1. Background

Information about Containers & Virtual Machines (VMs)
What is Virtualization?

- Creating a layer of abstraction between hardware and applications.
- Multiple simulated environments from a single, physical hardware system.
- Resource sharing by multiple processes without conflicts.
What are Virtual Machines?

- A virtual computer with its own CPU, memory, storage and network interface.
- A virtual environment with an allocation of resources.
- Run their own OS and can be used as a “sandbox”.

![Image of virtual machines and hypervisor](image-url)
What are Containers?

Azure Container (Microsoft)

Google Container
What are Containers?

- Virtualize the operating system instead of virtualizing the hardware.
- Abstraction at the app layer.
- Shared parts of the OS are read only while each container has its own mount for writing.
VMs

- Multiple OS instances.
- Allocates required memory.
- More isolation, but heavier.
- Boot up time of several minutes.
- More hardware costs.
- Maintenance time.
- Isolated resources and OS instances highlighting better security.

Containers

- Single OS instance.
- Requires less memory space.
- Less isolation, but lightweight.
- Containerized applications can start up in less than a second.
- Decreased hardware costs.
- Continuous Integration.
- Shared kernel leading to possible interference between containers.
How do these run “on the cloud”?
2. Simulations/Tests

Simulation/Testing approach and process used
Cloud Providers Used

General purpose—Dv3

Balanced CPU and memory

Our Dv3 family is the latest generation of our general purpose VMs powered by Intel® Xeon® processors. It is appropriate for a variety of workloads.

Specs:

- D2 v3 2 xCPU(s) 8 GiB RAM
- Starting from
 - $0.0125/hour

Pricing:

- $5/mo
- $0.007/hour

- 1 GB / 1 CPU
- 25 GB SSD disk
- 1000 GB transfer
Simulation/Testing Steps

- Run tests on both VMs & Containers
 - Microsoft Azure and Digital Ocean
- Create scripts for gathering data
 - CPU, Memory, Networking Usage/Load
- Run simulations/tests at both idle and at load
- Test Configuration: Node.js Web Application
Simulation/Testing Measured Details

- CPU
 - User, System, Idle, SW Interrupts, Steal Time

- Memory
 - Total, Used, Free, Shared, Buffer/Cache

- Networking
 - Throughput, Packet Loss, and RTT

- Setup and Configuration Time/Experience
3. Results

Analysis of data gathered from simulations/tests
Memory Usage Comparison

Memory Usage (Load) Comparison

- used_AZ_Cont
- used_AZ_VM
- used_DO_Cont
- used_DO_VM

Memory Usage (Mb) vs Time (s)
Networking Usage Comparison

RTT Comparison - Digital Ocean VM

Idle RTT:
- RTT Min: 1.2 ms
- RTT Avg: 1.6 ms
- RTT Max: 2.4 ms

Load RTT:
- RTT Min: 0.85 ms
- RTT Avg: 1.92 ms
- RTT Max: 9.12 ms

RTT Comparison - Digital Ocean Container

Idle RTT:
- RTT Min: 1.47 ms
- RTT Avg: 1.96 ms
- RTT Max: 3.4 ms

Load RTT:
- RTT Min: 1.11 ms
- RTT Avg: 15.12 ms
- RTT Max: 105.17 ms
Networking Usage Comparison

Digital Ocean VM - TX/RX Network Packet Rate (Load)

- **TX:**
 - Min: 12 pkts/sec
 - Avg: 666.16 pkts/sec
 - Max: 839 pkts/sec

- **RX:**
 - Min: 3 pkts/sec
 - Avg: 1016.2 pkts/sec
 - Max: 1250 pkts/sec

Azure VM - TX/RX Network Packet Rate (Load)

- **TX:**
 - Min: 0 pkts/sec
 - Avg: 31.8 pkts/sec
 - Max: 96 pkts/sec

- **RX:**
 - Min: 0 pkts/sec
 - Avg: 78.8 pkts/sec
 - Max: 270 pkts/sec
4. Conclusion

Summary of project results
Results Analysis

- Developer Experience & Setup Time better on Digital Ocean
- VMs use more memory & have more CPU utilization
 - Compared to respective cloud provider’s Container offering
- Memory
 - Highest memory usage: Azure VM @ ~49%
 - Lowest memory usage: Azure Container @ ~7.5%
- CPU
 - Highest sys. CPU utilization: Azure VM @ ~0.46%
 - Lowest sys. CPU utilization: DO Container @ ~0.20%
Thank You

Questions?