulas in our choices’ contexts. If the language was more advanced

with features, we could use a more efficient solver. Moreover, the language is lacking operations

for file I/O and string manipulation features needed in parsing. This also forces us to alter the

type system to introduce new types such as channel and char, import various string operations

from OCaml and build a new compiler instance to work with.
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Chapter 9: Related Work

In this section we discuss various related work. We briefly discuss a work that addresses the

problem of integrating variation with side effects but does not solve it. We review in details a

work that approaches the same problem we address and handles file I/O differently. Eventually,

we compare our variation effect with the non-determinism effect, which is an effect with a similar

behavior that has been implemented in previous work on algebraic effects.

9.1 VarexJ: A Variability-Aware Interpreter for Java Applications

This work builds a virtual machine (VarexJ) for testing software product lines in variational

settings allowing the testing of all configurations at one run [13]. This machine has been successful

in various aspects, but still suffers from the limitations of integrating side effects such as file I/O.

In this work, the authors could not deal with files for testing in variation, because the different

configurations affect each other. For example, running the program to test with some configuration

would read and write something to the file that would be changed or deleted when testing with

another configuration. This could be managed with individual runs by resetting the file to the

starting state, but with multi-execution software this is infeasible as the result of one configuration

might overwrite the other. Solutions suggested, but not implemented, to the problem include

new file models, separating files for different variation contexts, or variability-aware file content

encoding.
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9.2 Typed Faceted Values for Secure Information Flow in Haskell

A major concern in programs that carry sensitive data is enforcing a policy that keeps the

data safe and prevent attacks or unauthorized accesses to it [3, 2]. A particular challenge is that

the sensitive information in data can be leaked not only directly but also indirectly by the results

of computations that use that data. Information-flow security is about preventing such leaks

by allowing programmers to mark data that is sensitive and then tracking the flow of that data

throughout the execution of the program. One approach to enforcing information flow security is

secure multi-execution, which effectively executes two version of the program, “high” and “low”,

where the high execution corresponds to higher security and can use private data, while the low

execution uses only public data.

The work in [2] introduced faceted values to simulate both versions of the program in one

process. The faceted value is equivalent to the choice in our work where one alternative holds

the private facet and the other holds the public facet. However, these programs can still leak

sensitive information through implicit flow when side effects are invoked. Therefore, the work in

[3] extends on faceted values to make facet-aware I/O operations such as mutable references cells

(mutable states) and socket communication through channels (file I/O). We discuss the work on

file I/O in the rest of this section.

Similar to our approach, the authors of [3] build a Haskell library that can be integrated into

languages. They implement faceted values as monads separately from the side effects. Then, they

extend them to work with side effects. Programs with side effects could be encoded as follows

where secret is a faceted value.

do v <− secret
do if v == 42

then writeIORef x 1
else return ()

readIORef x

To figure out the path of the program flow, there is a program counter, which a list of selections

(public or private) corresponding to the labels of faceted values used throughout the program.
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This implementation allows simulating both: the private view and the public view of the

program, which is the same goal we accomplish with the variation effect. However, we do not use

a program counter to figure out the selections, we use the continuation which we invoke with true

and false simulating all the variants of a program (variational execution). The return value of the

continuation is the corresponding selection of the underlying choice label (option).

For file I/O and network sockets, the authors of [3] address the same issue we address that

the file system or the channel have external environments that are not facet-aware. To make file

I/O facet-aware, the authors introduce new operations that work with faceted values explicitly as

shown below.

openFileF :: View −> FilePath −> IOMode −> FIO FHandle
hGetCharF :: FHandle −> FIO (Faceted Char)
hPutCharF :: FHandle −> Faceted Char −> FIO ()

In our work however, we introduce new handlers and avoid introducing new effects. Our handlers

catch the built-in effects and enforce new behaviors on these effects. This makes our work flexible

and extensible by allowing us to handle the same effects in multiple ways.

To avoid changing the external environment (the file system), the authors of [3] require raw

data (either the public or private alternative) to be sent to the channel, or no data at all if the

operation requires access to data that should not be accessed. Thus, the trick they use to work

with file I/O on the library level is by attaching a view, which is a list of labels, to the file handle

in openFileF operation indicating the privacy policy.

The view attached to the handle is checked against the program counter; if the program

counter contains a label that is not in the view, the underlying operations are disabled. Consider

the following program, which has a view attached to openFileF that contains the labels "z" and

"w". This means, only labels "z" and "w" allow a write to the channel.

do h <− openFileF ["z","w"] "file" WriteMode
hPutCharF h (makeFacets "z" ’a’ ’b’)

Now, consider if the program counter was ["z","x"]. Since the program counter contains

"x", which is not in the view attached to openFileF, no write should happen to avoid leaking
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information to "x". If the program counter was ["z"], character ’a’ would be written. If the

program counter was ["w"], character ’b’ would be written. Similarly, the read operation below

is protected by the view holding "k" and "l".

do h <− openFileF ["k","l"] "file" ReadMode
hGetCharF h

In comparison to our work, we extend text files with the CPP format which lets us control every

line of the file and flexibly read and write variational lines from the file. On the other hand, in

the work above all labels are required to be mentioned upfront when the file is opened.

The main property we maintain is the preservation property which ensures symmetry; one

alternative of the choice does not control the other alternative. In contrast, faceted values in [3]

are asymmetric because the private alternative can control the public alternative, but the private

alternative can not control the public alternative. Consider the example below.

hPutCharh k〈’a’, ’b’〉
hGetChar h

Since only raw data could be sent to the file, either ’a’ or ’b’ could be written. If the user

had access to the private alternative of k, the program would write ’a’ into the file. Then, the

second line of code returns k〈’a’,_〉 to avoid information leak. While if the user had access to

the public alternative of k, the program would write ’b’ into the file. Then, the second line of

code returns ’b’ and not k〈_, ’b’〉 which breaks the symmetry property. The authors claim that

this approach is more natural and avoids the challenge of keeping track of all labels.

9.3 Algebraic Effects for a Non-deterministic Effect

Work on algebraic effects and effect handlers has frequently used a choice as an example of a

non-deterministic effect [5, 19, 12, 18]. These choice effects differ from our notion of choices in

two key ways: (1) Each choice effect is independent, there is no concept analogous to dimensions

to synchronize selections across choices. (2) The evaluation of an expression with choice effects
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yields an unstructured set of variants, rather than a structured variational value that clarifies the

relationship between a sequence of selections and the variant it yields, as in our variation effect. A

notable exception is the selection functional effect presented in [5], which essentially implements

dimensioned choices in the Eff programming language. However, the control flow enforced by

these encodings of choices rules out several ways to optimize variation-preserving computations.

Since computations for different alternatives are performed in different continuations, we lose the

opportunity to perform choice reduction to proactively eliminate unreachable alternatives [6], or

to join converged execution paths early.

Finally, encoding choices as effects loses the ability to explicitly pattern match on them, which

is often needed for variational analyses.
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Chapter 10: Conclusion and Future Work

Integrating variation with side effects does not have a one-size-fits-all solution because each

effect requires a special treatment and the solution for one effect might be incompatible with

other effects. The best solution given the constraints is to solve this problem at the library

level - giving the programmer the tools to deal with the interaction of variation and effects. As

a proof-of-concept, we use algebraic effects to encode variation as an effect. Then, we extend

the execution environment of variational programs to support file I/O. Algebraic effects allow

programmers to handle new types of effects or handle existing effects in multiple ways. This

makes them highly complementary with variational programs. As part of our contribution, we

implement an abstract variational queue, which is a variational data structure that could be used

in many applications of variational programming to incorporate variational data collections.

For future work, we could extend the execution environment of variational programs to handle

new types of effects such as mutable states, standard input/output, and exceptions. We could

also handle file I/O differently. For example, we could create a new file instance for every context

initiated in the variational program. The file name of every file instance corresponds to its context.

We already showed a simulation of this in Chapter 1. Our potential goal of this work is to include

both algebraic effects and built-in support for variation in languages, that is, built-in constructs

for choices and optional values, and corresponding language run-time support for variational

execution. This would properly perform variational execution with side effects.
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Appendix A: Parsing the Boolean Formula of a Choice

let rec getChoice_ split_string left =

let rec go xss left’ =
match xss with

[] −> ((Lit false),[])
| (x::xs) −>

if (x = ")") then
(left’,xs)

else
let (c’,es’) = (getChoice_ xss left’) in
go es’ c’

in
match split_string with

[] −> (left,[])
| (e::es) −>

if (e = "(") then
go es left

else if (e = "!") then
let (l’,es’) = getChoice_ es left in
(Not l’,es’)

else if (e = "&") then
let (r’,es’) = (getChoice_ es left) in
(And (left, r’), arr’)

else if (e = "|") then
let (r’,es’) = (getChoice_ es left) in
(Or (left, r’),arr’)

else
((Ref e),es)

;;

let rec get_choice split_string left =
let (c,l) = getCh split_string left in
match l with

[] −> c
| _ −> get_choice l c

;;

let parse_choice split_string =
match split_string with

[] −> (Lit false)
| (x::xs)−> get_choice xs (Lit true);;
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