Function: setup
Output: Takes temperature and displays it on seven seg, plays appropriate audio, and if applicable

Function: button_push
Description: Writes BaD to the seven seg display while audio plays.

Function: display_normal
Description: Displays the temperature read by the IR sensor on the seven seg display.

Function: take_temperature
Outputs: Temperature displayed on screen
Description: Causes the seven seg display to countdown from 3 over 3 seconds.

Function: play_countdown

Function: flushRX
Description: Flushes/Clears the buffer used to store input from the barcode scanner.

//Flush out the buffer
if (flushRX(buffer, &user))
else
{

//And returns true
return;

//Checks if USB is connected
if (tmrpcm.equalsIgnoreCase(SD_ChipSelectPin, 1023.0))
else
{

//Verifies SD card is connected
if (tmrpcm.equalsIgnoreCase(SD_ChipSelectPin, 0))
else
{

//Turn on motion sensing mode

//Turn scanning laser on

//Turn scanning light on

//Initialize Serial Connection

//Object controlling the speaker

//Object controlling the Barcode Scanner

//Multiply temp by 10 to include 10th's place precision

//Equation to solve for Tob given VA1 and VA5

//Get the temperature seen by IR sensor

//Mute speaker when audio ends

//Writes data to external database if applicable

//Equations used to calculate the frame line and angle

//Add recorded temperature passed in

//Flushes the scanner's buffer

//Object controlling the Barcode Scanner

//Object controlling the speaker

//Eq. 1		\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{\gamma}

//Eq. 2		\beta = \frac{\alpha \gamma}{1 - \alpha}

//Eq. 3		\alpha = \frac{\gamma}{\gamma - 1}

//Eq. 4		\beta = \frac{\gamma}{\gamma - 1}

//Eq. 5		\beta = \frac{\alpha}{\gamma}

//Eq. 6		\beta = \frac{\alpha}{\gamma}

//Eq. 7		\beta = \frac{\alpha}{\gamma}

//Eq. 8		\beta = \frac{\alpha}{\gamma}

//Eq. 9		\beta = \frac{\alpha}{\gamma}

//Eq. 10	\beta = \frac{\alpha}{\gamma}

//Eq. 11	\beta = \frac{\alpha}{\gamma}

//Eq. 12	\beta = \frac{\alpha}{\gamma}

//Eq. 13	\beta = \frac{\alpha}{\gamma}

//Eq. 14	\beta = \frac{\alpha}{\gamma}

//Eq. 15	\beta = \frac{\alpha}{\gamma}

//Eq. 16	\beta = \frac{\alpha}{\gamma}

//Eq. 17	\beta = \frac{\alpha}{\gamma}

//Eq. 18	\beta = \frac{\alpha}{\gamma}

//Eq. 19	\beta = \frac{\alpha}{\gamma}

//Eq. 20	\beta = \frac{\alpha}{\gamma}

//Eq. 21	\beta = \frac{\alpha}{\gamma}

//Eq. 22	\beta = \frac{\alpha}{\gamma}

//Eq. 23	\beta = \frac{\alpha}{\gamma}

//Eq. 24	\beta = \frac{\alpha}{\gamma}

//Eq. 25	\beta = \frac{\alpha}{\gamma}

//Eq. 26	\beta = \frac{\alpha}{\gamma}

//Eq. 27	\beta = \frac{\alpha}{\gamma}

//Eq. 28	\beta = \frac{\alpha}{\gamma}

//Eq. 29	\beta = \frac{\alpha}{\gamma}

//Eq. 30	\beta = \frac{\alpha}{\gamma}

//Eq. 31	\beta = \frac{\alpha}{\gamma}

//Eq. 32	\beta = \frac{\alpha}{\gamma}

//Eq. 33	\beta = \frac{\alpha}{\gamma}

//Eq. 34	\beta = \frac{\alpha}{\gamma}

//Eq. 35	\beta = \frac{\alpha}{\gamma}

//Eq. 36	\beta = \frac{\alpha}{\gamma}

//Eq. 37	\beta = \frac{\alpha}{\gamma}

//Eq. 38	\beta = \frac{\alpha}{\gamma}

//Eq. 39	\beta = \frac{\alpha}{\gamma}

//Eq. 40	\beta = \frac{\alpha}{\gamma}

//Eq. 41	\beta = \frac{\alpha}{\gamma}

//Eq. 42	\beta = \frac{\alpha}{\gamma}

//Eq. 43	\beta = \frac{\alpha}{\gamma}

//Eq. 44	\beta = \frac{\alpha}{\gamma}

//Eq. 45	\beta = \frac{\alpha}{\gamma}

//Eq. 46	\beta = \frac{\alpha}{\gamma}

//Eq. 47	\beta = \frac{\alpha}{\gamma}

//Eq. 48	\beta = \frac{\alpha}{\gamma}

//Eq. 49	\beta = \frac{\alpha}{\gamma}

//Eq. 50	\beta = \frac{\alpha}{\gamma}

//Eq. 51	\beta = \frac{\alpha}{\gamma}

//Eq. 52	\beta = \frac{\alpha}{\gamma}

//Eq. 53	\beta = \frac{\alpha}{\gamma}

//Eq. 54	\beta = \frac{\alpha}{\gamma}

//Eq. 55	\beta = \frac{\alpha}{\gamma}

//Eq. 56	\beta = \frac{\alpha}{\gamma}

//Eq. 57	\beta = \frac{\alpha}{\gamma}

//Eq. 58	\beta = \frac{\alpha}{\gamma}

//Eq. 59	\beta = \frac{\alpha}{\gamma}

//Eq. 60	\beta = \frac{\alpha}{\gamma}

//Eq. 61	\beta = \frac{\alpha}{\gamma}

//Eq. 62	\beta = \frac{\alpha}{\gamma}

//Eq. 63	\beta = \frac{\alpha}{\gamma}

//Eq. 64	\beta = \frac{\alpha}{\gamma}

//Eq. 65	\beta = \frac{\alpha}{\gamma}

//Eq. 66	\beta = \frac{\alpha}{\gamma}

//Eq. 67	\beta = \frac{\alpha}{\gamma}

//Eq. 68	\beta = \frac{\alpha}{\gamma}

//Eq. 69	\beta = \frac{\alpha}{\gamma}

//Eq. 70	\beta = \frac{\alpha}{\gamma}

//Eq. 71	\beta = \frac{\alpha}{\gamma}

//Eq. 72	\beta = \frac{\alpha}{\gamma}

//Eq. 73	\beta = \frac{\alpha}{\gamma}

//Eq. 74	\beta = \frac{\alpha}{\gamma}

//Eq. 75	\beta = \frac{\alpha}{\gamma}

//Eq. 76	\beta = \frac{\alpha}{\gamma}

//Eq. 77	\beta = \frac{\alpha}{\gamma}

//Eq. 78	\beta = \frac{\alpha}{\gamma}

//Eq. 79	\beta = \frac{\alpha}{\gamma}

//Eq. 80	\beta = \frac{\alpha}{\gamma}

//Eq. 81	\beta = \frac{\alpha}{\gamma}

//Eq. 82	\beta = \frac{\alpha}{\gamma}

//Eq. 83	\beta = \frac{\alpha}{\gamma}

//Eq. 84	\beta = \frac{\alpha}{\gamma}

//Eq. 85	\beta = \frac{\alpha}{\gamma}

//Eq. 86	\beta = \frac{\alpha}{\gamma}

//Eq. 87	\beta = \frac{\alpha}{\gamma}

//Eq. 88	\beta = \frac{\alpha}{\gamma}

//Eq. 89	\beta = \frac{\alpha}{\gamma}

//Eq. 90	\beta = \frac{\alpha}{\gamma}

//Eq. 91	\beta = \frac{\alpha}{\gamma}

//Eq. 92	\beta = \frac{\alpha}{\gamma}

//Eq. 93	\beta = \frac{\alpha}{\gamma}

//Eq. 94	\beta = \frac{\alpha}{\gamma}

//Eq. 95	\beta = \frac{\alpha}{\gamma}

//Eq. 96	\beta = \frac{\alpha}{\gamma}

//Eq. 97	\beta = \frac{\alpha}{\gamma}

//Eq. 98	\beta = \frac{\alpha}{\gamma}

//Eq. 99	\beta = \frac{\alpha}{\gamma}

//Eq. 100\beta = \frac{\alpha}{\gamma}

//Set delay time based on temp

//End of program

//Program END

//Comment this line out if using for final project
//Serial.end()