Electrical Schematic

Mechanical Drawings
MLX90614:

Bottom View

Top View

HC-SR04:
Arduino Uno R3:

Full mechanical drawing
Link to CAD Model

Bluefruit BLE UART:
Enclosure:

Full mechanical drawing

PCB Layers:

Full PCB:

Front Layer:
Back Layer:

Top-Level Block Diagram
Interface Table

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Properties</th>
</tr>
</thead>
</table>
| outside_psupply_dcpwr | ● $V_{\text{max}} = 5V$
 | ● $V_{\text{min}} = 4.75V$
 | ● $I_{\text{max}} = 500mA$
 | ● $I_{\text{min}} = 100mA$ |
| outside_distance_env | ● Ultrasonic sensor will detect how far away the user is |
| outside_temperature_env | ● Infrared sensor will detect the temperature of the object in front of it |
| psupply_distance_dcpwr | ● $V_{\text{max}} = 5.5V$
 | ● $V_{\text{min}} = 4.5V$
 | ● $I_{\text{max}} = 10mA$
 | ● $I_{\text{min}} = 20mA$ |
| psupply_temperature_dcpwr | ● $V_{\text{max}} = 5.5V$
 | ● $V_{\text{min}} = 4.5V$
 | ● $I_{\text{max}} = 2mA$
 | ● $I_{\text{min}} = 1.3mA$ |
| psupply_microcontroller_dcpwr| ● $V_{\text{max}} = 5.5V$
 | ● $V_{\text{min}} = 2.7V$
 | ● $I_{\text{max}} = 500mA$
 | ● $I_{\text{min}} = 100mA$ |
| distance_microcontroller_asig| ● $V_{\text{max}} = 5V$
 | ● $V_{\text{min}} = 3V$
 | ● Distance is proportional to the time when signal is high
 | ● Distance = velocity / time |
temperature_microcontroller_dsigt

- Frequency $f_{clk,\text{max}} = 100kHz$
- Frequency $f_{clk,\text{min}} = 10kHz$
- $V_{clk,\text{max}} = 5.5V$
- $V_{clk,\text{min}} = 4.5V$
- $I_{clk,\text{max}} = 2mA$
- $I_{clk,\text{min}} = 1.3mA$

microcontroller_bluetooth_data

- Communicates with Microcontroller using SPI protocol
- $V_{\text{max}} = 5V$
- Uses a baud rate of 9600
- Uses UART protocol

bluetooth_phone_data

- Low Energy Bluetooth allows arduino to send data to phone using adapter
- App receives data transmitted from bluetooth transmitter

phone_outside_usrout

- Phone acts as a display for the temperature sensor system
- User can check their temperature and the previous scans on the phone

Bill of Materials

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Part #</th>
<th>Description</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR1</td>
<td>MLX90614-AAA</td>
<td>Temperature Sensor</td>
<td>1</td>
<td>$15.95</td>
</tr>
<tr>
<td>U1</td>
<td>HC-SR04</td>
<td>Ultrasonic Sensor</td>
<td>1</td>
<td>$3.95</td>
</tr>
<tr>
<td>BLU1</td>
<td>MDBT40-P256R *</td>
<td>Bluefruit Bluetooth UART Module</td>
<td>1</td>
<td>$17.50</td>
</tr>
<tr>
<td>A1</td>
<td>Uno R3</td>
<td>Arduino Uno Clone</td>
<td>1</td>
<td>$6.00</td>
</tr>
</tbody>
</table>

* This is the part number for the specific bluetooth antenna used on the Bluefruit Module: the board itself has no part number

Code

Arduino code:

```c
/**
 * Temperature Sensor Main Code
 * Bluetooth Module by: Patrick Liang
```
#include <Arduino.h>
#include <Adafruit_MLX90614.h>
#include <SPI.h>
#include "Adafruit_BLE.h"
#include "Adafruit_BluefruitLE_SPI.h"
#include "Adafruit_BluefruitLE_UART.h"

#include "BluefruitConfig.h"

#if SOFTWARE_SERIAL_AVAILABLE
#include <SoftwareSerial.h>
#endif

/*===*/

APPLICATION SETTINGS

FACTORYRESET_ENABLE Perform a factory reset when running this sketch
Enabling this will put your Bluefruit LE module
in a 'known good' state and clear any config
data set in previous sketches or projects, so
running this at least once is a good idea.
When deploying your project, however, you will
want to disable factory reset by setting this
value to 0. If you are making changes to your
Bluefruit LE device via AT commands, and those
changes aren't persisting across resets, this
is the reason why. Factory reset will erase
the non-volatile memory where config data is
stored, setting it back to factory default
values.
Some sketches that require you to bond to a
central device (HID mouse, keyboard, etc.)
won't work at all with this feature enabled
since the factory reset will clear all of the
bonding data stored on the chip, meaning the
central device won't be able to reconnect.

MINIMUM_FIRMWARE_VERSION Minimum firmware version to have some new features

MODE_LED_BEHAVIOUR LED activity, valid options are
"DISABLE" or "MODE" or "BLEUART" or
"HWUART" or "SPI" or "MANUAL"

/*===*/
#define FACTORYRESET_ENABLE 0
#define MINIMUM_FIRMWARE_VERSION "0.6.6"
#define MODE_LED_BEHAVIOUR "MODE"
/*===*/
// Create the bluefruit object, either software serial...uncomment these lines
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN,
BLUEFRUIT_SWUART_RXD_PIN);

Adafruit_BluefruitLE_UART ble(bluefruitSS,
BLUEFRUIT_UART_MODE_PIN,
BLUEFRUIT_UART_CTS_PIN,
BLUEFRUIT_UART_RTS_PIN);

// A small helper
void error(const __FlashStringHelper*err) {
 Serial.println(err);
 while (1);
}

Adafruit_MLX90614 mlx = Adafruit_MLX90614(); //creates an object for the mlx sensor

//begin pin defines
int gndPin = 7; // gnd pin for distance sensor
int echoPin = 6; // attach pin D2 Arduino to pin Echo of HC-SR04
int trigPin = 5; //attach pin D3 Arduino to pin Trig of HC-SR04
int vccPin = 4; //Vcc pin for distance sensor

//SDA: A4
//SCL: A5

//global variables for distance sensor
float distance = 0; //distance to the object
float tooCloseVal = 1; //when the object is too close to the sensor
float maximum = 2000; //when object is too close that sensor does not work appropriately
float tooFarVal = 10;
long duration; //how long the sound wave travels before detecting something

//global variables for temp sensor
double temperature = 0;

void setup() {
 //begin I/O defines
 pinMode(trigPin, OUTPUT); // Sets the trigPin as an OUTPUT
 pinMode(vccPin, OUTPUT); // Sets the vccPin as an OUTPUT
 pinMode(gndPin, OUTPUT); // Sets the gndPin as an OUTPUT
 pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT

 digitalWrite(vccPin, HIGH);
digitalWrite(gndPin, LOW);
//Begin Setup for Temperature Sensor
while (!Serial);
Serial.begin(115200);
Serial.println("Begin Setup");

if (!mlx.begin()) {
 Serial.println("Error connecting to MLX sensor. Check wiring.");
 delay(100);
}

Serial.println("Adafruit Bluefruit Command <-> Data Mode Example");
Serial.println("--");

/* Initialise the module */
Serial.print("Initialising the Bluefruit LE module: ");
if (!ble.begin(VERBOSE_MODE)) {
 error("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?");
}
Serial.println("OK!");

if (FACTORYRESET_ENABLE) {
 /* Perform a factory reset to make sure everything is in a known state */
 Serial.println("Performing a factory reset: ");
 if (!ble.factoryReset()){
 error("Couldn't factory reset");
 }
}

//
/* Disable command echo from Bluefruit */
ble.echo(false);

Serial.println("Requesting Bluefruit info:");
/* Print Bluefruit information */
ble.info();

Serial.println("Please use Adafruit Bluefruit LE app to connect in UART mode");
Serial.println("Then Enter characters to send to Bluefruit");
Serial.println();

ble.verbose(false); // debug info is a little annoying after this point!

//
/* Wait for connection */
while (!ble.isConnected()) {
 delay(500);
Serial.println(F("******************************"));

// LED Activity command is only supported from 0.6.6
if (ble.isVersionAtLeast(MINIMUM_FIRMWARE_VERSION)) {
 // Change Mode LED Activity
 Serial.println(F("Change LED activity to " MODE_LED_BEHAVIOUR));
 ble.sendCommandCheckOK("AT+HWModeLED=" MODE_LED_BEHAVIOUR);
}

// Set module to DATA mode
Serial.println(F("Switching to DATA mode!"));
ble.setMode(BLUEFRUIT_MODE_DATA);
Serial.println(F("******************************"));

void sonarDistance() {
 digitalWrite(trigPin, LOW); // clears data on the sensor
 delayMicroseconds(5); // 5us delay
 digitalWrite(trigPin, HIGH); // starts the sensor if Microseconds > 10
 delayMicroseconds(15); // 15 us delay
 digitalWrite(trigPin, LOW); // stops sensor
 duration = pulseIn(echoPin, HIGH); // gives the distance from the sensor and object
 distance = duration*0.0343/2; // calculate the distance in centimeters, \(d = v \cdot t \)
 // Serial.print("Distance "); // print message to serial monitor
 // Serial.print(distance); // print the calculated distance to serial monitor
 // Serial.println(" cm"); // print message to serial monitor
}

void loop() {
 // All inputs below are hardcoded for testing purposes!

 bool tooClose = false;
 bool tooFar = false;
 bool scan = false; // (Scan is triggered by app)
 // char n, inputs[BUFSIZE+1];

 sonarDistance(); // call function to calculate the distance
 // delay(2000); // delay for 2 seconds

 /**
 * Code for gathering if scan has been initiated*/
 // Echo received data
String string = "";
while (ble.available())
{
 int c = ble.read();
 string += (char)c;
}
if(string.equals("get")){
 scan = true;
}

if(scan){
 //Temperature is only displayed if the user is within range
 if(distance < tooCloseVal || distance > maximum){
 tooClose = true;
 ble.print("too close");
 }
 else if(distance > tooFarVal){
 tooFar = true;
 //Serial.println("Too Far, Please move forward");
 ble.print("too far");
 }
 else{
 temperature = mlx.readObjectTempF();
 ble.print((String)temperature); /* -> casts temp float to string */
 }
}

Phone App Code available at the github link listed below:
https://github.com/pl215364731/Temperature_sensor_app.git

Time Report:
Chart also available at:
https://docs.google.com/spreadsheets/d/14lurAnqDdQPQSKtfm9YJVZyqJ4kYkQFJuiCPrAbgrho/edit?usp=sharing